summaryrefslogtreecommitdiff
path: root/3776/CH6
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3776/CH6
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '3776/CH6')
-rw-r--r--3776/CH6/EX6.10/Ex6_10.sce40
-rw-r--r--3776/CH6/EX6.14/Ex6_14.sce12
-rw-r--r--3776/CH6/EX6.15/Ex6_15.sce17
-rw-r--r--3776/CH6/EX6.16/Ex6_16.sce20
-rw-r--r--3776/CH6/EX6.18/Ex6_18.sce7
-rw-r--r--3776/CH6/EX6.24/Ex6_24.sce28
-rw-r--r--3776/CH6/EX6.3/Ex6_3.sce18
-rw-r--r--3776/CH6/EX6.4/Ex6_4.sce15
-rw-r--r--3776/CH6/EX6.5/Ex6_5.sce30
-rw-r--r--3776/CH6/EX6.8/Ex6_8.sce28
-rw-r--r--3776/CH6/EX6.9/Ex6_9.sce36
11 files changed, 251 insertions, 0 deletions
diff --git a/3776/CH6/EX6.10/Ex6_10.sce b/3776/CH6/EX6.10/Ex6_10.sce
new file mode 100644
index 000000000..43f31cf7d
--- /dev/null
+++ b/3776/CH6/EX6.10/Ex6_10.sce
@@ -0,0 +1,40 @@
+clear
+//Given
+l = 50.0 //mm - the length of the beam
+b = 50.0 //mm - the width of the beam
+M = 2083 //Nm
+A = l*b //mm2 - The area
+//straight beam
+I = b*(l**3)/12.0 //mm4 - The moment of inertia of the beam
+c_1= l/2 // the distance where the stress is maximum
+c_2 = -l/2 // the distance where the stress is maximum
+s_1 = I/c_1
+s_2 = I/c_2
+stress_max_1 = M*(10**3)/s_1 //MPa - the maximum strss recorded in the crossection
+stress_max_2 = M*(10**3)/s_2 //MPa - the maximum strss recorded in the crossection
+printf("\n The maximum stress upward in straight case is %0.3f MPa",stress_max_1)
+printf("\n The maximum stress downward in straight case is %0.3f MPa",stress_max_2)
+
+//curved beam
+//
+r = 250.0 //mm Radius of beam curved
+r_0 = r - l/2 // inner radius
+r_1 = r + l/2 // outer radius
+R = l/(log(r_1/r_0)) //mm
+e = r - R
+stressr_max_1 = M*(10**3)*(R-r_0)/(r_0*A*e)
+stressr_max_2 = M*(10**3)*(R-r_1)/(r_1*A*e)
+printf("\n The maximum stress upward in curved case is %0.3f MPa",stressr_max_1)
+printf("\n The maximum stress downward in curved case is %0.3f MPa",stressr_max_2)
+
+//curved beam _2
+//
+r = 75.0 //mm Radius of beam curved
+r_0 = r - l/2 // inner radius
+r_1 = r + l/2 // outer radius
+R = l/(log(r_1/r_0)) //mm
+e = r - R
+stressr_max_1 = M*(10**3)*(R-r_0)/(r_0*A*e)
+stressr_max_2 = M*(10**3)*(R-r_1)/(r_1*A*e)
+printf("\n The maximum stress upward in curved case2 is %0.3f MPa",stressr_max_1)
+printf("\n The maximum stress downward in curved case2 is %0.3f MPa",stressr_max_2)
diff --git a/3776/CH6/EX6.14/Ex6_14.sce b/3776/CH6/EX6.14/Ex6_14.sce
new file mode 100644
index 000000000..6198c1458
--- /dev/null
+++ b/3776/CH6/EX6.14/Ex6_14.sce
@@ -0,0 +1,12 @@
+clear
+//given
+//from example 6.9
+St_ul = 2500 //psi - ultimate strength
+st_yl = 40000 //psi _ yielding strength
+b = 10 //in - width from example
+A = 2 //in2 The area of the steel
+d = 20
+t_ul = st_yl*A //ultimate capasity
+y = t_ul/(St_ul*b*0.85) //in 0.85 because its customary
+M_ul = t_ul*(d-y/2)/12 //ft-lb Plastic moment
+printf("\n The plastic moment of the system is %0.3f ft-lb",M_ul)
diff --git a/3776/CH6/EX6.15/Ex6_15.sce b/3776/CH6/EX6.15/Ex6_15.sce
new file mode 100644
index 000000000..ca2df4451
--- /dev/null
+++ b/3776/CH6/EX6.15/Ex6_15.sce
@@ -0,0 +1,17 @@
+clear
+//Given
+//From example 5.8
+W = 4.0 //N/m - The force distribution
+L = 3 // m - The length of the force applied
+M = W*L/8.0 // KN.m The moment due to force distribution
+o = 30 // the angle of force applid to horizantal
+l = 150.0 //mm length of the crossection
+b = 100.0 //mm - width of the crossection
+//
+M_z = M*(cos(3.14/6))
+M_y = M*(sin(%pi/6))
+I_z = b*(l**3)/12.0
+I_y = l*(b**3)/12.0
+//tanb = I_z /I_y *tan30
+b = atand((I_z*tan(3.14/6.0)/I_y))
+printf("\n The angle at which neutral axis locates is %0.3f degrees",b)
diff --git a/3776/CH6/EX6.16/Ex6_16.sce b/3776/CH6/EX6.16/Ex6_16.sce
new file mode 100644
index 000000000..2f20f6648
--- /dev/null
+++ b/3776/CH6/EX6.16/Ex6_16.sce
@@ -0,0 +1,20 @@
+clear
+//
+M = 10 //KN.m - The moment applied
+I_max = 23.95*(10**6) //mm4 - I_z The moment of inertia
+I_min = 2.53*(10**6) //mm4 - I_y The moment of inertia
+o = 14.34 // degress the principle axis rotated
+//Coponents of M in Y,Z direction
+M_z = M*(10**6)*cos((%pi/180)*(o))
+M_y = M*(10**6)*sin((%pi/180)*(o))
+//tanb = I_z /I_y *tan14.34
+b = atan((I_max*tan((%pi/180)*(o))/I_min ))
+B = (180/%pi)*(b)
+y_p = 122.9 // mm - principle axis Y cordinate
+z_p = -26.95 //mm - principle axis z cordinate
+stress_B = - M_z*y_p/I_max + M_y*z_p/I_min //MPa - Maximum tensile stress
+y_f = -65.97 // mm - principle axis Y cordinate
+z_f = 41.93 //mm - principle axis z cordinate
+stress_f = - M_z*y_f/I_max + M_y*z_f/I_min //MPa - Maximum compressive stress
+printf("\n The maximum tensile stress %0.2f MPa",stress_B)
+printf("\n The maximum compressive stress %0.2f MPa",stress_f)
diff --git a/3776/CH6/EX6.18/Ex6_18.sce b/3776/CH6/EX6.18/Ex6_18.sce
new file mode 100644
index 000000000..ccce2e9e8
--- /dev/null
+++ b/3776/CH6/EX6.18/Ex6_18.sce
@@ -0,0 +1,7 @@
+clear
+l = 50 //mm - The length of the beam
+b = 50 //mm - The width of the beam
+A = l*b //mm2 - The area of the beam
+p = 8.33 //KN - The force applied on the beam
+stress_max = p*(10**3)/A //MPa After cutting section A--b
+printf("\n The maximum stress in the beam %0.3f MPa ",stress_max )
diff --git a/3776/CH6/EX6.24/Ex6_24.sce b/3776/CH6/EX6.24/Ex6_24.sce
new file mode 100644
index 000000000..1aac53ebb
--- /dev/null
+++ b/3776/CH6/EX6.24/Ex6_24.sce
@@ -0,0 +1,28 @@
+clear
+//
+M = 10 //KN.m - The moment applied
+I_max = 23.95*(10**6) //mm4 - I_z The moment of inertia
+I_min = 2.53*(10**6) //mm4 - I_y The moment of inertia
+o = 14.34 // degress the principle axis rotated
+//Coponents of M in Y,Z direction
+M_z = M*(10**6)*cos((%pi/180)*(o))
+M_y = M*(10**6)*sin((%pi/180)*(o))
+//tanb = I_z /I_y *tan14.34
+b = atan((I_max*tan((%pi/180)*(o))/I_min ))
+B = (180/%pi)*(b)
+y_p = 122.9 // mm - principle axis Y cordinate
+z_p = -26.95 //mm - principle axis z cordinate
+stress_B = - M_z*y_p/I_max + M_y*z_p/I_min //MPa - Maximum tensile stress
+y_f = -65.97 // mm - principle axis Y cordinate
+z_f = 41.93 //mm - principle axis z cordinate
+stress_f = - M_z*y_f/I_max + M_y*z_f/I_min //MPa - Maximum compressive stress
+//location of nuetral axis To show these stresses are max and minimum
+//tanB = MzI_z + MzI_yz/MyI_y +M_YI_yz
+I_z = 22.64 *(10**6) //mm4 moment of inertia in Z direction
+I_y = 3.84 *(10**6) //mm4 moment of inertia in Y direction
+I_yz =5.14 *(10**6) //mm4 moment of inertia in YZ direction
+M_y = M //KN.m bending moment in Y dorection
+M_z = M //KN.m bending moment in Y dorection
+B = atan(( M_z*I_yz)/(M_z*I_y )) //(%pi/180)* location on neutral axis
+beta = (180/%pi)*(B)
+printf("\n By sketching the line with angle %0.1f degrees The farthest point associated with B and F",beta)
diff --git a/3776/CH6/EX6.3/Ex6_3.sce b/3776/CH6/EX6.3/Ex6_3.sce
new file mode 100644
index 000000000..857811d33
--- /dev/null
+++ b/3776/CH6/EX6.3/Ex6_3.sce
@@ -0,0 +1,18 @@
+clear
+//Given
+//Entire area - hallow area
+l_e = 60.0 //mm - length of the entire area
+b_e = 40 //mm - width of the entire area
+l_h = 30 //mm - length of the hallow area
+b_h = 20 //mm - width of the hallow area
+A_e = l_e*b_e //mm2 - The entire area
+A_h = -l_h*b_h //mm2 - The hallow area '-' because its hallow
+A_re = A_e + A_h //mm2 resultant area
+y_e = l_e/2 // mm com from bottom
+y_h = 20+l_h/2 //mm com from bottom
+y_com = (A_e*y_e + A_h*y_h)/A_re
+//moment of inertia caliculatins - bh3/12 +ad2
+I_e = b_e*(l_e**3)/12 + A_e*((y_e-y_com)**2) //Parallel axis theorm
+I_h = b_h*(l_h**3)/12 - A_h*((y_h-y_com)**2) //Parallel axis theorm
+I_total = I_e - I_h
+printf("\n The moment of inertia of total system is %e mm^4",I_total)
diff --git a/3776/CH6/EX6.4/Ex6_4.sce b/3776/CH6/EX6.4/Ex6_4.sce
new file mode 100644
index 000000000..99f0edaa9
--- /dev/null
+++ b/3776/CH6/EX6.4/Ex6_4.sce
@@ -0,0 +1,15 @@
+clear
+//Given
+l = 400 //mm - Length
+b = 300 //mm - breath
+F = 20 //KN _ the force applied on the beam
+F_d = 0.75 //KN-m - The force distribution
+d = 2 //mt - the point of interest from the free end
+//caliculations
+//From moment diagram
+M = F*d - F_d*d*1
+I = b*(l**3)/12 //mm4 - Bending moment diagram
+c = l/2 // the stress max at this C
+S = I/c //The maximum shear stress
+shear_max = M*(10**6)/S //MPa - the maximum stress
+printf("\n The maximum stress at 2 mt is %0.2f MPa",shear_max)
diff --git a/3776/CH6/EX6.5/Ex6_5.sce b/3776/CH6/EX6.5/Ex6_5.sce
new file mode 100644
index 000000000..551491f53
--- /dev/null
+++ b/3776/CH6/EX6.5/Ex6_5.sce
@@ -0,0 +1,30 @@
+clear
+//Given
+//We will divide this into three parts
+F = 8 //k - force applied
+d = 16 //inch -distance
+l_1 = 1 //in
+l_2 = 3 //in
+b_1 = 4 //in
+b_2 = 1 //in
+A_1 = l_1* b_1 //in2 - area of part_1
+y_1 = 0.5 //in com distance from ab
+A_2 =l_2*b_2 //in2 - area of part_1
+y_2 = 2.5 //in com distance from ab
+A_3 = l_2*b_2 //in2 - area of part_1
+y_3 = 2.5 //in com distance from ab
+
+y_net = (A_1*y_1 +A_2*y_2 + A_3*y_3)/(A_1+A_2+A_3) //in - The com of the whole system
+c_max = (4-y_net) //in - The maximum distace from com to end
+c_min = y_net //in - the minimum distance from com to end
+I_1 = b_1*(l_1**3)/12 + A_1*((y_1-y_net)**2) //Parallel axis theorm
+I_2 = b_2*(l_2**3)/12 + A_2*((y_2-y_net)**2)
+I_3 = b_2*(l_2**3)/12 + A_2*((y_2-y_net)**2)
+I_net = I_1 + I_2 + I_3 //in^4 - the total moment of inertia
+M_c = F*d*c_max
+stress_cmax = M_c/I_net //ksi - The maximum compressive stress
+
+M_t= F*d*c_min
+stress_tmax = M_t/I_net //ksi - The maximum tensile stress
+printf("\n The maximum tensile stress %0.3f ksi",stress_tmax )
+printf("\n The maximum compressive stress %0.1f ksi",stress_cmax)
diff --git a/3776/CH6/EX6.8/Ex6_8.sce b/3776/CH6/EX6.8/Ex6_8.sce
new file mode 100644
index 000000000..244deb69e
--- /dev/null
+++ b/3776/CH6/EX6.8/Ex6_8.sce
@@ -0,0 +1,28 @@
+clear
+//Given
+//Given
+//We will divide this into two parts
+E_w = 10.0 //Gpa - Youngs modulus of wood
+E_s = 200.0 //Gpa - Youngs modulus of steel
+M = 30.0 //K.N-m _ applied bending moment
+n = E_s/E_w
+l_1 = 250 //mm
+l_2 = 10 //mm
+b_1 = 150.0 //mm
+b_2 = 150.0*n //mm
+A_1 = l_1* b_1 //mm2 - area of part_1
+y_1 = 125.0 //mm com distance from top
+A_2 =l_2*b_2 //mm2 - area of part_1
+y_2 = 255.0 //mm com distance from top
+y_net = (A_1*y_1 +A_2*y_2)/(A_1+A_2) //mm - The com of the whole system from top
+I_1 = b_1*(l_1**3)/12.0 + A_1*((y_1-y_net)**2) //Parallel axis theorm
+I_2 = b_2*(l_2**3)/12.0 + A_2*((y_2-y_net)**2)
+I_net = I_1 + I_2 //mm4 - the total moment of inertia
+c_s= y_net // The maximum distance in steel
+stress_steel = M*(10.0**6)*c_s/I_net //MPa - The maximum stress in steel
+
+c_w= l_1+l_2-y_net // The maximum distance in wood
+stress_wood = n*M*(10.0**6)*c_w/I_net //MPa - The maximum stress in wood
+
+printf("\n The maximum stress in steel %0.2f MPa",stress_steel)
+printf("\n The maximum stress in wood %0.2f MPa",stress_wood)
diff --git a/3776/CH6/EX6.9/Ex6_9.sce b/3776/CH6/EX6.9/Ex6_9.sce
new file mode 100644
index 000000000..74d9c8acf
--- /dev/null
+++ b/3776/CH6/EX6.9/Ex6_9.sce
@@ -0,0 +1,36 @@
+clear
+//Given
+M = 50000 //ft-lb , positive bending moment applied
+N = 9 // number of steel bars
+n = 15 // The ratio of steel to concrete
+A_s = 30 //in2 area of steel in concrete
+//(10*y)*(y/2) = 30*(20-y)
+//y**2 + 6*y -120
+//solving quadractic equation
+//
+
+a = 1
+b = 6
+c = -120
+// calculate the discriminant
+d = (b**2) - (4*a*c)
+
+// find two solutions
+sol1 = (-b-sqrt(d))/(2*a)
+sol2 = (-b+sqrt(d))/(2*a)
+y = sol2 // Nuetral axis is found
+l_1 = y //in- the concrete below nuetral axis is not considered
+b_1 = 10 //in - width
+A_1 = l_1* b_1 //in2 - area of concrete
+y_1 = y/2 //in com of the concrete
+y_2 = 20-y //in com of the transformed steel
+I_1 = b_1*(l_1**3)/12.0 + A_1*((y_1-y)**2) //in^4 parallel axis theorm
+I_2 = A_s*((y_2)**2) //in^4 first part is neglected
+I_net = I_1 + I_2 //in^4 - the total moment of inertia
+c_c= y //in The maximum distance in concrete
+stress_concrete = M*12*c_c/I_net //psi - The maximum stress in concrete
+c_s= 20- y
+stress_steel =n*M*12*c_s/I_net //psi - The maximum stress in concrete
+printf("\n The maximum stress in concrete %0.2f psi",stress_concrete) //
+printf("\n The stress in steel %0.2f psi",stress_steel)
+printf("\n answer varies due to rounding off errors") \ No newline at end of file