From 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:27:19 +0530 Subject: initial commit / add all books --- 3760/CH6/EX6.37/Ex6_37.sce | 31 +++++++++++++++++++++++++++++++ 1 file changed, 31 insertions(+) create mode 100644 3760/CH6/EX6.37/Ex6_37.sce (limited to '3760/CH6/EX6.37') diff --git a/3760/CH6/EX6.37/Ex6_37.sce b/3760/CH6/EX6.37/Ex6_37.sce new file mode 100644 index 000000000..a921d307f --- /dev/null +++ b/3760/CH6/EX6.37/Ex6_37.sce @@ -0,0 +1,31 @@ +clc; +P=20000; // rated power of induction motor +v=400; // rated voltage of motor +f=50; // frequency +m=3; // number of phases +p=4; // number of poles +r1=0.2; // stator resistance +x=0.45; // stator/rotor leakage reactance +xm=18; // magnetising reactance +s=0.04; // slip +pg=P/(1-s); // air gap power +pr=s*pg; // rotor copper loss +vp=v/sqrt(3); // per phase voltage +ve=(vp*xm)/(x+xm); // Thevenin voltage +re=(r1*xm)/(x+xm); // Thevenin resistance +xe=(x*xm)/(x+xm); // Thevenin reactance +// using Thevenin's theorrm and rotor copper loss expression we get a quadratic equation in r2 (rotor resistance) whose terms are +t1=pr/s^2; +t2=((2*pr*re)/s)-(m*ve^2); +t3=pr*((xe+x)^2+re^2); +t=[ t1 t2 t3]; +r2=roots(t); +disp('case a'); +ws=(4*%pi*f)/p; // synchronous speed +Tm=(m*ve^2)/(ws*2*(re+sqrt(re^2+(x+xe)^2))); +printf('Maximum internal torque is %f Nm\n',Tm); +Ti=(m*ve^2*r2(1))/(ws*((re+r2(1))^2+(x+xe)^2)); +printf('Initial starting torque is %f Nm\n',Ti); +disp('case b'); +sm=r2(1)/(sqrt(re^2+(xe+x)^2)); +printf('Slip at maximum torque is %f ',sm); -- cgit