diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /380/CH4/EX4.13 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '380/CH4/EX4.13')
-rwxr-xr-x | 380/CH4/EX4.13/4_13.txt | 35 | ||||
-rwxr-xr-x | 380/CH4/EX4.13/4_13_R.txt | 35 | ||||
-rwxr-xr-x | 380/CH4/EX4.13/Ex4_13.sce | 35 |
3 files changed, 105 insertions, 0 deletions
diff --git a/380/CH4/EX4.13/4_13.txt b/380/CH4/EX4.13/4_13.txt new file mode 100755 index 000000000..42be8f1ee --- /dev/null +++ b/380/CH4/EX4.13/4_13.txt @@ -0,0 +1,35 @@ +//Caption:Find the line voltages,the line currents and efficiency of the transformer
+//Exa:4.13
+clc;
+clear;
+close;
+R_H=133.5*10^-3;//in ohms
+X_H=201*10^-3;//in ohms
+R_L=39.5*10^-3;//in ohms
+X_L=61.5*10^-3;//in ohms
+R_cL=240;//in ohms
+X_mL=290;//in ohms
+pf=0.8;//lagging
+theta=-acosd(pf);
+V_2n=138.564*(cosd(0)+%i*sind(0));//rated load voltage for Y/Y connection
+I_2A=86.6*(cosd(theta)+%i*sind(theta));//load current
+a=120/138.564;//transformation ratio
+I_pA=(I_2A/a)*(cosd(30)+%i*sind(30));//per phase current in primary winding
+E_2n=V_2n+I_2A*(0.0445+%i*0.067);//voltage induced in secondary winding
+E_2L=sqrt(3)*E_2n*(cosd(30)+%i*sind(30));
+E_1n=a*E_2n*(cosd(30)+%i*sind(30));//voltage induced in primary winding
+I_1A=I_pA+E_1n*((1/240)-%i*(1/290));
+disp(abs(I_2A),'Line current in secondary side (in Amperes)=');
+disp(atand(imag(I_2A)/real(I_2A)),'phase angle of induced line current in secondary (in Degree)=');
+disp(abs(I_1A),'Line current in primary side (in Amperes)=');
+disp(atand(imag(I_1A)/real(I_1A)),'phase angle of induced line current in primary (in Degree) =');
+disp(abs(E_2L),'Line voltage induced in secondary side (in Volts)=');
+disp(atand(imag(E_2L)/real(E_2L)),'phase angle of induced line voltage in secondary (in Degree)=');
+V_1n=E_1n+I_1A*(R_L+%i*X_L);
+V_1L=sqrt(3)*V_1n*(cosd(30)+%i*sind(30));
+disp(abs(V_1L),'Line voltage induced in primary side (in Volts)=');
+disp(atand(imag(V_1L)/real(V_1L)),'phase angle of induced line voltage in primary (in Degree)=');
+P_o=3*real(138.564*conj(I_2A));
+P_in=3*real(V_1n*conj(I_1A));
+Eff=P_o/P_in;
+disp(Eff*100,'Efficiency (%)=');
\ No newline at end of file diff --git a/380/CH4/EX4.13/4_13_R.txt b/380/CH4/EX4.13/4_13_R.txt new file mode 100755 index 000000000..72c341543 --- /dev/null +++ b/380/CH4/EX4.13/4_13_R.txt @@ -0,0 +1,35 @@ + Line current in secondary side (in Amperes)=
+
+ 86.6
+
+ phase angle of induced line current in secondary (in Degree)=
+
+ - 36.869898
+
+ Line current in primary side (in Amperes)=
+
+ 100.67653
+
+ phase angle of induced line current in primary (in Degree) =
+
+ - 6.8821937
+
+ Line voltage induced in secondary side (in Volts)=
+
+ 251.40194
+
+ phase angle of induced line voltage in secondary (in Degree)=
+
+ 30.91961
+
+ Line voltage induced in primary side (in Volts)=
+
+ 229.77546
+
+ phase angle of induced line voltage in primary (in Degree)=
+
+ 61.979867
+
+ Efficiency (%)=
+
+ 92.308106
\ No newline at end of file diff --git a/380/CH4/EX4.13/Ex4_13.sce b/380/CH4/EX4.13/Ex4_13.sce new file mode 100755 index 000000000..9d539df4e --- /dev/null +++ b/380/CH4/EX4.13/Ex4_13.sce @@ -0,0 +1,35 @@ +//Caption:Find the line voltages,the line currents and efficiency of the transformer
+//Exa:4.13
+clc;
+clear;
+close;
+R_H=133.5*10^-3;//in ohms
+X_H=201*10^-3;//in ohms
+R_L=39.5*10^-3;//in ohms
+X_L=61.5*10^-3;//in ohms
+R_cL=240;//in ohms
+X_mL=290;//in ohms
+pf=0.8;//lagging
+theta=-acosd(pf);
+V_2n=138.564*(cosd(0)+%i*sind(0));//rated load voltage for Y/Y connection
+I_2A=86.6*(cosd(theta)+%i*sind(theta));//load current
+a=120/138.564;//transformation ratio
+I_pA=(I_2A/a)*(cosd(30)+%i*sind(30));//per phase current in primary winding
+E_2n=V_2n+I_2A*(0.0445+%i*0.067);//voltage induced in secondary winding
+E_2L=sqrt(3)*E_2n*(cosd(30)+%i*sind(30));
+E_1n=a*E_2n*(cosd(30)+%i*sind(30));//voltage induced in primary winding
+I_1A=I_pA+E_1n*((1/240)-%i*(1/290));
+disp(abs(I_2A),'Line current in secondary side (in Amperes)=');
+disp(atand(imag(I_2A)/real(I_2A)),'phase angle of induced line current in secondary (in Degree)=');
+disp(abs(I_1A),'Line current in primary side (in Amperes)=');
+disp(atand(imag(I_1A)/real(I_1A)),'phase angle of induced line current in primary (in Degree) =');
+disp(abs(E_2L),'Line voltage induced in secondary side (in Volts)=');
+disp(atand(imag(E_2L)/real(E_2L)),'phase angle of induced line voltage in secondary (in Degree)=');
+V_1n=E_1n+I_1A*(R_L+%i*X_L);
+V_1L=sqrt(3)*V_1n*(cosd(30)+%i*sind(30));
+disp(abs(V_1L),'Line voltage induced in primary side (in Volts)=');
+disp(atand(imag(V_1L)/real(V_1L)),'phase angle of induced line voltage in primary (in Degree)=');
+P_o=3*real(138.564*conj(I_2A));
+P_in=3*real(V_1n*conj(I_1A));
+Eff=P_o/P_in;
+disp(Eff*100,'Efficiency (%)=');
\ No newline at end of file |