diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3773/CH7 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3773/CH7')
-rw-r--r-- | 3773/CH7/EX7.1/Ex7_1.sce | 20 | ||||
-rw-r--r-- | 3773/CH7/EX7.2/Ex7_2.sce | 15 | ||||
-rw-r--r-- | 3773/CH7/EX7.3/Ex7_3.sce | 21 | ||||
-rw-r--r-- | 3773/CH7/EX7.4/Ex7_4.sce | 37 | ||||
-rw-r--r-- | 3773/CH7/EX7.5/Ex7_5.sce | 13 | ||||
-rw-r--r-- | 3773/CH7/EX7.6/Ex7_6.sce | 16 | ||||
-rw-r--r-- | 3773/CH7/EX7.7/Ex7_7.sce | 13 | ||||
-rw-r--r-- | 3773/CH7/EX7.8/Ex7_8.sce | 27 |
8 files changed, 162 insertions, 0 deletions
diff --git a/3773/CH7/EX7.1/Ex7_1.sce b/3773/CH7/EX7.1/Ex7_1.sce new file mode 100644 index 000000000..a125a537e --- /dev/null +++ b/3773/CH7/EX7.1/Ex7_1.sce @@ -0,0 +1,20 @@ +//Chapter 7: Loop, Slot and Horn Antennas +//Example 7-8.1 +clc; + +//Variable Initialization +C_lambda = 0.1*%pi //Circumference (lambda) +R_m = 1.6 //Mutual resistance of two loops (ohm) +theta1 = 90*%pi/180 //Angle of radiation (radians) +theta2 = 2*%pi/10 //Angle of radiation (radians) + +//Calculation +Rr = 197*(C_lambda)**4 //Self resistance of loop (ohm) +D1 = (1.5)*(sin(theta1))**2 //Directivity of loop alone (unitless) +D1_db = 10*log10(D1) //Directivity of loop alone (dBi) +D2 = 1.5*(2*sqrt(Rr/(Rr-R_m))*sin(theta2))**2 //Directivity of loop with ground plane (unitless) +D2_db = 10*log10(D2) //Directivity of loop with ground plane (dBi) + +//Result +mprintf("The directivity of loop alone is %.2f or %.2f dBi",D1,D1_db) +mprintf("\nThe directivity of loop with ground plane is %.2f or %.0f dBi",D2,D2_db) diff --git a/3773/CH7/EX7.2/Ex7_2.sce b/3773/CH7/EX7.2/Ex7_2.sce new file mode 100644 index 000000000..053f02a72 --- /dev/null +++ b/3773/CH7/EX7.2/Ex7_2.sce @@ -0,0 +1,15 @@ +//Chapter 7: Loop, Slot and Horn Antennas +//Example 7-8.2 +clc; + +//Variable Initialization +Rr = 197.0 //Self resistance of loop (ohm) +Rm = 157.0 //Mutual resistance of two loops (ohm) +theta = 2*%pi/10 //Angle of radiation (radians) + +//Calculation +D = 1.5*(2*sqrt(Rr/(Rr-Rm))*sin(theta))**2 //Directivity (unitless) +D_db = 10*log10(D) //Directivity (dBi) + +//Result +mprintf("The directivity is %.1f or %.1f dBi",D,D_db) diff --git a/3773/CH7/EX7.3/Ex7_3.sce b/3773/CH7/EX7.3/Ex7_3.sce new file mode 100644 index 000000000..760550a2e --- /dev/null +++ b/3773/CH7/EX7.3/Ex7_3.sce @@ -0,0 +1,21 @@ +//Chapter 7: Loop, Slot and Horn Antennas +//Example 7-11.1 +clc; + +//Variable Initialization +c =%pi //Circumference (m) +f1 = 1 //Frequency (MHz) +f2 = 10 //Frequency (MHz) +d = 10e-3 //Diameter of copper wire (m) + +//Calculation +RL_Rr1 = 3430/((c**3)*(f1**3.5)*d) +RL_Rr2 = 3430/((c**3)*(f2**3.5)*d) //Ratio of Loss resistance and radiation resistance (unitless) +k1 = 1/(1+RL_Rr1) //Radiation efficiency (unitless) +k_db1 = 10*log10(k1) //Radiation efficiency (in dB) +k2 = 1/(1+RL_Rr2) //Radiation efficiency (unitless) +k_db2 = 10*log10(k2) //Radiation efficiency (in dB) + +//Result +mprintf("The radiation efficiency for 1 MHz is %.1ef or %.1f dB",k1, k_db1) +mprintf("\nThe radiation efficiency for 10 MHz is %.2f or %.1f dB",k2, k_db2) diff --git a/3773/CH7/EX7.4/Ex7_4.sce b/3773/CH7/EX7.4/Ex7_4.sce new file mode 100644 index 000000000..ce861f911 --- /dev/null +++ b/3773/CH7/EX7.4/Ex7_4.sce @@ -0,0 +1,37 @@ +//Chapter 7: Loop, Slot and Horn Antennas +//Example 7-11.2 +clc; + +//Variable Initialization +n = 10 //Number of turns (unitless) +dia = 1e-3 //Diameter of copper wire (m) +dia_rod = 1e-2 //Diameter of ferrite rod (m) +len_rod = 10e-2 //Length of ferrite rod (m) +mu_r = 250 - 2.5*%i //Relative permeability (unitless) +mu_er = 50 //Effective relative permeability (unitless) +f = 1e6 //Frequency (Hz) +c = 3e8 //Speed of light (m/s) +mu_0 = %pi*4e-7 //Absolute permeability (H/m) + +//Calculations +wave_lt = c/f //Wavelength (m) +radius = dia_rod/2 +C_l = (2*%pi*radius)/(wave_lt) //Circumference of loop (m) +Rr = 197*(mu_er**2)*(n**2)*(C_l**4) //Radiation resistance (ohm) +Rf = 2*%pi*f*mu_er*(imag(mu_r)/real(mu_r))*mu_0*(n**2)*(%pi*radius**2)/len_rod //Loss resistance(ohm) +conduc = 1/((7e-5**2)*f*%pi*mu_er) //Conductivity (S/m) +delta = 1/(sqrt(f*%pi*mu_er*conduc)) //Depth of penetration(m) + +RL = n*(C_l/dia)*sqrt((f*mu_0)/(%pi*conduc)) //Ohmic resistance (ohm) +k = Rr/(RL+abs(Rf)) //Radiation efficiency (unitless) + +L = mu_er*(n**2)*(radius**2)*mu_0/len_rod //Inductance (H) +Q = 2*%pi*f*L/(abs(Rf) + Rr + RL) //Ratio of energy stored to energy lost per cycle (unitless) + +fHP = f/Q //Bandwidth at half power (Hz) + + +//Results +mprintf("The radiation efficiency is %.2e",k) +mprintf("\nThe value of Q is %.3f",Q) +mprintf("\nThe half-power bandwidth is %d Hz",fHP) diff --git a/3773/CH7/EX7.5/Ex7_5.sce b/3773/CH7/EX7.5/Ex7_5.sce new file mode 100644 index 000000000..83185c004 --- /dev/null +++ b/3773/CH7/EX7.5/Ex7_5.sce @@ -0,0 +1,13 @@ +//Chapter 7: Loop, Slot and Horn Antennas +//Example 7-17.1 +clc; + +//Variable Initialization +Z0 = 376.7 //Intrinsic impedance of free space (ohm) +Zd = 73 + 42.5*%i //Impedance of infinitely small thin lambda/2 antenna (ohm) + +//Calculation +Z1 = (Z0**2)/(4*Zd) //Terminal impedance of the lambda/2 slot antenna (ohm) + +//Result +mprintf("The terminal impedance of the thin lambda/2 slot antenna is %.0f%dj ohm",real(Z1),imag(Z1)) diff --git a/3773/CH7/EX7.6/Ex7_6.sce b/3773/CH7/EX7.6/Ex7_6.sce new file mode 100644 index 000000000..a284e389f --- /dev/null +++ b/3773/CH7/EX7.6/Ex7_6.sce @@ -0,0 +1,16 @@ +//Chapter 7: Loop, Slot and Horn Antennas +//Example 7-17.2 +clc; + +//Variable Initialization +Zd = 67 //Terminal impedance of cylindrical antenna (ohm) +Z0 = 376.7 //Intrinsic impedance of free space (ohm) +L = 0.475 //Length of complementary slot (lambda) + +//Calculation +Z1 = Z0**2/(4*Zd) //Terminal resistance of complementary slot (ohm) +w = 2*L/100 //Width of complementary slot (lambda) + +//Result +mprintf("The terminal resistance of the complementary slot is %d ohm",Z1) +mprintf("\nThe width of the complementary slot is %.4f lambda", w) diff --git a/3773/CH7/EX7.7/Ex7_7.sce b/3773/CH7/EX7.7/Ex7_7.sce new file mode 100644 index 000000000..5baf1f77b --- /dev/null +++ b/3773/CH7/EX7.7/Ex7_7.sce @@ -0,0 +1,13 @@ +//Chapter 7: Loop, Slot and Horn Antennas +//Example 7-17.3 +clc; + +//Variable Initialization +Zd = 710 //Terminal impedance of cylindrical dipole +Z0 = 376.7 //Intrinsic impedance of free space (ohm) + +//Calculation +Z1 = Z0**2/(4*Zd) //Terminal resistance of complementary slot (ohm) + +//Result +mprintf("The terminal resistance of the complementary slot is %.0f ohm",Z1) diff --git a/3773/CH7/EX7.8/Ex7_8.sce b/3773/CH7/EX7.8/Ex7_8.sce new file mode 100644 index 000000000..081b1deab --- /dev/null +++ b/3773/CH7/EX7.8/Ex7_8.sce @@ -0,0 +1,27 @@ +//Chapter 7: Loop, Slot and Horn Antennas +//Example 7-20.1 +clc; + +//Variable Initialization +delta_e = 0.2 //Path length difference in E-plane (lambda) +delta_h = 0.375 //Path length difference in H-plane (lambda) +a_e = 10 //E-plane aperture (lambda) + + +//Calculation +L = a_e**2/(8*delta_e) //Horn length(lambda) +theta_e = 2*atan(a_e,2*L)*180/%pi //Flare angle in E-plane (degrees) +theta_h = 2*acos(L/(L+delta_h))*180/%pi //Flare angle in the H-plane (degrees) +a_h = 2*L*tan(theta_h/2*%pi/180) //H-plane aperture (lambda) + +hpbw_e = 56/a_e //Half power beamwidth in E-plane (degrees) +hpbw_h = 67/a_h //Half power beamwidth in H-plane (degrees) + +D = 10*log10(7.5*a_e*a_h) //Directivity (dB) + +//Result +mprintf("The length of the pyramidal horn is %.1f lambda", L) +mprintf("\nThe flare angles in E-plane and H-plane are %.1f and %.2f degrees",theta_e,theta_h) +mprintf("\nThe H-plane aperture is %.1f lambda",a_h) +mprintf("\nThe Half power beamwidths in E-plane and H-plane are %d and %.1f degrees", hpbw_e,hpbw_h) +mprintf("\nThe directivity is %.1f dBi",D) |