diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3760/CH6/EX6.37 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3760/CH6/EX6.37')
-rw-r--r-- | 3760/CH6/EX6.37/Ex6_37.sce | 31 |
1 files changed, 31 insertions, 0 deletions
diff --git a/3760/CH6/EX6.37/Ex6_37.sce b/3760/CH6/EX6.37/Ex6_37.sce new file mode 100644 index 000000000..a921d307f --- /dev/null +++ b/3760/CH6/EX6.37/Ex6_37.sce @@ -0,0 +1,31 @@ +clc;
+P=20000; // rated power of induction motor
+v=400; // rated voltage of motor
+f=50; // frequency
+m=3; // number of phases
+p=4; // number of poles
+r1=0.2; // stator resistance
+x=0.45; // stator/rotor leakage reactance
+xm=18; // magnetising reactance
+s=0.04; // slip
+pg=P/(1-s); // air gap power
+pr=s*pg; // rotor copper loss
+vp=v/sqrt(3); // per phase voltage
+ve=(vp*xm)/(x+xm); // Thevenin voltage
+re=(r1*xm)/(x+xm); // Thevenin resistance
+xe=(x*xm)/(x+xm); // Thevenin reactance
+// using Thevenin's theorrm and rotor copper loss expression we get a quadratic equation in r2 (rotor resistance) whose terms are
+t1=pr/s^2;
+t2=((2*pr*re)/s)-(m*ve^2);
+t3=pr*((xe+x)^2+re^2);
+t=[ t1 t2 t3];
+r2=roots(t);
+disp('case a');
+ws=(4*%pi*f)/p; // synchronous speed
+Tm=(m*ve^2)/(ws*2*(re+sqrt(re^2+(x+xe)^2)));
+printf('Maximum internal torque is %f Nm\n',Tm);
+Ti=(m*ve^2*r2(1))/(ws*((re+r2(1))^2+(x+xe)^2));
+printf('Initial starting torque is %f Nm\n',Ti);
+disp('case b');
+sm=r2(1)/(sqrt(re^2+(xe+x)^2));
+printf('Slip at maximum torque is %f ',sm);
|