summaryrefslogtreecommitdiff
path: root/3765/CH1/EX1.7
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3765/CH1/EX1.7
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '3765/CH1/EX1.7')
-rw-r--r--3765/CH1/EX1.7/Ex1_7.sce45
1 files changed, 45 insertions, 0 deletions
diff --git a/3765/CH1/EX1.7/Ex1_7.sce b/3765/CH1/EX1.7/Ex1_7.sce
new file mode 100644
index 000000000..db4a9b507
--- /dev/null
+++ b/3765/CH1/EX1.7/Ex1_7.sce
@@ -0,0 +1,45 @@
+clc
+// Example 1.7.py
+// A flat plate with a chord length of 3 ft and an infinite span(perpendicular to
+// the page in fig 1.5) is immersed in a Mach 2 flow at standard sea level
+// conditions at an angle of attack of 10 degrees. The pressure distribution
+// over the plate is as follows: upper surface, p2=constant=1132 lb/ft^2 lower
+// surface, p3=constant=3568 lb/ft^2. The local shear stress is given by tau_w =
+// 13/xeta^0.2, where tau_w is in pounds per square feet and xeta is the distance
+// in feet along the plate from the leading edge. Assume the distribution of
+// tau_w over the top and bottom surfaces is the same. Both the pressure and
+// shear disributions are sketched qualitatively in fig. 1.5. Calculate the lift
+// and drag per unit span on the plate.
+
+//
+
+// Variable declaration
+M1 = 2.0 // mach number freestream
+p1 = 2116.0 // pressure at sea level (in lb/ft^2)
+l = 3.0 // chord of plate (in ft)
+alpha = 10.0 // angle of attack in degrees
+
+p2 = 1132.0 // pressure on the upper surface (in lb/ft^2)
+p3 = 3568.0 // pressure on the lower surface (in lb/ft^2)
+
+// Calculations
+
+// assuming unit span
+
+pds = -p2*l + p3*l // integral p.ds from leading edge to trailing edge (in lb/ft)
+
+L = pds*cos(alpha*%pi/180.0) // lift per unit span (in lb/ft), alpha is converted to radians
+
+Dw = pds*sin(alpha*%pi/180.0) // pressure drag per unit span (in lb/ft), alpha is converted to radians
+
+Df = 16.25 * (l** 4.0/5.0) // skin friction drag per unit span (in lb/ft)
+ // from integral tau.d(xeta)
+
+Df = 2 * Df * cos(alpha*%pi/180.0) // since skin friction acts on both the side
+
+D = Df + Dw // total drag per unit span (in lb/ft)
+// Result
+printf("\n Total Lift per unit span = %.0f lb", L)
+
+printf("\n Total Drag per unit span = %.0f lb", D)
+