From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 380/CH4/EX4.10/4_10.txt | 41 ++++++++++++++++++++++++++ 380/CH4/EX4.10/4_10_R.txt | 73 +++++++++++++++++++++++++++++++++++++++++++++++ 380/CH4/EX4.10/Ex4_10.sce | 41 ++++++++++++++++++++++++++ 380/CH4/EX4.11/4_11.txt | 36 +++++++++++++++++++++++ 380/CH4/EX4.11/4_11_R.txt | 8 ++++++ 380/CH4/EX4.11/Ex4_11.sce | 36 +++++++++++++++++++++++ 380/CH4/EX4.13/4_13.txt | 35 +++++++++++++++++++++++ 380/CH4/EX4.13/4_13_R.txt | 35 +++++++++++++++++++++++ 380/CH4/EX4.13/Ex4_13.sce | 35 +++++++++++++++++++++++ 380/CH4/EX4.14/4_14.txt | 11 +++++++ 380/CH4/EX4.14/4_14_R.txt | 11 +++++++ 380/CH4/EX4.14/Ex4_14.sce | 11 +++++++ 380/CH4/EX4.2/4_2.txt | 21 ++++++++++++++ 380/CH4/EX4.2/4_2_R.txt | 19 ++++++++++++ 380/CH4/EX4.2/Ex4_2.sce | 21 ++++++++++++++ 380/CH4/EX4.3/4_3.txt | 26 +++++++++++++++++ 380/CH4/EX4.3/4_3_R.txt | 3 ++ 380/CH4/EX4.3/Ex4_3.sce | 26 +++++++++++++++++ 380/CH4/EX4.4/4_4.txt | 24 ++++++++++++++++ 380/CH4/EX4.4/4_4_R.txt | 3 ++ 380/CH4/EX4.4/Ex4_4.sce | 24 ++++++++++++++++ 380/CH4/EX4.6/4_6.txt | 30 +++++++++++++++++++ 380/CH4/EX4.6/4_6_R.txt | 7 +++++ 380/CH4/EX4.6/Ex4_6.sce | 30 +++++++++++++++++++ 380/CH4/EX4.7/4_7.txt | 32 +++++++++++++++++++++ 380/CH4/EX4.7/4_7_R.txt | 15 ++++++++++ 380/CH4/EX4.7/Ex4_7.sce | 32 +++++++++++++++++++++ 380/CH4/EX4.9/4_9.txt | 52 +++++++++++++++++++++++++++++++++ 380/CH4/EX4.9/4_9_R.txt | 19 ++++++++++++ 380/CH4/EX4.9/Ex4_9.sce | 52 +++++++++++++++++++++++++++++++++ 30 files changed, 809 insertions(+) create mode 100755 380/CH4/EX4.10/4_10.txt create mode 100755 380/CH4/EX4.10/4_10_R.txt create mode 100755 380/CH4/EX4.10/Ex4_10.sce create mode 100755 380/CH4/EX4.11/4_11.txt create mode 100755 380/CH4/EX4.11/4_11_R.txt create mode 100755 380/CH4/EX4.11/Ex4_11.sce create mode 100755 380/CH4/EX4.13/4_13.txt create mode 100755 380/CH4/EX4.13/4_13_R.txt create mode 100755 380/CH4/EX4.13/Ex4_13.sce create mode 100755 380/CH4/EX4.14/4_14.txt create mode 100755 380/CH4/EX4.14/4_14_R.txt create mode 100755 380/CH4/EX4.14/Ex4_14.sce create mode 100755 380/CH4/EX4.2/4_2.txt create mode 100755 380/CH4/EX4.2/4_2_R.txt create mode 100755 380/CH4/EX4.2/Ex4_2.sce create mode 100755 380/CH4/EX4.3/4_3.txt create mode 100755 380/CH4/EX4.3/4_3_R.txt create mode 100755 380/CH4/EX4.3/Ex4_3.sce create mode 100755 380/CH4/EX4.4/4_4.txt create mode 100755 380/CH4/EX4.4/4_4_R.txt create mode 100755 380/CH4/EX4.4/Ex4_4.sce create mode 100755 380/CH4/EX4.6/4_6.txt create mode 100755 380/CH4/EX4.6/4_6_R.txt create mode 100755 380/CH4/EX4.6/Ex4_6.sce create mode 100755 380/CH4/EX4.7/4_7.txt create mode 100755 380/CH4/EX4.7/4_7_R.txt create mode 100755 380/CH4/EX4.7/Ex4_7.sce create mode 100755 380/CH4/EX4.9/4_9.txt create mode 100755 380/CH4/EX4.9/4_9_R.txt create mode 100755 380/CH4/EX4.9/Ex4_9.sce (limited to '380/CH4') diff --git a/380/CH4/EX4.10/4_10.txt b/380/CH4/EX4.10/4_10.txt new file mode 100755 index 000000000..23a14f44d --- /dev/null +++ b/380/CH4/EX4.10/4_10.txt @@ -0,0 +1,41 @@ +//Caption:Find (a) primary winding voltage (b) secondary winding voltage (c) ratio of transformation (d) nominal rating of transformer +//Exa:4.10 +clc; +clear; +close; +V_1=2400;//in Volts +V_2=240;//in Volts +S_o=24*1000;//Volt-Ampere +I_1=10;//in Amperes +I_2=100;//in Amperes +//Refer to fig:4.31 (a) +V_1a=V_1+V_2; +V_2a=V_2; +a_T1=V_1a/V_2a; +a_T2=V_2a/V_1a; +a_T3=V_1a/V_1; +a_T4=V_1/V_1a; +S_oa_1=V_1a*I_1; +S_oa_2=V_1a*I_1; +S_oa_3=V_1a*I_2; +S_oa_4=V_1a*I_2; +disp("Refer to fig:4.31a"); +disp(V_1a,'(a) primary winding voltage (in Volts)='); +disp(V_2a,'(b) secondary winding voltage (in Volts)='); +disp(a_T1,'(c) ratio of transformation='); +disp(S_oa_1/1000,'(d) nominal rating of transformer (KVA)='); +disp("Refer to fig:4.31b"); +disp(V_2a,'(a) primary winding voltage (in Volts)='); +disp(V_1a,'(b) secondary winding voltage (in Volts)='); +disp(a_T2,'(c) ratio of transformation='); +disp(S_oa_2/1000,'(d) nominal rating of transformer (KVA)='); +disp("Refer to fig:4.31c"); +disp(V_1a,'(a) primary winding voltage (in Volts)='); +disp(V_1,'(b) secondary winding voltage (in Volts)='); +disp(a_T3,'(c) ratio of transformation='); +disp(S_oa_3/1000,'(d) nominal rating of transformer (KVA)='); +disp("Refer to fig:4.31d"); +disp(V_1,'(a) primary winding voltage (in Volts)='); +disp(V_1a,'(b) secondary winding voltage (in Volts)='); +disp(a_T4,'(c) ratio of transformation='); +disp(S_oa_4/1000,'(d) nominal rating of transformer (KVA)='); \ No newline at end of file diff --git a/380/CH4/EX4.10/4_10_R.txt b/380/CH4/EX4.10/4_10_R.txt new file mode 100755 index 000000000..fe9b11bbe --- /dev/null +++ b/380/CH4/EX4.10/4_10_R.txt @@ -0,0 +1,73 @@ + + Refer to fig:4.31a + + (a) primary winding voltage (in Volts)= + + 2640. + + (b) secondary winding voltage (in Volts)= + + 240. + + (c) ratio of transformation= + + 11. + + (d) nominal rating of transformer (KVA)= + + 26.4 + + Refer to fig:4.31b + + (a) primary winding voltage (in Volts)= + + 240. + + (b) secondary winding voltage (in Volts)= + + 2640. + + (c) ratio of transformation= + + 0.0909091 + + (d) nominal rating of transformer (KVA)= + + 26.4 + + Refer to fig:4.31c + + (a) primary winding voltage (in Volts)= + + 2640. + + (b) secondary winding voltage (in Volts)= + + 2400. + + (c) ratio of transformation= + + 1.1 + + (d) nominal rating of transformer (KVA)= + + 264. + + Refer to fig:4.31d + + (a) primary winding voltage (in Volts)= + + 2400. + + (b) secondary winding voltage (in Volts)= + + 2640. + + (c) ratio of transformation= + + 0.9090909 + + (d) nominal rating of transformer (KVA)= + + 264. + \ No newline at end of file diff --git a/380/CH4/EX4.10/Ex4_10.sce b/380/CH4/EX4.10/Ex4_10.sce new file mode 100755 index 000000000..23a14f44d --- /dev/null +++ b/380/CH4/EX4.10/Ex4_10.sce @@ -0,0 +1,41 @@ +//Caption:Find (a) primary winding voltage (b) secondary winding voltage (c) ratio of transformation (d) nominal rating of transformer +//Exa:4.10 +clc; +clear; +close; +V_1=2400;//in Volts +V_2=240;//in Volts +S_o=24*1000;//Volt-Ampere +I_1=10;//in Amperes +I_2=100;//in Amperes +//Refer to fig:4.31 (a) +V_1a=V_1+V_2; +V_2a=V_2; +a_T1=V_1a/V_2a; +a_T2=V_2a/V_1a; +a_T3=V_1a/V_1; +a_T4=V_1/V_1a; +S_oa_1=V_1a*I_1; +S_oa_2=V_1a*I_1; +S_oa_3=V_1a*I_2; +S_oa_4=V_1a*I_2; +disp("Refer to fig:4.31a"); +disp(V_1a,'(a) primary winding voltage (in Volts)='); +disp(V_2a,'(b) secondary winding voltage (in Volts)='); +disp(a_T1,'(c) ratio of transformation='); +disp(S_oa_1/1000,'(d) nominal rating of transformer (KVA)='); +disp("Refer to fig:4.31b"); +disp(V_2a,'(a) primary winding voltage (in Volts)='); +disp(V_1a,'(b) secondary winding voltage (in Volts)='); +disp(a_T2,'(c) ratio of transformation='); +disp(S_oa_2/1000,'(d) nominal rating of transformer (KVA)='); +disp("Refer to fig:4.31c"); +disp(V_1a,'(a) primary winding voltage (in Volts)='); +disp(V_1,'(b) secondary winding voltage (in Volts)='); +disp(a_T3,'(c) ratio of transformation='); +disp(S_oa_3/1000,'(d) nominal rating of transformer (KVA)='); +disp("Refer to fig:4.31d"); +disp(V_1,'(a) primary winding voltage (in Volts)='); +disp(V_1a,'(b) secondary winding voltage (in Volts)='); +disp(a_T4,'(c) ratio of transformation='); +disp(S_oa_4/1000,'(d) nominal rating of transformer (KVA)='); \ No newline at end of file diff --git a/380/CH4/EX4.11/4_11.txt b/380/CH4/EX4.11/4_11.txt new file mode 100755 index 000000000..d7464ab01 --- /dev/null +++ b/380/CH4/EX4.11/4_11.txt @@ -0,0 +1,36 @@ +//Caption:Find the efficiency and voltage regulation +//Exa:4.11 +clc; +clear; +close; +V_2a=480;//in volts +pf=0.707;//leading +theta=acosd(pf); +a_T=120/480;//ratio of transformation of step-up transformer +a=360/120;//ratio of transformation of two-winding transformer +R_cH=8.64*1000;//in ohms +R_H=18.9;//in ohms +X_H=21.6;//in ohms +X_L=2.4;//in ohms +R_L=2.1;//in ohms +X_mH=6.84*1000;//in ohms +R_cL=R_cH/a^2;//equivalent core loss resistance in ohms +X_mL=X_mH/a^2;//magnetizing reactance +I_2a=(720/360)*(cosd(theta)+%i*sind(theta)); +I_H=I_2a; +I_pa=I_2a/a_T; +I_com=I_pa-I_2a;//current through common winding (in Amperes) +//on applying KVL to the output loop +E_L=(I_2a*(R_H+%i*X_H)+V_2a-I_com*(R_L+%i*X_L))/4; +V_1a=E_L+I_com*(R_L+%i*X_L); +I_ca=V_1a/R_cL;//core loss current in Amperes +I_ma=-%i*V_1a/X_mL;//magnetizing current in Amperes +I_phy_a=I_ca+I_ma;//excitation current +I_1a=I_pa+I_phy_a; +P_o=real(V_2a*conj(I_2a)); +P_in=real(V_1a*conj(I_1a)); +Eff=P_o/P_in; +disp(Eff*100,'Efficiency (%)='); +V_2anL=V_1a/a_T;//no load voltage +VR=(abs(V_2anL)-V_2a)/V_2a; +disp(VR*100,'Voltage regulation (%)='); \ No newline at end of file diff --git a/380/CH4/EX4.11/4_11_R.txt b/380/CH4/EX4.11/4_11_R.txt new file mode 100755 index 000000000..c1433dcc2 --- /dev/null +++ b/380/CH4/EX4.11/4_11_R.txt @@ -0,0 +1,8 @@ + Efficiency (%)= + + 80.293414 + + Voltage regulation (%)= + + 1.2578083 + \ No newline at end of file diff --git a/380/CH4/EX4.11/Ex4_11.sce b/380/CH4/EX4.11/Ex4_11.sce new file mode 100755 index 000000000..d7464ab01 --- /dev/null +++ b/380/CH4/EX4.11/Ex4_11.sce @@ -0,0 +1,36 @@ +//Caption:Find the efficiency and voltage regulation +//Exa:4.11 +clc; +clear; +close; +V_2a=480;//in volts +pf=0.707;//leading +theta=acosd(pf); +a_T=120/480;//ratio of transformation of step-up transformer +a=360/120;//ratio of transformation of two-winding transformer +R_cH=8.64*1000;//in ohms +R_H=18.9;//in ohms +X_H=21.6;//in ohms +X_L=2.4;//in ohms +R_L=2.1;//in ohms +X_mH=6.84*1000;//in ohms +R_cL=R_cH/a^2;//equivalent core loss resistance in ohms +X_mL=X_mH/a^2;//magnetizing reactance +I_2a=(720/360)*(cosd(theta)+%i*sind(theta)); +I_H=I_2a; +I_pa=I_2a/a_T; +I_com=I_pa-I_2a;//current through common winding (in Amperes) +//on applying KVL to the output loop +E_L=(I_2a*(R_H+%i*X_H)+V_2a-I_com*(R_L+%i*X_L))/4; +V_1a=E_L+I_com*(R_L+%i*X_L); +I_ca=V_1a/R_cL;//core loss current in Amperes +I_ma=-%i*V_1a/X_mL;//magnetizing current in Amperes +I_phy_a=I_ca+I_ma;//excitation current +I_1a=I_pa+I_phy_a; +P_o=real(V_2a*conj(I_2a)); +P_in=real(V_1a*conj(I_1a)); +Eff=P_o/P_in; +disp(Eff*100,'Efficiency (%)='); +V_2anL=V_1a/a_T;//no load voltage +VR=(abs(V_2anL)-V_2a)/V_2a; +disp(VR*100,'Voltage regulation (%)='); \ No newline at end of file diff --git a/380/CH4/EX4.13/4_13.txt b/380/CH4/EX4.13/4_13.txt new file mode 100755 index 000000000..42be8f1ee --- /dev/null +++ b/380/CH4/EX4.13/4_13.txt @@ -0,0 +1,35 @@ +//Caption:Find the line voltages,the line currents and efficiency of the transformer +//Exa:4.13 +clc; +clear; +close; +R_H=133.5*10^-3;//in ohms +X_H=201*10^-3;//in ohms +R_L=39.5*10^-3;//in ohms +X_L=61.5*10^-3;//in ohms +R_cL=240;//in ohms +X_mL=290;//in ohms +pf=0.8;//lagging +theta=-acosd(pf); +V_2n=138.564*(cosd(0)+%i*sind(0));//rated load voltage for Y/Y connection +I_2A=86.6*(cosd(theta)+%i*sind(theta));//load current +a=120/138.564;//transformation ratio +I_pA=(I_2A/a)*(cosd(30)+%i*sind(30));//per phase current in primary winding +E_2n=V_2n+I_2A*(0.0445+%i*0.067);//voltage induced in secondary winding +E_2L=sqrt(3)*E_2n*(cosd(30)+%i*sind(30)); +E_1n=a*E_2n*(cosd(30)+%i*sind(30));//voltage induced in primary winding +I_1A=I_pA+E_1n*((1/240)-%i*(1/290)); +disp(abs(I_2A),'Line current in secondary side (in Amperes)='); +disp(atand(imag(I_2A)/real(I_2A)),'phase angle of induced line current in secondary (in Degree)='); +disp(abs(I_1A),'Line current in primary side (in Amperes)='); +disp(atand(imag(I_1A)/real(I_1A)),'phase angle of induced line current in primary (in Degree) ='); +disp(abs(E_2L),'Line voltage induced in secondary side (in Volts)='); +disp(atand(imag(E_2L)/real(E_2L)),'phase angle of induced line voltage in secondary (in Degree)='); +V_1n=E_1n+I_1A*(R_L+%i*X_L); +V_1L=sqrt(3)*V_1n*(cosd(30)+%i*sind(30)); +disp(abs(V_1L),'Line voltage induced in primary side (in Volts)='); +disp(atand(imag(V_1L)/real(V_1L)),'phase angle of induced line voltage in primary (in Degree)='); +P_o=3*real(138.564*conj(I_2A)); +P_in=3*real(V_1n*conj(I_1A)); +Eff=P_o/P_in; +disp(Eff*100,'Efficiency (%)='); \ No newline at end of file diff --git a/380/CH4/EX4.13/4_13_R.txt b/380/CH4/EX4.13/4_13_R.txt new file mode 100755 index 000000000..72c341543 --- /dev/null +++ b/380/CH4/EX4.13/4_13_R.txt @@ -0,0 +1,35 @@ + Line current in secondary side (in Amperes)= + + 86.6 + + phase angle of induced line current in secondary (in Degree)= + + - 36.869898 + + Line current in primary side (in Amperes)= + + 100.67653 + + phase angle of induced line current in primary (in Degree) = + + - 6.8821937 + + Line voltage induced in secondary side (in Volts)= + + 251.40194 + + phase angle of induced line voltage in secondary (in Degree)= + + 30.91961 + + Line voltage induced in primary side (in Volts)= + + 229.77546 + + phase angle of induced line voltage in primary (in Degree)= + + 61.979867 + + Efficiency (%)= + + 92.308106 \ No newline at end of file diff --git a/380/CH4/EX4.13/Ex4_13.sce b/380/CH4/EX4.13/Ex4_13.sce new file mode 100755 index 000000000..9d539df4e --- /dev/null +++ b/380/CH4/EX4.13/Ex4_13.sce @@ -0,0 +1,35 @@ +//Caption:Find the line voltages,the line currents and efficiency of the transformer +//Exa:4.13 +clc; +clear; +close; +R_H=133.5*10^-3;//in ohms +X_H=201*10^-3;//in ohms +R_L=39.5*10^-3;//in ohms +X_L=61.5*10^-3;//in ohms +R_cL=240;//in ohms +X_mL=290;//in ohms +pf=0.8;//lagging +theta=-acosd(pf); +V_2n=138.564*(cosd(0)+%i*sind(0));//rated load voltage for Y/Y connection +I_2A=86.6*(cosd(theta)+%i*sind(theta));//load current +a=120/138.564;//transformation ratio +I_pA=(I_2A/a)*(cosd(30)+%i*sind(30));//per phase current in primary winding +E_2n=V_2n+I_2A*(0.0445+%i*0.067);//voltage induced in secondary winding +E_2L=sqrt(3)*E_2n*(cosd(30)+%i*sind(30)); +E_1n=a*E_2n*(cosd(30)+%i*sind(30));//voltage induced in primary winding +I_1A=I_pA+E_1n*((1/240)-%i*(1/290)); +disp(abs(I_2A),'Line current in secondary side (in Amperes)='); +disp(atand(imag(I_2A)/real(I_2A)),'phase angle of induced line current in secondary (in Degree)='); +disp(abs(I_1A),'Line current in primary side (in Amperes)='); +disp(atand(imag(I_1A)/real(I_1A)),'phase angle of induced line current in primary (in Degree) ='); +disp(abs(E_2L),'Line voltage induced in secondary side (in Volts)='); +disp(atand(imag(E_2L)/real(E_2L)),'phase angle of induced line voltage in secondary (in Degree)='); +V_1n=E_1n+I_1A*(R_L+%i*X_L); +V_1L=sqrt(3)*V_1n*(cosd(30)+%i*sind(30)); +disp(abs(V_1L),'Line voltage induced in primary side (in Volts)='); +disp(atand(imag(V_1L)/real(V_1L)),'phase angle of induced line voltage in primary (in Degree)='); +P_o=3*real(138.564*conj(I_2A)); +P_in=3*real(V_1n*conj(I_1A)); +Eff=P_o/P_in; +disp(Eff*100,'Efficiency (%)='); \ No newline at end of file diff --git a/380/CH4/EX4.14/4_14.txt b/380/CH4/EX4.14/4_14.txt new file mode 100755 index 000000000..fbddcd729 --- /dev/null +++ b/380/CH4/EX4.14/4_14.txt @@ -0,0 +1,11 @@ +//Caption:Find the line current,line voltage and power +//Exa:4.14 +clc; +clear; +close; +I_L=4*80/5; +disp(I_L,'Line current (in Amperes)='); +V_L=110*100/1; +disp(V_L,'Line voltage (in Volts)='); +P=(100/1)*(80/5)*352; +disp(P,'Power on the transmission line (in Watts)='); \ No newline at end of file diff --git a/380/CH4/EX4.14/4_14_R.txt b/380/CH4/EX4.14/4_14_R.txt new file mode 100755 index 000000000..db3804ea0 --- /dev/null +++ b/380/CH4/EX4.14/4_14_R.txt @@ -0,0 +1,11 @@ + Line current (in Amperes)= + + 64. + + Line voltage (in Volts)= + + 11000. + + Power on the transmission line (in Watts)= + + 563200. \ No newline at end of file diff --git a/380/CH4/EX4.14/Ex4_14.sce b/380/CH4/EX4.14/Ex4_14.sce new file mode 100755 index 000000000..fbddcd729 --- /dev/null +++ b/380/CH4/EX4.14/Ex4_14.sce @@ -0,0 +1,11 @@ +//Caption:Find the line current,line voltage and power +//Exa:4.14 +clc; +clear; +close; +I_L=4*80/5; +disp(I_L,'Line current (in Amperes)='); +V_L=110*100/1; +disp(V_L,'Line voltage (in Volts)='); +P=(100/1)*(80/5)*352; +disp(P,'Power on the transmission line (in Watts)='); \ No newline at end of file diff --git a/380/CH4/EX4.2/4_2.txt b/380/CH4/EX4.2/4_2.txt new file mode 100755 index 000000000..b169b6063 --- /dev/null +++ b/380/CH4/EX4.2/4_2.txt @@ -0,0 +1,21 @@ +//Caption:Find the (a) a-ratio (b) current in primary (c) the power supplied to load (d) and the flux in the core +//Exa:4.2 +clc; +clear; +close; +N_p=150;//no. of turns in primary winding +N_s=750;//no. of turns in secondary winding +f=50;//frequency in Hz +I_2=4;//load current (in Amperes) +V_1=240;//voltage on primary side (in Volts) +pf=0.8;//power factor +a=N_p/N_s; +disp(a,'(a) a-ratio='); +I_1=I_2/a; +disp(I_1,'(b) current in primary (in Amperes)='); +V_2=V_1/a; +disp(V_2,'(c) voltage on secondary side (in Volts)='); +P_L=V_2*I_2*pf; +disp(P_L,'(d) power supplied to the load (in Watts)='); +flux=V_1/(4.44*f*N_p); +disp(flux*10^3,'(e) flux in the core (in mili-Weber)='); \ No newline at end of file diff --git a/380/CH4/EX4.2/4_2_R.txt b/380/CH4/EX4.2/4_2_R.txt new file mode 100755 index 000000000..582eb2925 --- /dev/null +++ b/380/CH4/EX4.2/4_2_R.txt @@ -0,0 +1,19 @@ + (a) a-ratio= + + 0.2 + + (b) current in primary (in Amperes)= + + 20. + + (c) voltage on secondary side (in Volts)= + + 1200. + + (d) power supplied to the load (in Watts)= + + 3840. + + (e) flux in the core (in mili-Weber)= + + 7.2072072 \ No newline at end of file diff --git a/380/CH4/EX4.2/Ex4_2.sce b/380/CH4/EX4.2/Ex4_2.sce new file mode 100755 index 000000000..b169b6063 --- /dev/null +++ b/380/CH4/EX4.2/Ex4_2.sce @@ -0,0 +1,21 @@ +//Caption:Find the (a) a-ratio (b) current in primary (c) the power supplied to load (d) and the flux in the core +//Exa:4.2 +clc; +clear; +close; +N_p=150;//no. of turns in primary winding +N_s=750;//no. of turns in secondary winding +f=50;//frequency in Hz +I_2=4;//load current (in Amperes) +V_1=240;//voltage on primary side (in Volts) +pf=0.8;//power factor +a=N_p/N_s; +disp(a,'(a) a-ratio='); +I_1=I_2/a; +disp(I_1,'(b) current in primary (in Amperes)='); +V_2=V_1/a; +disp(V_2,'(c) voltage on secondary side (in Volts)='); +P_L=V_2*I_2*pf; +disp(P_L,'(d) power supplied to the load (in Watts)='); +flux=V_1/(4.44*f*N_p); +disp(flux*10^3,'(e) flux in the core (in mili-Weber)='); \ No newline at end of file diff --git a/380/CH4/EX4.3/4_3.txt b/380/CH4/EX4.3/4_3.txt new file mode 100755 index 000000000..f358dc790 --- /dev/null +++ b/380/CH4/EX4.3/4_3.txt @@ -0,0 +1,26 @@ +//Caption:Find the efficiency of transformer +//Exa:4.3 +clc; +clear; +close; +R_1=4;//in ohms +R_2=0.04;//in ohms +X_1=12;//in ohms +X_2=0.12;//in ohms +pf=0.866;//power factor +V_p=2300;//primary voltage in volts +V_s=230;//Secondary voltage in volts +S=23000;//VA +theta=acosd(pf); +I_2=(S*0.75/V_s)*(cosd(theta)+%i*sind(theta));//secondary current (in Amperes) +Z_2=R_2+%i*X_2;//secondary winding impedance (in ohms) +E_2=V_s+I_2*Z_2;//induced emf in secondary winding (in Volts) +a=V_p/V_s;//transformation ratio +E_1=a*E_2;//induced emf in primary winding (in Volts) +I_1=I_2/a;//current in primary winding +Z_1=R_1+%i*X_1;//primary winding impedance (in ohms) +V_1=E_1+I_1*Z_1;//source voltage +P_o=real(V_s*conj(I_2));//output power(in Watts) +P_in=real(V_1*conj(I_1));//input power +Eff=P_o/P_in; +disp(Eff*100,'Efficiency (%)='); \ No newline at end of file diff --git a/380/CH4/EX4.3/4_3_R.txt b/380/CH4/EX4.3/4_3_R.txt new file mode 100755 index 000000000..3727ccf9b --- /dev/null +++ b/380/CH4/EX4.3/4_3_R.txt @@ -0,0 +1,3 @@ + Efficiency (%)= + + 97.075738 \ No newline at end of file diff --git a/380/CH4/EX4.3/Ex4_3.sce b/380/CH4/EX4.3/Ex4_3.sce new file mode 100755 index 000000000..f358dc790 --- /dev/null +++ b/380/CH4/EX4.3/Ex4_3.sce @@ -0,0 +1,26 @@ +//Caption:Find the efficiency of transformer +//Exa:4.3 +clc; +clear; +close; +R_1=4;//in ohms +R_2=0.04;//in ohms +X_1=12;//in ohms +X_2=0.12;//in ohms +pf=0.866;//power factor +V_p=2300;//primary voltage in volts +V_s=230;//Secondary voltage in volts +S=23000;//VA +theta=acosd(pf); +I_2=(S*0.75/V_s)*(cosd(theta)+%i*sind(theta));//secondary current (in Amperes) +Z_2=R_2+%i*X_2;//secondary winding impedance (in ohms) +E_2=V_s+I_2*Z_2;//induced emf in secondary winding (in Volts) +a=V_p/V_s;//transformation ratio +E_1=a*E_2;//induced emf in primary winding (in Volts) +I_1=I_2/a;//current in primary winding +Z_1=R_1+%i*X_1;//primary winding impedance (in ohms) +V_1=E_1+I_1*Z_1;//source voltage +P_o=real(V_s*conj(I_2));//output power(in Watts) +P_in=real(V_1*conj(I_1));//input power +Eff=P_o/P_in; +disp(Eff*100,'Efficiency (%)='); \ No newline at end of file diff --git a/380/CH4/EX4.4/4_4.txt b/380/CH4/EX4.4/4_4.txt new file mode 100755 index 000000000..3d56f5249 --- /dev/null +++ b/380/CH4/EX4.4/4_4.txt @@ -0,0 +1,24 @@ +//Caption:Find the efficiency +//Exa:4.4 +clc; +clear; +close; +//From Exa:4.3 +V_2=230;//in Volts +Z_1=4+%i*12; +I_s=75*(cosd(30)+%i*sind(30));//in Amperes +a=10;//transformation ratio +E_1=2282.87*(cosd(2.33)+%i*sind(2.33));//in Volts +E_2=228.287*(cosd(2.33)+%i*sind(2.33));//in Volts +I_p=7.5*(cosd(30)+%i*sind(30));//in Amperes +P_o=14938.94;//in Watts +R_c1=20000;//core loss resistance on primary side +X_m1=15000;//magnetizing reactance on primary side +I_c=E_1/R_c1;//in Amperes +I_m=E_1/(%i*X_m1);//in Amperes +I_phy=I_c+I_m;//in Amperes +I_1=I_p+I_phy;//in Amperes +V_1=E_1+Z_1*I_1;//in Volts +P_in=real(V_1*conj(I_1));//in Watts +Eff=P_o/P_in; +disp(Eff*100,'Efficiency (%)=') \ No newline at end of file diff --git a/380/CH4/EX4.4/4_4_R.txt b/380/CH4/EX4.4/4_4_R.txt new file mode 100755 index 000000000..6abe746dd --- /dev/null +++ b/380/CH4/EX4.4/4_4_R.txt @@ -0,0 +1,3 @@ + Efficiency (%)= + + 95.450395 \ No newline at end of file diff --git a/380/CH4/EX4.4/Ex4_4.sce b/380/CH4/EX4.4/Ex4_4.sce new file mode 100755 index 000000000..3d56f5249 --- /dev/null +++ b/380/CH4/EX4.4/Ex4_4.sce @@ -0,0 +1,24 @@ +//Caption:Find the efficiency +//Exa:4.4 +clc; +clear; +close; +//From Exa:4.3 +V_2=230;//in Volts +Z_1=4+%i*12; +I_s=75*(cosd(30)+%i*sind(30));//in Amperes +a=10;//transformation ratio +E_1=2282.87*(cosd(2.33)+%i*sind(2.33));//in Volts +E_2=228.287*(cosd(2.33)+%i*sind(2.33));//in Volts +I_p=7.5*(cosd(30)+%i*sind(30));//in Amperes +P_o=14938.94;//in Watts +R_c1=20000;//core loss resistance on primary side +X_m1=15000;//magnetizing reactance on primary side +I_c=E_1/R_c1;//in Amperes +I_m=E_1/(%i*X_m1);//in Amperes +I_phy=I_c+I_m;//in Amperes +I_1=I_p+I_phy;//in Amperes +V_1=E_1+Z_1*I_1;//in Volts +P_in=real(V_1*conj(I_1));//in Watts +Eff=P_o/P_in; +disp(Eff*100,'Efficiency (%)=') \ No newline at end of file diff --git a/380/CH4/EX4.6/4_6.txt b/380/CH4/EX4.6/4_6.txt new file mode 100755 index 000000000..0e7b3a107 --- /dev/null +++ b/380/CH4/EX4.6/4_6.txt @@ -0,0 +1,30 @@ +//Caption:Find efficiency and voltage regulation of transformer +//Exa:4.6 +clc; +clear; +close; +S=2200;//Volt-Ampere +V_s=220;//secondary side voltage (in Volts) +V_2=V_s; +V_p=440;//primary side voltage (in Volts) +R_e1=3;//in ohms +X_e1=4;//in ohms +R_c1=2.5*1000;//in ohms +X_m1=2000;//in ohms +a=V_p/V_2;//transformation ratio +pf=0.707;//lagging power factor +theta=-acosd(pf); +I_2=(S/V_2)*(cosd(theta)+%i*sind(theta));//(in Amperes) +//Refer to equivalent circuit (fig:4.16) +I_p=I_2/a;//in Amperes +V_2p=a*V_2; +V_1=V_2p+I_p*(R_e1+%i*X_e1); +I_c=V_1/R_c1;//core loss current (in Amperes) +I_m=V_1/(%i*X_m1); +I_1=I_p+I_c+I_m;//current supplied by source (in Amperes) +P_o=real(V_p*conj(I_p));//output power (in Watts) +P_in=real(V_1*conj(I_1));//input power (in Watts) +Eff=P_o/P_in;//Efficiency +disp(Eff*100,'Efficiency (%)='); +VR=(abs(V_1)-abs(V_p))/V_p; +disp(VR*100,'voltage regulation (%)=') \ No newline at end of file diff --git a/380/CH4/EX4.6/4_6_R.txt b/380/CH4/EX4.6/4_6_R.txt new file mode 100755 index 000000000..d87c75a6b --- /dev/null +++ b/380/CH4/EX4.6/4_6_R.txt @@ -0,0 +1,7 @@ + Efficiency (%)= + + 90.598696 + + voltage regulation (%)= + + 5.6278842 \ No newline at end of file diff --git a/380/CH4/EX4.6/Ex4_6.sce b/380/CH4/EX4.6/Ex4_6.sce new file mode 100755 index 000000000..0e7b3a107 --- /dev/null +++ b/380/CH4/EX4.6/Ex4_6.sce @@ -0,0 +1,30 @@ +//Caption:Find efficiency and voltage regulation of transformer +//Exa:4.6 +clc; +clear; +close; +S=2200;//Volt-Ampere +V_s=220;//secondary side voltage (in Volts) +V_2=V_s; +V_p=440;//primary side voltage (in Volts) +R_e1=3;//in ohms +X_e1=4;//in ohms +R_c1=2.5*1000;//in ohms +X_m1=2000;//in ohms +a=V_p/V_2;//transformation ratio +pf=0.707;//lagging power factor +theta=-acosd(pf); +I_2=(S/V_2)*(cosd(theta)+%i*sind(theta));//(in Amperes) +//Refer to equivalent circuit (fig:4.16) +I_p=I_2/a;//in Amperes +V_2p=a*V_2; +V_1=V_2p+I_p*(R_e1+%i*X_e1); +I_c=V_1/R_c1;//core loss current (in Amperes) +I_m=V_1/(%i*X_m1); +I_1=I_p+I_c+I_m;//current supplied by source (in Amperes) +P_o=real(V_p*conj(I_p));//output power (in Watts) +P_in=real(V_1*conj(I_1));//input power (in Watts) +Eff=P_o/P_in;//Efficiency +disp(Eff*100,'Efficiency (%)='); +VR=(abs(V_1)-abs(V_p))/V_p; +disp(VR*100,'voltage regulation (%)=') \ No newline at end of file diff --git a/380/CH4/EX4.7/4_7.txt b/380/CH4/EX4.7/4_7.txt new file mode 100755 index 000000000..21e68e367 --- /dev/null +++ b/380/CH4/EX4.7/4_7.txt @@ -0,0 +1,32 @@ +//Caption:Find (a)KVA rating at max efficiency (b)max efficiency (c) Efficiency at full load and 0.8pf lagging (d)equivalent core resistance +//Exa:4.7 +clc; +clear; +close; +S=120000;//Volt-Ampere +V_p=2400;//in volts +V_s=240;//in volts +R_1=0.75;//in ohms +R_2=0.01;//in ohms +X_1=0.8;//in ohms +X_2=0.02;//in ohms +pf=0.8;//lagging +theta=-acosd(pf); +a=V_p/V_s;//transformation ratio +I_p=S/V_p;//rated load current (in Amperes) +I_p_eta=0.7*I_p;//load current at max efficiency +KVA=I_p_eta*V_p/1000; +disp(KVA,'(a) KVA rating at max efficiency ='); +P_cu_eta=I_p_eta^2*(R_1+a^2*R_2);//copper loss (in Watts) +P_m=P_cu_eta;//core loss +P_o=V_p*I_p_eta*pf;//power output at max efficiency +P_in=P_o+P_m+P_cu_eta;//power input at max efficiency +eta=P_o/P_in; +disp(eta*100,'(b) max efficiency (%)='); +P_o_FL=V_p*I_p*pf;//power output at full load +P_cu_FL=I_p^2*(R_1+a^2*R_2);//copper loss at full load +P_in_FL=P_cu_FL+P_o_FL+P_m; +Eff=P_o_FL/P_in_FL; +disp(Eff*100,'(c) Efficiency at full load (%)='); +R_c1=V_p^2/P_cu_eta; +disp(R_c1,'(d) equivalent core resistance (in ohms)='); \ No newline at end of file diff --git a/380/CH4/EX4.7/4_7_R.txt b/380/CH4/EX4.7/4_7_R.txt new file mode 100755 index 000000000..fc5017d56 --- /dev/null +++ b/380/CH4/EX4.7/4_7_R.txt @@ -0,0 +1,15 @@ + (a) KVA rating at max efficiency = + + 84. + + (b) max efficiency (%)= + + 94.002448 + + (c) Efficiency at full load (%)= + + 93.641407 + + (d) equivalent core resistance (in ohms)= + + 2686.8805 \ No newline at end of file diff --git a/380/CH4/EX4.7/Ex4_7.sce b/380/CH4/EX4.7/Ex4_7.sce new file mode 100755 index 000000000..21e68e367 --- /dev/null +++ b/380/CH4/EX4.7/Ex4_7.sce @@ -0,0 +1,32 @@ +//Caption:Find (a)KVA rating at max efficiency (b)max efficiency (c) Efficiency at full load and 0.8pf lagging (d)equivalent core resistance +//Exa:4.7 +clc; +clear; +close; +S=120000;//Volt-Ampere +V_p=2400;//in volts +V_s=240;//in volts +R_1=0.75;//in ohms +R_2=0.01;//in ohms +X_1=0.8;//in ohms +X_2=0.02;//in ohms +pf=0.8;//lagging +theta=-acosd(pf); +a=V_p/V_s;//transformation ratio +I_p=S/V_p;//rated load current (in Amperes) +I_p_eta=0.7*I_p;//load current at max efficiency +KVA=I_p_eta*V_p/1000; +disp(KVA,'(a) KVA rating at max efficiency ='); +P_cu_eta=I_p_eta^2*(R_1+a^2*R_2);//copper loss (in Watts) +P_m=P_cu_eta;//core loss +P_o=V_p*I_p_eta*pf;//power output at max efficiency +P_in=P_o+P_m+P_cu_eta;//power input at max efficiency +eta=P_o/P_in; +disp(eta*100,'(b) max efficiency (%)='); +P_o_FL=V_p*I_p*pf;//power output at full load +P_cu_FL=I_p^2*(R_1+a^2*R_2);//copper loss at full load +P_in_FL=P_cu_FL+P_o_FL+P_m; +Eff=P_o_FL/P_in_FL; +disp(Eff*100,'(c) Efficiency at full load (%)='); +R_c1=V_p^2/P_cu_eta; +disp(R_c1,'(d) equivalent core resistance (in ohms)='); \ No newline at end of file diff --git a/380/CH4/EX4.9/4_9.txt b/380/CH4/EX4.9/4_9.txt new file mode 100755 index 000000000..825b53384 --- /dev/null +++ b/380/CH4/EX4.9/4_9.txt @@ -0,0 +1,52 @@ +//Caption:Find the (a) generator voltage (b) generator current (c) efficiency +//Exa:4.9 +clc; +clear; +close; +//Refer to fig:4.29 +//For region A +V_bA=230;//in Volts +S_bA=.46000;//Volt-Ampere +I_bA=S_bA/V_bA;//in Amperes +Z_bA=V_bA/I_bA;//in ohms +Z_g_pu=(0.023+%i*0.092)/Z_bA; +R_L_pu=0.023/Z_bA; +X_L_pu=0.069/Z_bA; +//For region B +//Per unit parameters on high-voltage side of the step-up transformer +V_bB=2300;//in Volts +S_bB=46000;//Volt-Ampere +I_bB=S_bB/V_bB;//in Amperes +Z_bB=V_bB/I_bB;//in ohms +R_H_pu=2.3/Z_bB; +X_H_pu=6.9/Z_bB; +R_cH_pu1=13800/Z_bB; +X_mH_pu1=6900/Z_bB; +Z_l_pu=(2.07+%i*4.14)/Z_bB;//Per-unit impedance of transmission line +//Per unit parameters on high-voltage side of the step-down transformer +X_mH_pu2=9200/Z_bB; +R_cH_pu2=11500/Z_bB; +//For region C +V_bC=115;//in Volts +S_bC=46000;//Volt-Ampere +I_bC=S_bC/V_bC;//in Amperes +Z_bC=V_bC/I_bC;//in ohms +R_L_pu=0.00575/Z_bC; +X_L_pu=0.01725/Z_bC; +V_L_pu=1*(cosd(0)+%i*sind(0)); +I_L_pu=1*(cosd(-30)+%i*sind(-30)); +E_l_pu=V_L_pu+(R_L_pu+%i*X_L_pu)*I_L_pu; +I_l_pu=I_L_pu+E_l_pu*(0.01-%i*(1/80)); +E_g_pu=E_l_pu+I_l_pu*(0.02+%i*0.06+0.018+%i*0.036+0.02+%i*0.06); +I_g_pu=I_l_pu+E_g_pu*((1/120)-%i*(1/60)); +V_g_pu=E_g_pu+I_g_pu*(0.02+0.02+%i*0.08+%i*0.06); +V_g=V_bA*V_g_pu; +disp(abs(V_g),'(a) Generator Voltage (in Volts)='); +disp(atand(imag(V_g)/real(V_g)),'Phase of generated voltage (in degree)='); +I_g=I_bA*I_g_pu; +disp(abs(I_g),'(b) Generator current (in Amperes)='); +disp(atand(imag(I_g)/real(I_g)),'Phase of generator current (in degree)='); +P_o_pu=0.866;//rated power output at pf=0.866 lagging +P_in_pu=real(V_g_pu*conj(I_g_pu)); +Eff=P_o_pu/P_in_pu; +disp(Eff*100,'(c) Efficiency (%)='); \ No newline at end of file diff --git a/380/CH4/EX4.9/4_9_R.txt b/380/CH4/EX4.9/4_9_R.txt new file mode 100755 index 000000000..a62b57928 --- /dev/null +++ b/380/CH4/EX4.9/4_9_R.txt @@ -0,0 +1,19 @@ + (a) Generator Voltage (in Volts)= + + 301.88985 + + Phase of generated voltage (in degree)= + + 11.082542 + + (b) Generator current (in Amperes)= + + 0.0020716 + + Phase of generator current (in degree)= + + - 30.843794 + + (c) Efficiency (%)= + + 85.612246 \ No newline at end of file diff --git a/380/CH4/EX4.9/Ex4_9.sce b/380/CH4/EX4.9/Ex4_9.sce new file mode 100755 index 000000000..825b53384 --- /dev/null +++ b/380/CH4/EX4.9/Ex4_9.sce @@ -0,0 +1,52 @@ +//Caption:Find the (a) generator voltage (b) generator current (c) efficiency +//Exa:4.9 +clc; +clear; +close; +//Refer to fig:4.29 +//For region A +V_bA=230;//in Volts +S_bA=.46000;//Volt-Ampere +I_bA=S_bA/V_bA;//in Amperes +Z_bA=V_bA/I_bA;//in ohms +Z_g_pu=(0.023+%i*0.092)/Z_bA; +R_L_pu=0.023/Z_bA; +X_L_pu=0.069/Z_bA; +//For region B +//Per unit parameters on high-voltage side of the step-up transformer +V_bB=2300;//in Volts +S_bB=46000;//Volt-Ampere +I_bB=S_bB/V_bB;//in Amperes +Z_bB=V_bB/I_bB;//in ohms +R_H_pu=2.3/Z_bB; +X_H_pu=6.9/Z_bB; +R_cH_pu1=13800/Z_bB; +X_mH_pu1=6900/Z_bB; +Z_l_pu=(2.07+%i*4.14)/Z_bB;//Per-unit impedance of transmission line +//Per unit parameters on high-voltage side of the step-down transformer +X_mH_pu2=9200/Z_bB; +R_cH_pu2=11500/Z_bB; +//For region C +V_bC=115;//in Volts +S_bC=46000;//Volt-Ampere +I_bC=S_bC/V_bC;//in Amperes +Z_bC=V_bC/I_bC;//in ohms +R_L_pu=0.00575/Z_bC; +X_L_pu=0.01725/Z_bC; +V_L_pu=1*(cosd(0)+%i*sind(0)); +I_L_pu=1*(cosd(-30)+%i*sind(-30)); +E_l_pu=V_L_pu+(R_L_pu+%i*X_L_pu)*I_L_pu; +I_l_pu=I_L_pu+E_l_pu*(0.01-%i*(1/80)); +E_g_pu=E_l_pu+I_l_pu*(0.02+%i*0.06+0.018+%i*0.036+0.02+%i*0.06); +I_g_pu=I_l_pu+E_g_pu*((1/120)-%i*(1/60)); +V_g_pu=E_g_pu+I_g_pu*(0.02+0.02+%i*0.08+%i*0.06); +V_g=V_bA*V_g_pu; +disp(abs(V_g),'(a) Generator Voltage (in Volts)='); +disp(atand(imag(V_g)/real(V_g)),'Phase of generated voltage (in degree)='); +I_g=I_bA*I_g_pu; +disp(abs(I_g),'(b) Generator current (in Amperes)='); +disp(atand(imag(I_g)/real(I_g)),'Phase of generator current (in degree)='); +P_o_pu=0.866;//rated power output at pf=0.866 lagging +P_in_pu=real(V_g_pu*conj(I_g_pu)); +Eff=P_o_pu/P_in_pu; +disp(Eff*100,'(c) Efficiency (%)='); \ No newline at end of file -- cgit