diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3765/CH1 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3765/CH1')
-rw-r--r-- | 3765/CH1/EX1.1/Ex1_1.sce | 26 | ||||
-rw-r--r-- | 3765/CH1/EX1.2/Ex1_2.sce | 23 | ||||
-rw-r--r-- | 3765/CH1/EX1.3/Ex1_3.sce | 17 | ||||
-rw-r--r-- | 3765/CH1/EX1.4/Ex1_4.sce | 24 | ||||
-rw-r--r-- | 3765/CH1/EX1.5/Ex1_5.sce | 32 | ||||
-rw-r--r-- | 3765/CH1/EX1.6/Ex1_6.sce | 32 | ||||
-rw-r--r-- | 3765/CH1/EX1.7/Ex1_7.sce | 45 |
7 files changed, 199 insertions, 0 deletions
diff --git a/3765/CH1/EX1.1/Ex1_1.sce b/3765/CH1/EX1.1/Ex1_1.sce new file mode 100644 index 000000000..f67b55304 --- /dev/null +++ b/3765/CH1/EX1.1/Ex1_1.sce @@ -0,0 +1,26 @@ +clc +// Example 1.1.py +// Consider the low-speed flow of air over an airplane wing at standard +// sea level conditions the free-stream velocity far ahead of the wing +// is 100 mi/h. The flow accelerates over the wing, reaching a maximum +// velocity of 150 mi/h at some point on the wing. What is the percentage +// pressure change between this point and the free stream// + + +// Variable declaration +rho = 0.002377 // density at sea level (slug/ft^3) +p_1 = 2116.0 // pressure at sea level (lb/ft^2) +v_1 = 100.0 // velocity far ahead of the wing (mi/h) +v_2 = 150.0 // velocity at some point on the wing (mi/h) + +// Calculations + +u_1 = v_1 * 88.0/60.0 // converting v_1 in ft/s +u_2 = v_2 * 88.0/60.0 // converting v_2 in ft/s + +delP = 0.5*rho*(u_2*u_2 - u_1*u_1) // p_1 - p_2 from Bernoulli's equation +fracP = delP/p_1 // fractional change in pressure with respect to freestream + +// Result +printf("\n Fractional change in pressure is %.3f or %.1f percent", fracP, fracP*100) + diff --git a/3765/CH1/EX1.2/Ex1_2.sce b/3765/CH1/EX1.2/Ex1_2.sce new file mode 100644 index 000000000..0f158e3f5 --- /dev/null +++ b/3765/CH1/EX1.2/Ex1_2.sce @@ -0,0 +1,23 @@ +clc +// Example 1.2.py +// A pressure vessel that has a volume of 10 m^3 is used to store high +// pressure air for operating a supersonic wind tunnel. If the air pressure +// and temperature inside the vessel are 20 atm and 300 K, respectively, +// what is the mass of air stored in the vessel// + +// Variable declaration +V = 10 // volume of vessel (m^3) +p = 20.0 // pressure (atm) +T = 300 // temperature (K) + +R = 287.0 // gas constant (J/Kg/K) + +// Calculations +p = p * 101000.0 // units conversion to N/m^2 +rho = p/R/T // from ideal gas equation of state +m = V * rho // total mass volume * density + + +// Result +printf("\n Total mass stored is %.1f Kg", m) + diff --git a/3765/CH1/EX1.3/Ex1_3.sce b/3765/CH1/EX1.3/Ex1_3.sce new file mode 100644 index 000000000..d1ce816a7 --- /dev/null +++ b/3765/CH1/EX1.3/Ex1_3.sce @@ -0,0 +1,17 @@ +clc +// Example 1.3.py +// Calculate the isothermal compressibility for air at a pressure of 0.5 atm. + +// Variable declaration +p = 0.5 // pressure (atm) +p_si = 0.5*101325 // pressure (N/m^2) +p_eng = 0.5*2116 // pressure (lb/ft^2) + +// Calculations +tau_atm = 1/p // isothermal compressibility in atm^-1 +tau_si = 1/p_si // isothermal compressibility in m^2/N +tau_eng = 1/p_eng // isothermal compressibility in ft^2/lb + +// Result +printf("\n Isothermal compressibility for air at %.1f atm is %.2f atm^-1 or %.2e m^2/N or %.2e ft^2/lb", p, tau_atm, tau_si, tau_eng) + diff --git a/3765/CH1/EX1.4/Ex1_4.sce b/3765/CH1/EX1.4/Ex1_4.sce new file mode 100644 index 000000000..775b45071 --- /dev/null +++ b/3765/CH1/EX1.4/Ex1_4.sce @@ -0,0 +1,24 @@ +clc +// Example 1.4.py +// For thre pressure vessel in Example 1.2, calculate the total internal +// energy of the gas stored in the vessel. + +// Variable declaration from example 1.2 +V = 10 // volume of vessel (m^3) +p = 20.0 // pressure (atm) +T = 300 // temperature (Kelvin) + +R = 287.0 // gas constant (J/Kg/K) +gamma1 = 1.4 // ratio of specific heats for air + +// Calculations +cv = R / (gamma1-1) // specific heat capacity at constant volume(J/Kg K) +e = cv * T // internal energy per Kg (J/Kg) +p = p * 101000.0 // units conversion to N/m^2 +rho = p/R/T // from ideal gas equation of state (Kg/m^3) +m = V * rho // total mass = volume * density (Kg) +E = m*e // total energy in J + +// Result +printf("\n Total internal energy is %.2e J", E) + diff --git a/3765/CH1/EX1.5/Ex1_5.sce b/3765/CH1/EX1.5/Ex1_5.sce new file mode 100644 index 000000000..e6906bcad --- /dev/null +++ b/3765/CH1/EX1.5/Ex1_5.sce @@ -0,0 +1,32 @@ +clc +// Example 1.5.py +// Consider the air in the pressure vessel in Example 1.2. Let us now heat +// the gas in the vessel. Enough heat is added to increase the temperature +// to 600 K. Calculate the change in entropy of the air inside the vessel. + +// Variable declaration from example 1.2 +V = 10 // volume of vessel (m^3) +p = 20.0 // pressure (atm) +T = 300.0 // initial temperature (K) +T2 = 600.0 // final temperature (Kelvin) +R = 287.0 // gas constant (J/Kg/K) +gamma1 = 1.4 // ratio of specific heats for air + + +// Calculations +p2_by_p = T2/T // p2/p, at constant volume p/T = constant + +cv = R / (gamma1-1) // specific heat capacity at constant volume (J/Kg K) +cp = cv + R // specific heat capacity at constant pressure (J/Kg K) + +p = p * 101000.0 // units conversion to N/m^2 +rho = p/R/T // from ideal gas equation of state (Kg/m^3) +m = V * rho // total mass = volume * density (Kg) + +// +del_s = cp*log(T2/T) - R*log(p2_by_p) // change in entropy per unit mass (J/ Kg K) +total_del_s = m*del_s // total change in entropy (J/K) + +// Result +printf("\n Total change in entropy is %.3e J/K", total_del_s) + diff --git a/3765/CH1/EX1.6/Ex1_6.sce b/3765/CH1/EX1.6/Ex1_6.sce new file mode 100644 index 000000000..de5edc931 --- /dev/null +++ b/3765/CH1/EX1.6/Ex1_6.sce @@ -0,0 +1,32 @@ +clc +// Example 1.6.py +// Consider the flow through a rocket engine nozzle. Assume that the gas flow +// through the nozzle in an isentropic expansion of a calorically perfect gas. +// In the combustion chamber, the gas which results from the combustion of the +// rocket fuel and oxidizer is at a pressure and temperature of 15 atm and +// 2500 K, respectively, the molecular weight and specific heat at constant +// pressure of the combustion gas are 12 and 4157 J/kg K, respectively. The gas +// expands to supersonic speed through the nozzle, with temperature of 1350 K at +// the nozzle exit. Calculate the pressure at the exit. + + +// Variable declaration +pc = 15.0 // pressure combustion chamber (atm) +Tc = 2500.0 // temperature combustion chamber (K) +mol_wt = 12.0 // molecular weight (gm) +cp = 4157.0 // specific heat at constant pressure (J/Kg/K) + +Tn = 1350.0 // temperature at nozzle exit (K) + +// Calculations +R = 8314.0/mol_wt // gas constant = R_prime/mo_wt, R_prime = 8314 J/K +cv = cp - R // specific heat at constant volume (J/Kg/K) +gamma1 = cp/cv // ratio of specific heat + +pn_by_pc = (Tn/Tc** gamma1/(gamma1-1)) // ratio of pressure for isentropic process** pn/pc + +pn = pc * pn_by_pc // pn = pc * pn/pc + +// Result +printf("\n Pressure at the exit is %.3f atm", pn) + diff --git a/3765/CH1/EX1.7/Ex1_7.sce b/3765/CH1/EX1.7/Ex1_7.sce new file mode 100644 index 000000000..db4a9b507 --- /dev/null +++ b/3765/CH1/EX1.7/Ex1_7.sce @@ -0,0 +1,45 @@ +clc +// Example 1.7.py +// A flat plate with a chord length of 3 ft and an infinite span(perpendicular to +// the page in fig 1.5) is immersed in a Mach 2 flow at standard sea level +// conditions at an angle of attack of 10 degrees. The pressure distribution +// over the plate is as follows: upper surface, p2=constant=1132 lb/ft^2 lower +// surface, p3=constant=3568 lb/ft^2. The local shear stress is given by tau_w = +// 13/xeta^0.2, where tau_w is in pounds per square feet and xeta is the distance +// in feet along the plate from the leading edge. Assume the distribution of +// tau_w over the top and bottom surfaces is the same. Both the pressure and +// shear disributions are sketched qualitatively in fig. 1.5. Calculate the lift +// and drag per unit span on the plate. + +// + +// Variable declaration +M1 = 2.0 // mach number freestream +p1 = 2116.0 // pressure at sea level (in lb/ft^2) +l = 3.0 // chord of plate (in ft) +alpha = 10.0 // angle of attack in degrees + +p2 = 1132.0 // pressure on the upper surface (in lb/ft^2) +p3 = 3568.0 // pressure on the lower surface (in lb/ft^2) + +// Calculations + +// assuming unit span + +pds = -p2*l + p3*l // integral p.ds from leading edge to trailing edge (in lb/ft) + +L = pds*cos(alpha*%pi/180.0) // lift per unit span (in lb/ft), alpha is converted to radians + +Dw = pds*sin(alpha*%pi/180.0) // pressure drag per unit span (in lb/ft), alpha is converted to radians + +Df = 16.25 * (l** 4.0/5.0) // skin friction drag per unit span (in lb/ft) + // from integral tau.d(xeta) + +Df = 2 * Df * cos(alpha*%pi/180.0) // since skin friction acts on both the side + +D = Df + Dw // total drag per unit span (in lb/ft) +// Result +printf("\n Total Lift per unit span = %.0f lb", L) + +printf("\n Total Drag per unit span = %.0f lb", D) + |