summaryrefslogtreecommitdiff
path: root/3792/CH2
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3792/CH2
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '3792/CH2')
-rw-r--r--3792/CH2/EX2.1/Ex2_1.sce21
-rw-r--r--3792/CH2/EX2.10/Ex2_10.sce18
-rw-r--r--3792/CH2/EX2.12/Ex2_12.sce32
-rw-r--r--3792/CH2/EX2.13/Ex2_13.sce28
-rw-r--r--3792/CH2/EX2.14/Ex2_14.sce24
-rw-r--r--3792/CH2/EX2.15/Ex2_15.sce13
-rw-r--r--3792/CH2/EX2.2/Ex2_2.sce19
-rw-r--r--3792/CH2/EX2.5/Ex2_5.sce31
-rw-r--r--3792/CH2/EX2.5/Fig2_5.jpgbin0 -> 30326 bytes
-rw-r--r--3792/CH2/EX2.6/Ex2_6.sce44
-rw-r--r--3792/CH2/EX2.7/Ex2_7.sce24
-rw-r--r--3792/CH2/EX2.8/Ex2_8.sce22
-rw-r--r--3792/CH2/EX2.9/Ex2_9.sce21
13 files changed, 297 insertions, 0 deletions
diff --git a/3792/CH2/EX2.1/Ex2_1.sce b/3792/CH2/EX2.1/Ex2_1.sce
new file mode 100644
index 000000000..d95f5300f
--- /dev/null
+++ b/3792/CH2/EX2.1/Ex2_1.sce
@@ -0,0 +1,21 @@
+// Example 2_1
+clc;funcprot(0);
+// Given data
+// s=2t^3-24t+6;
+v_a=72;// Velocity in m/s
+v_b=30;// Velocity in m/s
+t_0=1;// s
+t_1=4;// s
+
+// Calculation
+// v=6t^2-24;
+// a=12t;
+// (a)
+t=sqrt((v_a+24)/6);// Time in s
+// (b)
+a=sqrt((v_b+24)/6);// Time in s
+// (c)
+s4=((2*t_1^3)-(24*t)+6);// m
+s1=((2*t_0^3)-(24*t_0)+6)// m;
+deltaS=s4-s1;// The net displacement during the specified interval in m
+printf("\n(a)The time required for the particle to reach a velocity of 72 m/s from its initial condition at t=0 is %1.0f s.\n(b)The acceleration of the particle a=%2.0f m/s^2 \n(c)The net displacement,deltaS=%2.0f m",t,a,deltaS);
diff --git a/3792/CH2/EX2.10/Ex2_10.sce b/3792/CH2/EX2.10/Ex2_10.sce
new file mode 100644
index 000000000..c52f32337
--- /dev/null
+++ b/3792/CH2/EX2.10/Ex2_10.sce
@@ -0,0 +1,18 @@
+// Example 2_10
+clc;funcprot(0);
+// Given data
+theta_i=30;// degrees
+r=25*10^4;// ft
+rdot=4000;// ft/sec
+theta=0.80;// deg/sec
+g=31.4;// ft/sec^2
+
+// Calculation
+v_r=rdot;// ft/sec
+v_theta=r*(theta*%pi/180);// ft/sec
+v=sqrt(v_r^2+v_theta^2);// ft/sec
+a_r=-g*cosd(theta_i);// ft/sec^2
+a_theta=g*sind(theta_i);// ft/sec^2
+rdotdot=a_r+(r*(theta*(%pi/180))^2);// ft/sec^2
+thetadotdot=(a_theta-(2*rdot*theta*%pi/180))/r;// ft/sec^2
+printf("\nThe velocity of the rocket,v=%4.0f ft/sec \nrdotdot=%2.1f ft/sec^2 and thetadotdot=%1.2e rad/sec^2",v,rdotdot,thetadotdot);
diff --git a/3792/CH2/EX2.12/Ex2_12.sce b/3792/CH2/EX2.12/Ex2_12.sce
new file mode 100644
index 000000000..3e360eda7
--- /dev/null
+++ b/3792/CH2/EX2.12/Ex2_12.sce
@@ -0,0 +1,32 @@
+// Example 2_12
+clc;funcprot(0);
+// Given data
+v_0=250;// km/h
+theta_i=15;// degree
+a=0.8;// m/s^2
+t=60;// seconds
+s_0=0;// m
+x=3000;// m
+
+// Calculation
+// (a)
+v_0=v_0/3.6;// m/s
+v=v_0+(a*t);// m/s
+s=s_0+(v_0*t)+((1/2)*a*t^2);// m
+y=s*cosd(theta_i);// m
+theta=atand(y/x);// degree
+r=sqrt(x.^2+y.^2);// m
+v_xy=v*cosd(theta_i);// m/s
+v_r=v_xy*sind(theta);// m/s
+v_theta=v_xy*cosd(theta);// m/s
+thetadot=v_theta/r;// rad/s
+zdot=v*sind(theta_i);// m/s
+v_z=zdot;// m/s
+// (b)
+z=y*tand(theta_i);// m
+phi=atand(z/r);// degree
+R=sqrt(r^2+z^2);// m
+v_R=(v_r*cosd(phi))+(zdot*sind(phi));// m/s
+v_phi=(zdot*(cosd(phi)))-(v_r*sind(phi));// m/s
+phidot=v_phi/R;// m/s
+printf("\n(a)v_r=%2.1f m/s \n thetadot=%1.2e rad/s \n zdot=v_z=%2.1f m/s \n(b)v_R=%3.1f m/s \n thetadot=%1.2e rad/s \n phidot=%1.3e rad/s",v_r,thetadot,zdot,v_R,thetadot,phidot);
diff --git a/3792/CH2/EX2.13/Ex2_13.sce b/3792/CH2/EX2.13/Ex2_13.sce
new file mode 100644
index 000000000..f5de18d19
--- /dev/null
+++ b/3792/CH2/EX2.13/Ex2_13.sce
@@ -0,0 +1,28 @@
+// Example 2_13
+clc;funcprot(0);
+// Given data
+v_A=800;// km/h
+theta_1=45;// degree
+theta_2=60;// degree
+theta_3=75;// degree
+
+// Calculation
+// (I) Graphical.
+v_BA=586;// km/h
+v_B=717;// km/h
+printf("\nv_BA=%3.0f km/h and v_B=%3.0f km/h",v_BA,v_B);
+// (II) Trigonometric.
+v_B=(sind(theta_2)*v_A)/sind(theta_3);// km/h
+printf("\nv_B=%3.0f km/h",v_B);
+// (III) Vector Algebra
+v_B=[(v_B*cosd(theta_1)),(v_B*sind(theta_1))];// km/h
+v_BA=[-(v_BA*cosd(theta_2)),(v_BA*sind(theta_2))];// km/h
+function[X]=velocity(y)
+ X(1)=(v_A-(y(2)*cosd(theta_2)))-(y(1)*cosd(theta_1));
+ X(2)=(y(2)*sind(theta_2))-(y(1)*sind(theta_1));
+endfunction
+y=[100,100];
+z=fsolve(y,velocity);
+v_BA=z(1);// km/h
+v_B=z(2);// km/h
+printf("\nv_AB=%3.0f km/h and v_B=%3.0f km/h",v_BA,v_B);
diff --git a/3792/CH2/EX2.14/Ex2_14.sce b/3792/CH2/EX2.14/Ex2_14.sce
new file mode 100644
index 000000000..2aefb6540
--- /dev/null
+++ b/3792/CH2/EX2.14/Ex2_14.sce
@@ -0,0 +1,24 @@
+// Example 2_14
+clc;funcprot(0);
+// Given data
+v_A=45;// mi/hr
+v_B=30;// mi/hr
+a_A=3;// ft/sec^2
+theta_1=30;// degree
+theta_2=60;// degree
+rho=440;// The radius of curvature in ft
+
+// Calculation
+// Velocity
+v_A=v_A*(5280/3600);// ft/sec
+v_B=v_B*(5280/3600);// ft/sec
+// By the application of the law of cosines and the law of sines gives
+v_BA=sqrt(v_A^2+v_B^2-(2*v_A*v_B*cosd(theta_2)));// ft/sec
+theta=asind((v_B*sind(theta_2))/v_BA);// degree
+// Acceleration
+a_B=(v_B)^2/rho;// ft/sec^2
+a_BAx=a_B*cosd(theta_1)-a_A;// ft/sec^2
+a_BAy=a_B*sind(theta_1);// ft/sec^2
+a_BA=sqrt(a_BAx^2+a_BAy^2);// ft/sec^2
+beta=asind((a_B*sind(theta_1))/a_BA);// degree
+printf("\nv_BA=%2.1f ft/sec \ntheta=%2.1f degree \na_AB=%1.2f ft/sec^2 \nbeta=%2.1f degree",v_BA,theta,a_BA,beta);
diff --git a/3792/CH2/EX2.15/Ex2_15.sce b/3792/CH2/EX2.15/Ex2_15.sce
new file mode 100644
index 000000000..43e3ca538
--- /dev/null
+++ b/3792/CH2/EX2.15/Ex2_15.sce
@@ -0,0 +1,13 @@
+// Example 2_15
+clc;funcprot(0);
+// Given data
+v_A=0.3;// m/s
+
+// Calculation
+// Solution (I).
+// v_A=y_A,v_B=y_B
+v_B=-(2*v_A)/3;// m/s
+printf("\nThe velocity of B,v_B=%0.1f m/s",v_B);
+// Solution (II).
+v_B=abs((2/3)*v_A);// m/s
+printf("\nThe velocity of B,v_B=%0.1f m/s (upward)",v_B);
diff --git a/3792/CH2/EX2.2/Ex2_2.sce b/3792/CH2/EX2.2/Ex2_2.sce
new file mode 100644
index 000000000..70aee775b
--- /dev/null
+++ b/3792/CH2/EX2.2/Ex2_2.sce
@@ -0,0 +1,19 @@
+// Example 2_2
+clc;funcprot(0);
+// Given data
+v_x=50;// The initial velocity in ft/sec
+a_x=-10;// The acceleration in ft/sec^2
+t_0=8;// s
+t_1=12;// s
+
+// Calculation
+// v_x=90-10t; ft/sec
+v_x0=(90-(10*t_0));// The velocity in ft/sec
+v_x1=(90-(10*t_1));// The velocity in ft/sec
+// x=-5t^2+90t-80; ft
+x_0=(-5*t_0^2)+(90*t_0)-80;// ft
+x_1=(-5*t_1^2)+(90*t_1)-80;// ft
+// The maximum positive x-coordinate is,then, the value of x for t=9 sec which is
+t=9;// sec
+x_max=(-5*t^2)+(90*t)-80;// ft
+printf("\nThe velocity of the particle for the conditions of t=8 sec and t=12 sec,v_x=%2.0f ft/sec & v_x=%2.0f ft/sec \nThe x-coordinate of the particle for the conditions of t=8 sec and t=12 sec, x=%3.0f ft & x=%3.0f ft \nThe maximum positive x-coordinate reached by the particle,x_max=%3.0f ft",v_x0,v_x1,x_0,x_1,x_max)
diff --git a/3792/CH2/EX2.5/Ex2_5.sce b/3792/CH2/EX2.5/Ex2_5.sce
new file mode 100644
index 000000000..b8c3b5772
--- /dev/null
+++ b/3792/CH2/EX2.5/Ex2_5.sce
@@ -0,0 +1,31 @@
+// Example 2_5
+clc;funcprot(0);
+// Given data
+// v_x=50-60t;
+// y=100-4t^2;
+// where v_x is in meters per second, y is in meters, and t is in seconds.
+
+// Calculation
+// x=50t-8t^2;
+a_x=-16;// The x-component of the acceleration in m/s^2
+// v_y=-8t; The y-component of the velocity in m/s
+a_y=-8;// The y-component of the acceleration in m/s^2
+// When y=0,
+t=sqrt(100/4);
+v_x=50-(16*t);
+v_y=-8*(t);
+v=sqrt((v_x.^2)+(v_y.^2));// m/s
+a=sqrt(a_x.^2+a_y.^2);// m/s^2
+printf("\nThe velocity,v=%2.0fi+(%2.0fj) m/s \nThe acceleration,a=%2.0fi+(%1.0fj) m/s^2",v_x,v_y,a_x,a_y);
+y=[0,20,40,60,80,100];// m
+for(i=1:6)
+ t(i)=sqrt((100-y(i))/4);// s
+ x(i)=((50*t(i))-(8*t(i).^2));// m
+ v_x(i)=((50*t(i)-(8*t(i).^2)));// m/s
+ v_y(i)=(-8*t(i));// m/s
+ v=sqrt((v_x.^2)+(v_y.^2));// m/s
+ a=sqrt(a_x.^2+a_y.^2);// m/s^2
+end
+plot(x',y,'-.*');
+xlabel('x,m');
+ylabel('y,m');
diff --git a/3792/CH2/EX2.5/Fig2_5.jpg b/3792/CH2/EX2.5/Fig2_5.jpg
new file mode 100644
index 000000000..2e362780d
--- /dev/null
+++ b/3792/CH2/EX2.5/Fig2_5.jpg
Binary files differ
diff --git a/3792/CH2/EX2.6/Ex2_6.sce b/3792/CH2/EX2.6/Ex2_6.sce
new file mode 100644
index 000000000..c60b35cdf
--- /dev/null
+++ b/3792/CH2/EX2.6/Ex2_6.sce
@@ -0,0 +1,44 @@
+// Example 2_6
+clc;funcprot(0);
+// Given data
+v_0=80;// The launch speed in ft/sec
+theta=35;// The launch angle in degree
+m=8;// lb
+g=32.2;// The acceleration due to gravity in ft/sec^2
+y_0=6;// ft
+x_0=0;// ft
+x=100+30;// ft
+
+// Calculation
+v_x0=v_0*cosd(theta);// ft/sec
+t=(x-x_0)/v_x0;// s
+v_y0=v_0*sind(theta);// ft/sec
+y=(y_0+(v_y0*t))-((1/2)*g*t^2);// ft
+// (a)
+// We now find the flight time by setting
+y_01=20;// ft
+function[X]=time(y)
+ X(1)=((y_0+(v_y0*y(1))-((1/2)*g*y(1)^2)))-y_01;
+endfunction
+y=[10];
+z=fsolve(y,time);
+t_f=z(1);// s
+x=x_0+(v_x0*t_f);// ft
+printf("\n(a)The time duration of the flight,t_f=%1.2f s",t_f);
+//(b)
+printf("\n(b)Thus the point of first impact is (x,y)=(%3.0f,%2.0f)ft",x,y_01);
+// (c)
+v_y=0;// ft
+h=((v_y0^2-v_y^2)/(2*g))+6;// ft
+printf("\n(c)The maximum height above the horizontal field attained by the ball,h=%2.1f ft",h);
+// (d)
+v_x=v_x0;// ft/sec
+v_y=v_y0-(g*t_f);// ft/sec
+printf("\n(d)The impact velocity,v=%2.1f i+(%2.1f j) ft/sec",v_x,v_y);
+x=100+30;// ft (given)
+v_0=75;// ft/sec (given)
+v_x0=v_0*cosd(theta);// ft/sec
+t=(x-x_0)/v_x0;// s
+v_y0=v_0*sind(theta);// ft/sec
+y=(y_0+(v_y0*t))-((1/2)*g*t^2);// ft
+printf("\n The point of impact is (x,y)=(%3.0f,%2.1f)ft",x,y);
diff --git a/3792/CH2/EX2.7/Ex2_7.sce b/3792/CH2/EX2.7/Ex2_7.sce
new file mode 100644
index 000000000..d54a73078
--- /dev/null
+++ b/3792/CH2/EX2.7/Ex2_7.sce
@@ -0,0 +1,24 @@
+// Example 2_7
+clc;funcprot(0);
+// Given data
+a=3;// m/s^2
+v_A=100;// km/h
+v_C=50;// km/h
+s=120;// m
+
+// Calculation
+v_A=v_A*(1000/3600);// The velocity in m/s
+v_C=v_C*(1000/3600);// The velocity in m/s
+a_t=(1/(2*s))*(v_C.^2-v_A.^2);// The acceleration in m/s^2
+// (a) Condition at A.
+a_n=sqrt(a.^2-(a_t).^2);// The acceleration in m/s^2
+rho_A=v_A.^2/a_n;// The radius of curvature at A in m
+// (b) Condition at B.
+a_n=0;// m/s^2
+a_b=a_n+a_t;// The acceleration at the inflection point B in m/s^2
+// (c) Condition at C.
+rho=150;// The radius of curvature of the hump at C in m
+a_n=v_C.^2/rho;// The normal acceleration in m/s^2
+a=sqrt(a_n.^2+a_t.^2);// The total acceleration at C in m/s^2
+printf("\n(a)The radius of curvature at A,rho=%3.0f m \n(b)The acceleration at the inflection point B,a=%1.2f m/s^2 \n(c)The total acceleration at C,a=%1.2f m/s^2",rho_A,a_b,a)
+
diff --git a/3792/CH2/EX2.8/Ex2_8.sce b/3792/CH2/EX2.8/Ex2_8.sce
new file mode 100644
index 000000000..8ebf9862f
--- /dev/null
+++ b/3792/CH2/EX2.8/Ex2_8.sce
@@ -0,0 +1,22 @@
+// Example 2_8
+clc;funcprot(0);
+// Given data
+g=30;// The acceleration due to gravity in ft/sec^2
+theta=15;// The direction of its trajectory in degree
+v=12000;// The velocity in mi/hr
+a_x=20;// The horizontal component of acceleration in ft/sec^2
+a_y=g;// The downward acceleration component in ft/sec^2
+
+// Calculation
+a_n=(a_y*cosd(theta))-(a_x*sind(theta));// The normal component of acceleration in ft/sec^2
+a_t=(a_y*sind(theta))+(a_x*cosd(theta));// The tangential component of acceleration in ft/sec^2
+// (a)
+v=v*44/30;// ft/sec
+rho=v^2/a_n;// The radius of curvature in ft
+// (b)
+vdot=a_t;// The t-component of acceleration in ft/sec^2
+// (c)
+betadot=v/rho;// The angular rate of line GC in rad/sec
+// (d)
+a=[a_n,a_t];// The total acceleration in ft/sec^2
+printf("\n(a) The radius of curvature,rho=%2.2e ft \n(b)The t-component of acceleration,v_dot=%2.1f ft/sec^2 \n(c)The angular rate of line GC,betadot=%2.2e rad/sec \n(d)The total acceleration,a=%2.1f e_n+%2.1f e_t ft/sec^2",rho,vdot,betadot,a(1),a(2));
diff --git a/3792/CH2/EX2.9/Ex2_9.sce b/3792/CH2/EX2.9/Ex2_9.sce
new file mode 100644
index 000000000..3c2bc9da8
--- /dev/null
+++ b/3792/CH2/EX2.9/Ex2_9.sce
@@ -0,0 +1,21 @@
+// Example 2_9
+clc;funcprot(0);
+// Given data
+// theta=0.2t+0.02t^3;
+// r=0.2+0.04t^2;
+t=3;// s
+
+// Calculation
+r_3=0.2+(0.04*t^2);// m
+rdot_3=0.08*t;// m/s
+rdotdot_3=0.08;// m/s^2
+theta_3=(0.2*t)+(0.02*t^3);// rad
+thetadot_3=0.2+(0.06*t^2);// rad/s
+thetadotdot_3=0.12*t;// rad/s^2
+v_r=rdot_3;// m/s
+v_theta=r_3*thetadot_3;// m/s
+v=sqrt(v_r^2+v_theta^2);// m/s
+a_r=rdotdot_3-(r_3*thetadot_3^2);// m/s^2
+a_theta=((r_3*thetadotdot_3)+(2*rdot_3*thetadot_3));// m/s^2
+a=sqrt(a_r^2+a_theta^2);// m/s^2
+printf("\nThe magnitudes of the velocity and acceleration of the slider, v=%0.3f m/s and a=%0.3f m/s^2",v,a);