summaryrefslogtreecommitdiff
path: root/380/CH4
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /380/CH4
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '380/CH4')
-rwxr-xr-x380/CH4/EX4.10/4_10.txt41
-rwxr-xr-x380/CH4/EX4.10/4_10_R.txt73
-rwxr-xr-x380/CH4/EX4.10/Ex4_10.sce41
-rwxr-xr-x380/CH4/EX4.11/4_11.txt36
-rwxr-xr-x380/CH4/EX4.11/4_11_R.txt8
-rwxr-xr-x380/CH4/EX4.11/Ex4_11.sce36
-rwxr-xr-x380/CH4/EX4.13/4_13.txt35
-rwxr-xr-x380/CH4/EX4.13/4_13_R.txt35
-rwxr-xr-x380/CH4/EX4.13/Ex4_13.sce35
-rwxr-xr-x380/CH4/EX4.14/4_14.txt11
-rwxr-xr-x380/CH4/EX4.14/4_14_R.txt11
-rwxr-xr-x380/CH4/EX4.14/Ex4_14.sce11
-rwxr-xr-x380/CH4/EX4.2/4_2.txt21
-rwxr-xr-x380/CH4/EX4.2/4_2_R.txt19
-rwxr-xr-x380/CH4/EX4.2/Ex4_2.sce21
-rwxr-xr-x380/CH4/EX4.3/4_3.txt26
-rwxr-xr-x380/CH4/EX4.3/4_3_R.txt3
-rwxr-xr-x380/CH4/EX4.3/Ex4_3.sce26
-rwxr-xr-x380/CH4/EX4.4/4_4.txt24
-rwxr-xr-x380/CH4/EX4.4/4_4_R.txt3
-rwxr-xr-x380/CH4/EX4.4/Ex4_4.sce24
-rwxr-xr-x380/CH4/EX4.6/4_6.txt30
-rwxr-xr-x380/CH4/EX4.6/4_6_R.txt7
-rwxr-xr-x380/CH4/EX4.6/Ex4_6.sce30
-rwxr-xr-x380/CH4/EX4.7/4_7.txt32
-rwxr-xr-x380/CH4/EX4.7/4_7_R.txt15
-rwxr-xr-x380/CH4/EX4.7/Ex4_7.sce32
-rwxr-xr-x380/CH4/EX4.9/4_9.txt52
-rwxr-xr-x380/CH4/EX4.9/4_9_R.txt19
-rwxr-xr-x380/CH4/EX4.9/Ex4_9.sce52
30 files changed, 809 insertions, 0 deletions
diff --git a/380/CH4/EX4.10/4_10.txt b/380/CH4/EX4.10/4_10.txt
new file mode 100755
index 000000000..23a14f44d
--- /dev/null
+++ b/380/CH4/EX4.10/4_10.txt
@@ -0,0 +1,41 @@
+//Caption:Find (a) primary winding voltage (b) secondary winding voltage (c) ratio of transformation (d) nominal rating of transformer
+//Exa:4.10
+clc;
+clear;
+close;
+V_1=2400;//in Volts
+V_2=240;//in Volts
+S_o=24*1000;//Volt-Ampere
+I_1=10;//in Amperes
+I_2=100;//in Amperes
+//Refer to fig:4.31 (a)
+V_1a=V_1+V_2;
+V_2a=V_2;
+a_T1=V_1a/V_2a;
+a_T2=V_2a/V_1a;
+a_T3=V_1a/V_1;
+a_T4=V_1/V_1a;
+S_oa_1=V_1a*I_1;
+S_oa_2=V_1a*I_1;
+S_oa_3=V_1a*I_2;
+S_oa_4=V_1a*I_2;
+disp("Refer to fig:4.31a");
+disp(V_1a,'(a) primary winding voltage (in Volts)=');
+disp(V_2a,'(b) secondary winding voltage (in Volts)=');
+disp(a_T1,'(c) ratio of transformation=');
+disp(S_oa_1/1000,'(d) nominal rating of transformer (KVA)=');
+disp("Refer to fig:4.31b");
+disp(V_2a,'(a) primary winding voltage (in Volts)=');
+disp(V_1a,'(b) secondary winding voltage (in Volts)=');
+disp(a_T2,'(c) ratio of transformation=');
+disp(S_oa_2/1000,'(d) nominal rating of transformer (KVA)=');
+disp("Refer to fig:4.31c");
+disp(V_1a,'(a) primary winding voltage (in Volts)=');
+disp(V_1,'(b) secondary winding voltage (in Volts)=');
+disp(a_T3,'(c) ratio of transformation=');
+disp(S_oa_3/1000,'(d) nominal rating of transformer (KVA)=');
+disp("Refer to fig:4.31d");
+disp(V_1,'(a) primary winding voltage (in Volts)=');
+disp(V_1a,'(b) secondary winding voltage (in Volts)=');
+disp(a_T4,'(c) ratio of transformation=');
+disp(S_oa_4/1000,'(d) nominal rating of transformer (KVA)='); \ No newline at end of file
diff --git a/380/CH4/EX4.10/4_10_R.txt b/380/CH4/EX4.10/4_10_R.txt
new file mode 100755
index 000000000..fe9b11bbe
--- /dev/null
+++ b/380/CH4/EX4.10/4_10_R.txt
@@ -0,0 +1,73 @@
+
+ Refer to fig:4.31a
+
+ (a) primary winding voltage (in Volts)=
+
+ 2640.
+
+ (b) secondary winding voltage (in Volts)=
+
+ 240.
+
+ (c) ratio of transformation=
+
+ 11.
+
+ (d) nominal rating of transformer (KVA)=
+
+ 26.4
+
+ Refer to fig:4.31b
+
+ (a) primary winding voltage (in Volts)=
+
+ 240.
+
+ (b) secondary winding voltage (in Volts)=
+
+ 2640.
+
+ (c) ratio of transformation=
+
+ 0.0909091
+
+ (d) nominal rating of transformer (KVA)=
+
+ 26.4
+
+ Refer to fig:4.31c
+
+ (a) primary winding voltage (in Volts)=
+
+ 2640.
+
+ (b) secondary winding voltage (in Volts)=
+
+ 2400.
+
+ (c) ratio of transformation=
+
+ 1.1
+
+ (d) nominal rating of transformer (KVA)=
+
+ 264.
+
+ Refer to fig:4.31d
+
+ (a) primary winding voltage (in Volts)=
+
+ 2400.
+
+ (b) secondary winding voltage (in Volts)=
+
+ 2640.
+
+ (c) ratio of transformation=
+
+ 0.9090909
+
+ (d) nominal rating of transformer (KVA)=
+
+ 264.
+ \ No newline at end of file
diff --git a/380/CH4/EX4.10/Ex4_10.sce b/380/CH4/EX4.10/Ex4_10.sce
new file mode 100755
index 000000000..23a14f44d
--- /dev/null
+++ b/380/CH4/EX4.10/Ex4_10.sce
@@ -0,0 +1,41 @@
+//Caption:Find (a) primary winding voltage (b) secondary winding voltage (c) ratio of transformation (d) nominal rating of transformer
+//Exa:4.10
+clc;
+clear;
+close;
+V_1=2400;//in Volts
+V_2=240;//in Volts
+S_o=24*1000;//Volt-Ampere
+I_1=10;//in Amperes
+I_2=100;//in Amperes
+//Refer to fig:4.31 (a)
+V_1a=V_1+V_2;
+V_2a=V_2;
+a_T1=V_1a/V_2a;
+a_T2=V_2a/V_1a;
+a_T3=V_1a/V_1;
+a_T4=V_1/V_1a;
+S_oa_1=V_1a*I_1;
+S_oa_2=V_1a*I_1;
+S_oa_3=V_1a*I_2;
+S_oa_4=V_1a*I_2;
+disp("Refer to fig:4.31a");
+disp(V_1a,'(a) primary winding voltage (in Volts)=');
+disp(V_2a,'(b) secondary winding voltage (in Volts)=');
+disp(a_T1,'(c) ratio of transformation=');
+disp(S_oa_1/1000,'(d) nominal rating of transformer (KVA)=');
+disp("Refer to fig:4.31b");
+disp(V_2a,'(a) primary winding voltage (in Volts)=');
+disp(V_1a,'(b) secondary winding voltage (in Volts)=');
+disp(a_T2,'(c) ratio of transformation=');
+disp(S_oa_2/1000,'(d) nominal rating of transformer (KVA)=');
+disp("Refer to fig:4.31c");
+disp(V_1a,'(a) primary winding voltage (in Volts)=');
+disp(V_1,'(b) secondary winding voltage (in Volts)=');
+disp(a_T3,'(c) ratio of transformation=');
+disp(S_oa_3/1000,'(d) nominal rating of transformer (KVA)=');
+disp("Refer to fig:4.31d");
+disp(V_1,'(a) primary winding voltage (in Volts)=');
+disp(V_1a,'(b) secondary winding voltage (in Volts)=');
+disp(a_T4,'(c) ratio of transformation=');
+disp(S_oa_4/1000,'(d) nominal rating of transformer (KVA)='); \ No newline at end of file
diff --git a/380/CH4/EX4.11/4_11.txt b/380/CH4/EX4.11/4_11.txt
new file mode 100755
index 000000000..d7464ab01
--- /dev/null
+++ b/380/CH4/EX4.11/4_11.txt
@@ -0,0 +1,36 @@
+//Caption:Find the efficiency and voltage regulation
+//Exa:4.11
+clc;
+clear;
+close;
+V_2a=480;//in volts
+pf=0.707;//leading
+theta=acosd(pf);
+a_T=120/480;//ratio of transformation of step-up transformer
+a=360/120;//ratio of transformation of two-winding transformer
+R_cH=8.64*1000;//in ohms
+R_H=18.9;//in ohms
+X_H=21.6;//in ohms
+X_L=2.4;//in ohms
+R_L=2.1;//in ohms
+X_mH=6.84*1000;//in ohms
+R_cL=R_cH/a^2;//equivalent core loss resistance in ohms
+X_mL=X_mH/a^2;//magnetizing reactance
+I_2a=(720/360)*(cosd(theta)+%i*sind(theta));
+I_H=I_2a;
+I_pa=I_2a/a_T;
+I_com=I_pa-I_2a;//current through common winding (in Amperes)
+//on applying KVL to the output loop
+E_L=(I_2a*(R_H+%i*X_H)+V_2a-I_com*(R_L+%i*X_L))/4;
+V_1a=E_L+I_com*(R_L+%i*X_L);
+I_ca=V_1a/R_cL;//core loss current in Amperes
+I_ma=-%i*V_1a/X_mL;//magnetizing current in Amperes
+I_phy_a=I_ca+I_ma;//excitation current
+I_1a=I_pa+I_phy_a;
+P_o=real(V_2a*conj(I_2a));
+P_in=real(V_1a*conj(I_1a));
+Eff=P_o/P_in;
+disp(Eff*100,'Efficiency (%)=');
+V_2anL=V_1a/a_T;//no load voltage
+VR=(abs(V_2anL)-V_2a)/V_2a;
+disp(VR*100,'Voltage regulation (%)='); \ No newline at end of file
diff --git a/380/CH4/EX4.11/4_11_R.txt b/380/CH4/EX4.11/4_11_R.txt
new file mode 100755
index 000000000..c1433dcc2
--- /dev/null
+++ b/380/CH4/EX4.11/4_11_R.txt
@@ -0,0 +1,8 @@
+ Efficiency (%)=
+
+ 80.293414
+
+ Voltage regulation (%)=
+
+ 1.2578083
+ \ No newline at end of file
diff --git a/380/CH4/EX4.11/Ex4_11.sce b/380/CH4/EX4.11/Ex4_11.sce
new file mode 100755
index 000000000..d7464ab01
--- /dev/null
+++ b/380/CH4/EX4.11/Ex4_11.sce
@@ -0,0 +1,36 @@
+//Caption:Find the efficiency and voltage regulation
+//Exa:4.11
+clc;
+clear;
+close;
+V_2a=480;//in volts
+pf=0.707;//leading
+theta=acosd(pf);
+a_T=120/480;//ratio of transformation of step-up transformer
+a=360/120;//ratio of transformation of two-winding transformer
+R_cH=8.64*1000;//in ohms
+R_H=18.9;//in ohms
+X_H=21.6;//in ohms
+X_L=2.4;//in ohms
+R_L=2.1;//in ohms
+X_mH=6.84*1000;//in ohms
+R_cL=R_cH/a^2;//equivalent core loss resistance in ohms
+X_mL=X_mH/a^2;//magnetizing reactance
+I_2a=(720/360)*(cosd(theta)+%i*sind(theta));
+I_H=I_2a;
+I_pa=I_2a/a_T;
+I_com=I_pa-I_2a;//current through common winding (in Amperes)
+//on applying KVL to the output loop
+E_L=(I_2a*(R_H+%i*X_H)+V_2a-I_com*(R_L+%i*X_L))/4;
+V_1a=E_L+I_com*(R_L+%i*X_L);
+I_ca=V_1a/R_cL;//core loss current in Amperes
+I_ma=-%i*V_1a/X_mL;//magnetizing current in Amperes
+I_phy_a=I_ca+I_ma;//excitation current
+I_1a=I_pa+I_phy_a;
+P_o=real(V_2a*conj(I_2a));
+P_in=real(V_1a*conj(I_1a));
+Eff=P_o/P_in;
+disp(Eff*100,'Efficiency (%)=');
+V_2anL=V_1a/a_T;//no load voltage
+VR=(abs(V_2anL)-V_2a)/V_2a;
+disp(VR*100,'Voltage regulation (%)='); \ No newline at end of file
diff --git a/380/CH4/EX4.13/4_13.txt b/380/CH4/EX4.13/4_13.txt
new file mode 100755
index 000000000..42be8f1ee
--- /dev/null
+++ b/380/CH4/EX4.13/4_13.txt
@@ -0,0 +1,35 @@
+//Caption:Find the line voltages,the line currents and efficiency of the transformer
+//Exa:4.13
+clc;
+clear;
+close;
+R_H=133.5*10^-3;//in ohms
+X_H=201*10^-3;//in ohms
+R_L=39.5*10^-3;//in ohms
+X_L=61.5*10^-3;//in ohms
+R_cL=240;//in ohms
+X_mL=290;//in ohms
+pf=0.8;//lagging
+theta=-acosd(pf);
+V_2n=138.564*(cosd(0)+%i*sind(0));//rated load voltage for Y/Y connection
+I_2A=86.6*(cosd(theta)+%i*sind(theta));//load current
+a=120/138.564;//transformation ratio
+I_pA=(I_2A/a)*(cosd(30)+%i*sind(30));//per phase current in primary winding
+E_2n=V_2n+I_2A*(0.0445+%i*0.067);//voltage induced in secondary winding
+E_2L=sqrt(3)*E_2n*(cosd(30)+%i*sind(30));
+E_1n=a*E_2n*(cosd(30)+%i*sind(30));//voltage induced in primary winding
+I_1A=I_pA+E_1n*((1/240)-%i*(1/290));
+disp(abs(I_2A),'Line current in secondary side (in Amperes)=');
+disp(atand(imag(I_2A)/real(I_2A)),'phase angle of induced line current in secondary (in Degree)=');
+disp(abs(I_1A),'Line current in primary side (in Amperes)=');
+disp(atand(imag(I_1A)/real(I_1A)),'phase angle of induced line current in primary (in Degree) =');
+disp(abs(E_2L),'Line voltage induced in secondary side (in Volts)=');
+disp(atand(imag(E_2L)/real(E_2L)),'phase angle of induced line voltage in secondary (in Degree)=');
+V_1n=E_1n+I_1A*(R_L+%i*X_L);
+V_1L=sqrt(3)*V_1n*(cosd(30)+%i*sind(30));
+disp(abs(V_1L),'Line voltage induced in primary side (in Volts)=');
+disp(atand(imag(V_1L)/real(V_1L)),'phase angle of induced line voltage in primary (in Degree)=');
+P_o=3*real(138.564*conj(I_2A));
+P_in=3*real(V_1n*conj(I_1A));
+Eff=P_o/P_in;
+disp(Eff*100,'Efficiency (%)='); \ No newline at end of file
diff --git a/380/CH4/EX4.13/4_13_R.txt b/380/CH4/EX4.13/4_13_R.txt
new file mode 100755
index 000000000..72c341543
--- /dev/null
+++ b/380/CH4/EX4.13/4_13_R.txt
@@ -0,0 +1,35 @@
+ Line current in secondary side (in Amperes)=
+
+ 86.6
+
+ phase angle of induced line current in secondary (in Degree)=
+
+ - 36.869898
+
+ Line current in primary side (in Amperes)=
+
+ 100.67653
+
+ phase angle of induced line current in primary (in Degree) =
+
+ - 6.8821937
+
+ Line voltage induced in secondary side (in Volts)=
+
+ 251.40194
+
+ phase angle of induced line voltage in secondary (in Degree)=
+
+ 30.91961
+
+ Line voltage induced in primary side (in Volts)=
+
+ 229.77546
+
+ phase angle of induced line voltage in primary (in Degree)=
+
+ 61.979867
+
+ Efficiency (%)=
+
+ 92.308106 \ No newline at end of file
diff --git a/380/CH4/EX4.13/Ex4_13.sce b/380/CH4/EX4.13/Ex4_13.sce
new file mode 100755
index 000000000..9d539df4e
--- /dev/null
+++ b/380/CH4/EX4.13/Ex4_13.sce
@@ -0,0 +1,35 @@
+//Caption:Find the line voltages,the line currents and efficiency of the transformer
+//Exa:4.13
+clc;
+clear;
+close;
+R_H=133.5*10^-3;//in ohms
+X_H=201*10^-3;//in ohms
+R_L=39.5*10^-3;//in ohms
+X_L=61.5*10^-3;//in ohms
+R_cL=240;//in ohms
+X_mL=290;//in ohms
+pf=0.8;//lagging
+theta=-acosd(pf);
+V_2n=138.564*(cosd(0)+%i*sind(0));//rated load voltage for Y/Y connection
+I_2A=86.6*(cosd(theta)+%i*sind(theta));//load current
+a=120/138.564;//transformation ratio
+I_pA=(I_2A/a)*(cosd(30)+%i*sind(30));//per phase current in primary winding
+E_2n=V_2n+I_2A*(0.0445+%i*0.067);//voltage induced in secondary winding
+E_2L=sqrt(3)*E_2n*(cosd(30)+%i*sind(30));
+E_1n=a*E_2n*(cosd(30)+%i*sind(30));//voltage induced in primary winding
+I_1A=I_pA+E_1n*((1/240)-%i*(1/290));
+disp(abs(I_2A),'Line current in secondary side (in Amperes)=');
+disp(atand(imag(I_2A)/real(I_2A)),'phase angle of induced line current in secondary (in Degree)=');
+disp(abs(I_1A),'Line current in primary side (in Amperes)=');
+disp(atand(imag(I_1A)/real(I_1A)),'phase angle of induced line current in primary (in Degree) =');
+disp(abs(E_2L),'Line voltage induced in secondary side (in Volts)=');
+disp(atand(imag(E_2L)/real(E_2L)),'phase angle of induced line voltage in secondary (in Degree)=');
+V_1n=E_1n+I_1A*(R_L+%i*X_L);
+V_1L=sqrt(3)*V_1n*(cosd(30)+%i*sind(30));
+disp(abs(V_1L),'Line voltage induced in primary side (in Volts)=');
+disp(atand(imag(V_1L)/real(V_1L)),'phase angle of induced line voltage in primary (in Degree)=');
+P_o=3*real(138.564*conj(I_2A));
+P_in=3*real(V_1n*conj(I_1A));
+Eff=P_o/P_in;
+disp(Eff*100,'Efficiency (%)='); \ No newline at end of file
diff --git a/380/CH4/EX4.14/4_14.txt b/380/CH4/EX4.14/4_14.txt
new file mode 100755
index 000000000..fbddcd729
--- /dev/null
+++ b/380/CH4/EX4.14/4_14.txt
@@ -0,0 +1,11 @@
+//Caption:Find the line current,line voltage and power
+//Exa:4.14
+clc;
+clear;
+close;
+I_L=4*80/5;
+disp(I_L,'Line current (in Amperes)=');
+V_L=110*100/1;
+disp(V_L,'Line voltage (in Volts)=');
+P=(100/1)*(80/5)*352;
+disp(P,'Power on the transmission line (in Watts)='); \ No newline at end of file
diff --git a/380/CH4/EX4.14/4_14_R.txt b/380/CH4/EX4.14/4_14_R.txt
new file mode 100755
index 000000000..db3804ea0
--- /dev/null
+++ b/380/CH4/EX4.14/4_14_R.txt
@@ -0,0 +1,11 @@
+ Line current (in Amperes)=
+
+ 64.
+
+ Line voltage (in Volts)=
+
+ 11000.
+
+ Power on the transmission line (in Watts)=
+
+ 563200. \ No newline at end of file
diff --git a/380/CH4/EX4.14/Ex4_14.sce b/380/CH4/EX4.14/Ex4_14.sce
new file mode 100755
index 000000000..fbddcd729
--- /dev/null
+++ b/380/CH4/EX4.14/Ex4_14.sce
@@ -0,0 +1,11 @@
+//Caption:Find the line current,line voltage and power
+//Exa:4.14
+clc;
+clear;
+close;
+I_L=4*80/5;
+disp(I_L,'Line current (in Amperes)=');
+V_L=110*100/1;
+disp(V_L,'Line voltage (in Volts)=');
+P=(100/1)*(80/5)*352;
+disp(P,'Power on the transmission line (in Watts)='); \ No newline at end of file
diff --git a/380/CH4/EX4.2/4_2.txt b/380/CH4/EX4.2/4_2.txt
new file mode 100755
index 000000000..b169b6063
--- /dev/null
+++ b/380/CH4/EX4.2/4_2.txt
@@ -0,0 +1,21 @@
+//Caption:Find the (a) a-ratio (b) current in primary (c) the power supplied to load (d) and the flux in the core
+//Exa:4.2
+clc;
+clear;
+close;
+N_p=150;//no. of turns in primary winding
+N_s=750;//no. of turns in secondary winding
+f=50;//frequency in Hz
+I_2=4;//load current (in Amperes)
+V_1=240;//voltage on primary side (in Volts)
+pf=0.8;//power factor
+a=N_p/N_s;
+disp(a,'(a) a-ratio=');
+I_1=I_2/a;
+disp(I_1,'(b) current in primary (in Amperes)=');
+V_2=V_1/a;
+disp(V_2,'(c) voltage on secondary side (in Volts)=');
+P_L=V_2*I_2*pf;
+disp(P_L,'(d) power supplied to the load (in Watts)=');
+flux=V_1/(4.44*f*N_p);
+disp(flux*10^3,'(e) flux in the core (in mili-Weber)='); \ No newline at end of file
diff --git a/380/CH4/EX4.2/4_2_R.txt b/380/CH4/EX4.2/4_2_R.txt
new file mode 100755
index 000000000..582eb2925
--- /dev/null
+++ b/380/CH4/EX4.2/4_2_R.txt
@@ -0,0 +1,19 @@
+ (a) a-ratio=
+
+ 0.2
+
+ (b) current in primary (in Amperes)=
+
+ 20.
+
+ (c) voltage on secondary side (in Volts)=
+
+ 1200.
+
+ (d) power supplied to the load (in Watts)=
+
+ 3840.
+
+ (e) flux in the core (in mili-Weber)=
+
+ 7.2072072 \ No newline at end of file
diff --git a/380/CH4/EX4.2/Ex4_2.sce b/380/CH4/EX4.2/Ex4_2.sce
new file mode 100755
index 000000000..b169b6063
--- /dev/null
+++ b/380/CH4/EX4.2/Ex4_2.sce
@@ -0,0 +1,21 @@
+//Caption:Find the (a) a-ratio (b) current in primary (c) the power supplied to load (d) and the flux in the core
+//Exa:4.2
+clc;
+clear;
+close;
+N_p=150;//no. of turns in primary winding
+N_s=750;//no. of turns in secondary winding
+f=50;//frequency in Hz
+I_2=4;//load current (in Amperes)
+V_1=240;//voltage on primary side (in Volts)
+pf=0.8;//power factor
+a=N_p/N_s;
+disp(a,'(a) a-ratio=');
+I_1=I_2/a;
+disp(I_1,'(b) current in primary (in Amperes)=');
+V_2=V_1/a;
+disp(V_2,'(c) voltage on secondary side (in Volts)=');
+P_L=V_2*I_2*pf;
+disp(P_L,'(d) power supplied to the load (in Watts)=');
+flux=V_1/(4.44*f*N_p);
+disp(flux*10^3,'(e) flux in the core (in mili-Weber)='); \ No newline at end of file
diff --git a/380/CH4/EX4.3/4_3.txt b/380/CH4/EX4.3/4_3.txt
new file mode 100755
index 000000000..f358dc790
--- /dev/null
+++ b/380/CH4/EX4.3/4_3.txt
@@ -0,0 +1,26 @@
+//Caption:Find the efficiency of transformer
+//Exa:4.3
+clc;
+clear;
+close;
+R_1=4;//in ohms
+R_2=0.04;//in ohms
+X_1=12;//in ohms
+X_2=0.12;//in ohms
+pf=0.866;//power factor
+V_p=2300;//primary voltage in volts
+V_s=230;//Secondary voltage in volts
+S=23000;//VA
+theta=acosd(pf);
+I_2=(S*0.75/V_s)*(cosd(theta)+%i*sind(theta));//secondary current (in Amperes)
+Z_2=R_2+%i*X_2;//secondary winding impedance (in ohms)
+E_2=V_s+I_2*Z_2;//induced emf in secondary winding (in Volts)
+a=V_p/V_s;//transformation ratio
+E_1=a*E_2;//induced emf in primary winding (in Volts)
+I_1=I_2/a;//current in primary winding
+Z_1=R_1+%i*X_1;//primary winding impedance (in ohms)
+V_1=E_1+I_1*Z_1;//source voltage
+P_o=real(V_s*conj(I_2));//output power(in Watts)
+P_in=real(V_1*conj(I_1));//input power
+Eff=P_o/P_in;
+disp(Eff*100,'Efficiency (%)='); \ No newline at end of file
diff --git a/380/CH4/EX4.3/4_3_R.txt b/380/CH4/EX4.3/4_3_R.txt
new file mode 100755
index 000000000..3727ccf9b
--- /dev/null
+++ b/380/CH4/EX4.3/4_3_R.txt
@@ -0,0 +1,3 @@
+ Efficiency (%)=
+
+ 97.075738 \ No newline at end of file
diff --git a/380/CH4/EX4.3/Ex4_3.sce b/380/CH4/EX4.3/Ex4_3.sce
new file mode 100755
index 000000000..f358dc790
--- /dev/null
+++ b/380/CH4/EX4.3/Ex4_3.sce
@@ -0,0 +1,26 @@
+//Caption:Find the efficiency of transformer
+//Exa:4.3
+clc;
+clear;
+close;
+R_1=4;//in ohms
+R_2=0.04;//in ohms
+X_1=12;//in ohms
+X_2=0.12;//in ohms
+pf=0.866;//power factor
+V_p=2300;//primary voltage in volts
+V_s=230;//Secondary voltage in volts
+S=23000;//VA
+theta=acosd(pf);
+I_2=(S*0.75/V_s)*(cosd(theta)+%i*sind(theta));//secondary current (in Amperes)
+Z_2=R_2+%i*X_2;//secondary winding impedance (in ohms)
+E_2=V_s+I_2*Z_2;//induced emf in secondary winding (in Volts)
+a=V_p/V_s;//transformation ratio
+E_1=a*E_2;//induced emf in primary winding (in Volts)
+I_1=I_2/a;//current in primary winding
+Z_1=R_1+%i*X_1;//primary winding impedance (in ohms)
+V_1=E_1+I_1*Z_1;//source voltage
+P_o=real(V_s*conj(I_2));//output power(in Watts)
+P_in=real(V_1*conj(I_1));//input power
+Eff=P_o/P_in;
+disp(Eff*100,'Efficiency (%)='); \ No newline at end of file
diff --git a/380/CH4/EX4.4/4_4.txt b/380/CH4/EX4.4/4_4.txt
new file mode 100755
index 000000000..3d56f5249
--- /dev/null
+++ b/380/CH4/EX4.4/4_4.txt
@@ -0,0 +1,24 @@
+//Caption:Find the efficiency
+//Exa:4.4
+clc;
+clear;
+close;
+//From Exa:4.3
+V_2=230;//in Volts
+Z_1=4+%i*12;
+I_s=75*(cosd(30)+%i*sind(30));//in Amperes
+a=10;//transformation ratio
+E_1=2282.87*(cosd(2.33)+%i*sind(2.33));//in Volts
+E_2=228.287*(cosd(2.33)+%i*sind(2.33));//in Volts
+I_p=7.5*(cosd(30)+%i*sind(30));//in Amperes
+P_o=14938.94;//in Watts
+R_c1=20000;//core loss resistance on primary side
+X_m1=15000;//magnetizing reactance on primary side
+I_c=E_1/R_c1;//in Amperes
+I_m=E_1/(%i*X_m1);//in Amperes
+I_phy=I_c+I_m;//in Amperes
+I_1=I_p+I_phy;//in Amperes
+V_1=E_1+Z_1*I_1;//in Volts
+P_in=real(V_1*conj(I_1));//in Watts
+Eff=P_o/P_in;
+disp(Eff*100,'Efficiency (%)=') \ No newline at end of file
diff --git a/380/CH4/EX4.4/4_4_R.txt b/380/CH4/EX4.4/4_4_R.txt
new file mode 100755
index 000000000..6abe746dd
--- /dev/null
+++ b/380/CH4/EX4.4/4_4_R.txt
@@ -0,0 +1,3 @@
+ Efficiency (%)=
+
+ 95.450395 \ No newline at end of file
diff --git a/380/CH4/EX4.4/Ex4_4.sce b/380/CH4/EX4.4/Ex4_4.sce
new file mode 100755
index 000000000..3d56f5249
--- /dev/null
+++ b/380/CH4/EX4.4/Ex4_4.sce
@@ -0,0 +1,24 @@
+//Caption:Find the efficiency
+//Exa:4.4
+clc;
+clear;
+close;
+//From Exa:4.3
+V_2=230;//in Volts
+Z_1=4+%i*12;
+I_s=75*(cosd(30)+%i*sind(30));//in Amperes
+a=10;//transformation ratio
+E_1=2282.87*(cosd(2.33)+%i*sind(2.33));//in Volts
+E_2=228.287*(cosd(2.33)+%i*sind(2.33));//in Volts
+I_p=7.5*(cosd(30)+%i*sind(30));//in Amperes
+P_o=14938.94;//in Watts
+R_c1=20000;//core loss resistance on primary side
+X_m1=15000;//magnetizing reactance on primary side
+I_c=E_1/R_c1;//in Amperes
+I_m=E_1/(%i*X_m1);//in Amperes
+I_phy=I_c+I_m;//in Amperes
+I_1=I_p+I_phy;//in Amperes
+V_1=E_1+Z_1*I_1;//in Volts
+P_in=real(V_1*conj(I_1));//in Watts
+Eff=P_o/P_in;
+disp(Eff*100,'Efficiency (%)=') \ No newline at end of file
diff --git a/380/CH4/EX4.6/4_6.txt b/380/CH4/EX4.6/4_6.txt
new file mode 100755
index 000000000..0e7b3a107
--- /dev/null
+++ b/380/CH4/EX4.6/4_6.txt
@@ -0,0 +1,30 @@
+//Caption:Find efficiency and voltage regulation of transformer
+//Exa:4.6
+clc;
+clear;
+close;
+S=2200;//Volt-Ampere
+V_s=220;//secondary side voltage (in Volts)
+V_2=V_s;
+V_p=440;//primary side voltage (in Volts)
+R_e1=3;//in ohms
+X_e1=4;//in ohms
+R_c1=2.5*1000;//in ohms
+X_m1=2000;//in ohms
+a=V_p/V_2;//transformation ratio
+pf=0.707;//lagging power factor
+theta=-acosd(pf);
+I_2=(S/V_2)*(cosd(theta)+%i*sind(theta));//(in Amperes)
+//Refer to equivalent circuit (fig:4.16)
+I_p=I_2/a;//in Amperes
+V_2p=a*V_2;
+V_1=V_2p+I_p*(R_e1+%i*X_e1);
+I_c=V_1/R_c1;//core loss current (in Amperes)
+I_m=V_1/(%i*X_m1);
+I_1=I_p+I_c+I_m;//current supplied by source (in Amperes)
+P_o=real(V_p*conj(I_p));//output power (in Watts)
+P_in=real(V_1*conj(I_1));//input power (in Watts)
+Eff=P_o/P_in;//Efficiency
+disp(Eff*100,'Efficiency (%)=');
+VR=(abs(V_1)-abs(V_p))/V_p;
+disp(VR*100,'voltage regulation (%)=') \ No newline at end of file
diff --git a/380/CH4/EX4.6/4_6_R.txt b/380/CH4/EX4.6/4_6_R.txt
new file mode 100755
index 000000000..d87c75a6b
--- /dev/null
+++ b/380/CH4/EX4.6/4_6_R.txt
@@ -0,0 +1,7 @@
+ Efficiency (%)=
+
+ 90.598696
+
+ voltage regulation (%)=
+
+ 5.6278842 \ No newline at end of file
diff --git a/380/CH4/EX4.6/Ex4_6.sce b/380/CH4/EX4.6/Ex4_6.sce
new file mode 100755
index 000000000..0e7b3a107
--- /dev/null
+++ b/380/CH4/EX4.6/Ex4_6.sce
@@ -0,0 +1,30 @@
+//Caption:Find efficiency and voltage regulation of transformer
+//Exa:4.6
+clc;
+clear;
+close;
+S=2200;//Volt-Ampere
+V_s=220;//secondary side voltage (in Volts)
+V_2=V_s;
+V_p=440;//primary side voltage (in Volts)
+R_e1=3;//in ohms
+X_e1=4;//in ohms
+R_c1=2.5*1000;//in ohms
+X_m1=2000;//in ohms
+a=V_p/V_2;//transformation ratio
+pf=0.707;//lagging power factor
+theta=-acosd(pf);
+I_2=(S/V_2)*(cosd(theta)+%i*sind(theta));//(in Amperes)
+//Refer to equivalent circuit (fig:4.16)
+I_p=I_2/a;//in Amperes
+V_2p=a*V_2;
+V_1=V_2p+I_p*(R_e1+%i*X_e1);
+I_c=V_1/R_c1;//core loss current (in Amperes)
+I_m=V_1/(%i*X_m1);
+I_1=I_p+I_c+I_m;//current supplied by source (in Amperes)
+P_o=real(V_p*conj(I_p));//output power (in Watts)
+P_in=real(V_1*conj(I_1));//input power (in Watts)
+Eff=P_o/P_in;//Efficiency
+disp(Eff*100,'Efficiency (%)=');
+VR=(abs(V_1)-abs(V_p))/V_p;
+disp(VR*100,'voltage regulation (%)=') \ No newline at end of file
diff --git a/380/CH4/EX4.7/4_7.txt b/380/CH4/EX4.7/4_7.txt
new file mode 100755
index 000000000..21e68e367
--- /dev/null
+++ b/380/CH4/EX4.7/4_7.txt
@@ -0,0 +1,32 @@
+//Caption:Find (a)KVA rating at max efficiency (b)max efficiency (c) Efficiency at full load and 0.8pf lagging (d)equivalent core resistance
+//Exa:4.7
+clc;
+clear;
+close;
+S=120000;//Volt-Ampere
+V_p=2400;//in volts
+V_s=240;//in volts
+R_1=0.75;//in ohms
+R_2=0.01;//in ohms
+X_1=0.8;//in ohms
+X_2=0.02;//in ohms
+pf=0.8;//lagging
+theta=-acosd(pf);
+a=V_p/V_s;//transformation ratio
+I_p=S/V_p;//rated load current (in Amperes)
+I_p_eta=0.7*I_p;//load current at max efficiency
+KVA=I_p_eta*V_p/1000;
+disp(KVA,'(a) KVA rating at max efficiency =');
+P_cu_eta=I_p_eta^2*(R_1+a^2*R_2);//copper loss (in Watts)
+P_m=P_cu_eta;//core loss
+P_o=V_p*I_p_eta*pf;//power output at max efficiency
+P_in=P_o+P_m+P_cu_eta;//power input at max efficiency
+eta=P_o/P_in;
+disp(eta*100,'(b) max efficiency (%)=');
+P_o_FL=V_p*I_p*pf;//power output at full load
+P_cu_FL=I_p^2*(R_1+a^2*R_2);//copper loss at full load
+P_in_FL=P_cu_FL+P_o_FL+P_m;
+Eff=P_o_FL/P_in_FL;
+disp(Eff*100,'(c) Efficiency at full load (%)=');
+R_c1=V_p^2/P_cu_eta;
+disp(R_c1,'(d) equivalent core resistance (in ohms)='); \ No newline at end of file
diff --git a/380/CH4/EX4.7/4_7_R.txt b/380/CH4/EX4.7/4_7_R.txt
new file mode 100755
index 000000000..fc5017d56
--- /dev/null
+++ b/380/CH4/EX4.7/4_7_R.txt
@@ -0,0 +1,15 @@
+ (a) KVA rating at max efficiency =
+
+ 84.
+
+ (b) max efficiency (%)=
+
+ 94.002448
+
+ (c) Efficiency at full load (%)=
+
+ 93.641407
+
+ (d) equivalent core resistance (in ohms)=
+
+ 2686.8805 \ No newline at end of file
diff --git a/380/CH4/EX4.7/Ex4_7.sce b/380/CH4/EX4.7/Ex4_7.sce
new file mode 100755
index 000000000..21e68e367
--- /dev/null
+++ b/380/CH4/EX4.7/Ex4_7.sce
@@ -0,0 +1,32 @@
+//Caption:Find (a)KVA rating at max efficiency (b)max efficiency (c) Efficiency at full load and 0.8pf lagging (d)equivalent core resistance
+//Exa:4.7
+clc;
+clear;
+close;
+S=120000;//Volt-Ampere
+V_p=2400;//in volts
+V_s=240;//in volts
+R_1=0.75;//in ohms
+R_2=0.01;//in ohms
+X_1=0.8;//in ohms
+X_2=0.02;//in ohms
+pf=0.8;//lagging
+theta=-acosd(pf);
+a=V_p/V_s;//transformation ratio
+I_p=S/V_p;//rated load current (in Amperes)
+I_p_eta=0.7*I_p;//load current at max efficiency
+KVA=I_p_eta*V_p/1000;
+disp(KVA,'(a) KVA rating at max efficiency =');
+P_cu_eta=I_p_eta^2*(R_1+a^2*R_2);//copper loss (in Watts)
+P_m=P_cu_eta;//core loss
+P_o=V_p*I_p_eta*pf;//power output at max efficiency
+P_in=P_o+P_m+P_cu_eta;//power input at max efficiency
+eta=P_o/P_in;
+disp(eta*100,'(b) max efficiency (%)=');
+P_o_FL=V_p*I_p*pf;//power output at full load
+P_cu_FL=I_p^2*(R_1+a^2*R_2);//copper loss at full load
+P_in_FL=P_cu_FL+P_o_FL+P_m;
+Eff=P_o_FL/P_in_FL;
+disp(Eff*100,'(c) Efficiency at full load (%)=');
+R_c1=V_p^2/P_cu_eta;
+disp(R_c1,'(d) equivalent core resistance (in ohms)='); \ No newline at end of file
diff --git a/380/CH4/EX4.9/4_9.txt b/380/CH4/EX4.9/4_9.txt
new file mode 100755
index 000000000..825b53384
--- /dev/null
+++ b/380/CH4/EX4.9/4_9.txt
@@ -0,0 +1,52 @@
+//Caption:Find the (a) generator voltage (b) generator current (c) efficiency
+//Exa:4.9
+clc;
+clear;
+close;
+//Refer to fig:4.29
+//For region A
+V_bA=230;//in Volts
+S_bA=.46000;//Volt-Ampere
+I_bA=S_bA/V_bA;//in Amperes
+Z_bA=V_bA/I_bA;//in ohms
+Z_g_pu=(0.023+%i*0.092)/Z_bA;
+R_L_pu=0.023/Z_bA;
+X_L_pu=0.069/Z_bA;
+//For region B
+//Per unit parameters on high-voltage side of the step-up transformer
+V_bB=2300;//in Volts
+S_bB=46000;//Volt-Ampere
+I_bB=S_bB/V_bB;//in Amperes
+Z_bB=V_bB/I_bB;//in ohms
+R_H_pu=2.3/Z_bB;
+X_H_pu=6.9/Z_bB;
+R_cH_pu1=13800/Z_bB;
+X_mH_pu1=6900/Z_bB;
+Z_l_pu=(2.07+%i*4.14)/Z_bB;//Per-unit impedance of transmission line
+//Per unit parameters on high-voltage side of the step-down transformer
+X_mH_pu2=9200/Z_bB;
+R_cH_pu2=11500/Z_bB;
+//For region C
+V_bC=115;//in Volts
+S_bC=46000;//Volt-Ampere
+I_bC=S_bC/V_bC;//in Amperes
+Z_bC=V_bC/I_bC;//in ohms
+R_L_pu=0.00575/Z_bC;
+X_L_pu=0.01725/Z_bC;
+V_L_pu=1*(cosd(0)+%i*sind(0));
+I_L_pu=1*(cosd(-30)+%i*sind(-30));
+E_l_pu=V_L_pu+(R_L_pu+%i*X_L_pu)*I_L_pu;
+I_l_pu=I_L_pu+E_l_pu*(0.01-%i*(1/80));
+E_g_pu=E_l_pu+I_l_pu*(0.02+%i*0.06+0.018+%i*0.036+0.02+%i*0.06);
+I_g_pu=I_l_pu+E_g_pu*((1/120)-%i*(1/60));
+V_g_pu=E_g_pu+I_g_pu*(0.02+0.02+%i*0.08+%i*0.06);
+V_g=V_bA*V_g_pu;
+disp(abs(V_g),'(a) Generator Voltage (in Volts)=');
+disp(atand(imag(V_g)/real(V_g)),'Phase of generated voltage (in degree)=');
+I_g=I_bA*I_g_pu;
+disp(abs(I_g),'(b) Generator current (in Amperes)=');
+disp(atand(imag(I_g)/real(I_g)),'Phase of generator current (in degree)=');
+P_o_pu=0.866;//rated power output at pf=0.866 lagging
+P_in_pu=real(V_g_pu*conj(I_g_pu));
+Eff=P_o_pu/P_in_pu;
+disp(Eff*100,'(c) Efficiency (%)='); \ No newline at end of file
diff --git a/380/CH4/EX4.9/4_9_R.txt b/380/CH4/EX4.9/4_9_R.txt
new file mode 100755
index 000000000..a62b57928
--- /dev/null
+++ b/380/CH4/EX4.9/4_9_R.txt
@@ -0,0 +1,19 @@
+ (a) Generator Voltage (in Volts)=
+
+ 301.88985
+
+ Phase of generated voltage (in degree)=
+
+ 11.082542
+
+ (b) Generator current (in Amperes)=
+
+ 0.0020716
+
+ Phase of generator current (in degree)=
+
+ - 30.843794
+
+ (c) Efficiency (%)=
+
+ 85.612246 \ No newline at end of file
diff --git a/380/CH4/EX4.9/Ex4_9.sce b/380/CH4/EX4.9/Ex4_9.sce
new file mode 100755
index 000000000..825b53384
--- /dev/null
+++ b/380/CH4/EX4.9/Ex4_9.sce
@@ -0,0 +1,52 @@
+//Caption:Find the (a) generator voltage (b) generator current (c) efficiency
+//Exa:4.9
+clc;
+clear;
+close;
+//Refer to fig:4.29
+//For region A
+V_bA=230;//in Volts
+S_bA=.46000;//Volt-Ampere
+I_bA=S_bA/V_bA;//in Amperes
+Z_bA=V_bA/I_bA;//in ohms
+Z_g_pu=(0.023+%i*0.092)/Z_bA;
+R_L_pu=0.023/Z_bA;
+X_L_pu=0.069/Z_bA;
+//For region B
+//Per unit parameters on high-voltage side of the step-up transformer
+V_bB=2300;//in Volts
+S_bB=46000;//Volt-Ampere
+I_bB=S_bB/V_bB;//in Amperes
+Z_bB=V_bB/I_bB;//in ohms
+R_H_pu=2.3/Z_bB;
+X_H_pu=6.9/Z_bB;
+R_cH_pu1=13800/Z_bB;
+X_mH_pu1=6900/Z_bB;
+Z_l_pu=(2.07+%i*4.14)/Z_bB;//Per-unit impedance of transmission line
+//Per unit parameters on high-voltage side of the step-down transformer
+X_mH_pu2=9200/Z_bB;
+R_cH_pu2=11500/Z_bB;
+//For region C
+V_bC=115;//in Volts
+S_bC=46000;//Volt-Ampere
+I_bC=S_bC/V_bC;//in Amperes
+Z_bC=V_bC/I_bC;//in ohms
+R_L_pu=0.00575/Z_bC;
+X_L_pu=0.01725/Z_bC;
+V_L_pu=1*(cosd(0)+%i*sind(0));
+I_L_pu=1*(cosd(-30)+%i*sind(-30));
+E_l_pu=V_L_pu+(R_L_pu+%i*X_L_pu)*I_L_pu;
+I_l_pu=I_L_pu+E_l_pu*(0.01-%i*(1/80));
+E_g_pu=E_l_pu+I_l_pu*(0.02+%i*0.06+0.018+%i*0.036+0.02+%i*0.06);
+I_g_pu=I_l_pu+E_g_pu*((1/120)-%i*(1/60));
+V_g_pu=E_g_pu+I_g_pu*(0.02+0.02+%i*0.08+%i*0.06);
+V_g=V_bA*V_g_pu;
+disp(abs(V_g),'(a) Generator Voltage (in Volts)=');
+disp(atand(imag(V_g)/real(V_g)),'Phase of generated voltage (in degree)=');
+I_g=I_bA*I_g_pu;
+disp(abs(I_g),'(b) Generator current (in Amperes)=');
+disp(atand(imag(I_g)/real(I_g)),'Phase of generator current (in degree)=');
+P_o_pu=0.866;//rated power output at pf=0.866 lagging
+P_in_pu=real(V_g_pu*conj(I_g_pu));
+Eff=P_o_pu/P_in_pu;
+disp(Eff*100,'(c) Efficiency (%)='); \ No newline at end of file