diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3753/CH3 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3753/CH3')
-rw-r--r-- | 3753/CH3/EX3.1/Ex3_1.sce | 18 | ||||
-rw-r--r-- | 3753/CH3/EX3.10/Ex3_10.sce | 20 | ||||
-rw-r--r-- | 3753/CH3/EX3.11/Ex3_11.sce | 14 | ||||
-rw-r--r-- | 3753/CH3/EX3.2/Ex3_2.sce | 30 | ||||
-rw-r--r-- | 3753/CH3/EX3.3/Ex3_3.sce | 14 | ||||
-rw-r--r-- | 3753/CH3/EX3.4/Ex3_4.sce | 18 | ||||
-rw-r--r-- | 3753/CH3/EX3.6/Ex3_6.sce | 15 | ||||
-rw-r--r-- | 3753/CH3/EX3.7/Ex3_7.sce | 14 | ||||
-rw-r--r-- | 3753/CH3/EX3.8/Ex3_8.sce | 22 | ||||
-rw-r--r-- | 3753/CH3/EX3.9/Ex3_9.sce | 17 |
10 files changed, 182 insertions, 0 deletions
diff --git a/3753/CH3/EX3.1/Ex3_1.sce b/3753/CH3/EX3.1/Ex3_1.sce new file mode 100644 index 000000000..d9c0b21a9 --- /dev/null +++ b/3753/CH3/EX3.1/Ex3_1.sce @@ -0,0 +1,18 @@ +//Example number 3.1, Page number 3.32 + +// importing modules +clc;clear;close + +// Variable declaration +V=2265 // m^3 +A=92.9 // Coefficient +x=2 // The absorption become 2*A of open window + +// Calculation +T=(0.16*V)/A // Sabine's formula +T2=(0.16*V)/(x*A) // in s + +// Result +printf("Reverbration time = %0.1f s",T) +printf("\nFinal Reverbration time = %0.2f s",T2) +printf("\nThus the reverbration time is reduced to one-half of its initial value") diff --git a/3753/CH3/EX3.10/Ex3_10.sce b/3753/CH3/EX3.10/Ex3_10.sce new file mode 100644 index 000000000..99e2fda8a --- /dev/null +++ b/3753/CH3/EX3.10/Ex3_10.sce @@ -0,0 +1,20 @@ +//Example number 3.10, Page number 3.35 + + +clc;clear;close + +// Variable declaration +H0=6.5*10**4 // (ampere/metre) +T=4.2 // K +Tc=7.18 // K +r=0.5*10**-3 + +// Calculations +Hc=H0*(1-(T/Tc)**2) // unitless +Ic=(2*%pi*r)*Hc // A +A=%pi*r**2 // m^2 +Jc=Ic/A // Critical current density + +// Result +printf("Hc = %0.4e",Hc) +printf("\nCritical current density,Jc = %0.2e ampere/metre^2",Jc) diff --git a/3753/CH3/EX3.11/Ex3_11.sce b/3753/CH3/EX3.11/Ex3_11.sce new file mode 100644 index 000000000..eb34a609c --- /dev/null +++ b/3753/CH3/EX3.11/Ex3_11.sce @@ -0,0 +1,14 @@ +//Example number 3.11, Page number 6.36 + +clc;clear;close + +// Variable declaration +Tc1=4.185 // K +M1=199.5// unitless +M2=203.4// unitless + +// Calculations +Tc2=Tc1*(M1/M2)**(1/2) // in K + +// Result +printf("New critical temperature for mercury = %0.3f K",Tc2) diff --git a/3753/CH3/EX3.2/Ex3_2.sce b/3753/CH3/EX3.2/Ex3_2.sce new file mode 100644 index 000000000..056b73d6c --- /dev/null +++ b/3753/CH3/EX3.2/Ex3_2.sce @@ -0,0 +1,30 @@ +//Example number 3.2, Page number 3.32 + + +clc;clear;close + +// Variable declaration +a1=450 // Area of plastered wall +a2=360 // Area of wooden floor and wooden doors +a3=24 // Area of Glass +a4=600 // Area of seats +a5=500 // Area of audience when they are in seats +c1=0.03 // Coefficient of absorption of plastered wall +c2=0.06 // Coefficient of absorption of wooden floor and wooden doors +c3=0.025 // Coefficient of absorption of Glass +c4=0.3 // Coefficient of absorption of seats +c5=0.43 // Coefficient of absorption of audience when they are in seats +l=12 // in m +b=30 // in m +h=6 // in m + +// Calculation +V=l*b*h // volume of the hall +A=(a1*c1)+(a2*c2)+(a3*c3)+(a4*c4)+(a5*c5) // Total absorption +T=(0.16*V)/A // Reverbration time + +// Result +printf("Volume of the hall = %.f m^3",V) +printf("\nTotal absorption = %0.1f m^2",A) +printf("\nReverbration time = %0.1f second",T) +// Answer given for the Reverbration time in the text book is wrong diff --git a/3753/CH3/EX3.3/Ex3_3.sce b/3753/CH3/EX3.3/Ex3_3.sce new file mode 100644 index 000000000..dbb482907 --- /dev/null +++ b/3753/CH3/EX3.3/Ex3_3.sce @@ -0,0 +1,14 @@ +//Example number 3.3, Page number 3.33 + + +clc;clear;close + +// Variable declaration +T=1.2 // in s +V=7500 // in m^3 + +// Calculation +A=(0.16*V)/T // in m^2 + +// Result +printf("Total absorpttion = %.f m**2 of O.W.U.",A) diff --git a/3753/CH3/EX3.4/Ex3_4.sce b/3753/CH3/EX3.4/Ex3_4.sce new file mode 100644 index 000000000..d5c9d033c --- /dev/null +++ b/3753/CH3/EX3.4/Ex3_4.sce @@ -0,0 +1,18 @@ +//Example number 3.4, Page number 3.34 + +clc;clear;close + +// Variable declaration +V=12*10**4 // in m^3 +A=13200 // in m^2 +x=2 // The absorption become 2*A of open window + +// Calculation +T1=(0.16*V)/A // Sabine's formula +T2=(0.16*V)/(x*A) // in s +Td=T1-T2 // in s + +// Result +printf("T1 = %0.2f second",T1) +printf("\nT2 = %0.2f second",T2) +printf("\nChange in Reverbration time = %0.3f second",Td) diff --git a/3753/CH3/EX3.6/Ex3_6.sce b/3753/CH3/EX3.6/Ex3_6.sce new file mode 100644 index 000000000..3b8d82ce9 --- /dev/null +++ b/3753/CH3/EX3.6/Ex3_6.sce @@ -0,0 +1,15 @@ +//Example number 3.6, Page number 3.34 + + +clc;clear;close + +// Variable declaration +H0=64*10**3; // initial field(ampere/m) +T=5; // temperature(K) +Tc=7.26; // transition temperature(K) + +// Calculation +H=H0*(1-(T/Tc)**2); // critical field(ampere/m) + +// Result +printf("critical field is : %0.3e ampere/m",H) diff --git a/3753/CH3/EX3.7/Ex3_7.sce b/3753/CH3/EX3.7/Ex3_7.sce new file mode 100644 index 000000000..4482d379e --- /dev/null +++ b/3753/CH3/EX3.7/Ex3_7.sce @@ -0,0 +1,14 @@ +//Example number 3.7, Page number 3.34 + +clc;clear;close + +// Variable declaration +e=1.6*10**-19 // eV +V=1*10 // in m^3 +h=6.625*10**-34 + +// Calculations +v=(2*e*V**-3)/h // Hz + +// Result +printf("Frequency of generated microwaves = %.2e Hz",v) diff --git a/3753/CH3/EX3.8/Ex3_8.sce b/3753/CH3/EX3.8/Ex3_8.sce new file mode 100644 index 000000000..2823b104a --- /dev/null +++ b/3753/CH3/EX3.8/Ex3_8.sce @@ -0,0 +1,22 @@ +//Example number 3.8, Page number 3.34 + +clc;clear;close + +// Variable declaration +d=7300 // density in (kg/m**3) +N=6.02*10**26 // Avagadro Number +A=118.7 // Atomic Weight +E=1.9 // Effective mass +e=1.6*10**-19 + +// Calculations +n=(d*N)/A // no. of electrons +m=E*9.1*10**-31 // in kg +x=4*%pi*10**-7*n*e**2 // in kg/m^2 +lamda_L=sqrt(m/x) // in m + +// Result +printf("Number of electrons per unit volume = %0.1e per m^3",n) +printf("\nEffective mass of electron ''m*'' = %0.2e kg",m) +printf("\nPenetration depth = %0.5f Angstroms",(lamda_L*10**8)) +// The answer given in the text book is wrong diff --git a/3753/CH3/EX3.9/Ex3_9.sce b/3753/CH3/EX3.9/Ex3_9.sce new file mode 100644 index 000000000..42e6f5261 --- /dev/null +++ b/3753/CH3/EX3.9/Ex3_9.sce @@ -0,0 +1,17 @@ +//Example number 3.9, Page number 3.35 + + +clc;clear;close + +// Variable declaration +lamda_L1=39.6*10**-9 // in m +lamda_L2=173*10**-9 // in m +T1=7.1 // in s +T2=3 // in s + +// Calculations +x=(lamda_L1/lamda_L2)**2 // in kg/m^2 +Tc4=(T1**4)-((T2**4)*x)/(1-x) // in K +Tc=(Tc4)**(1/4) // in K +printf("Tc = %0.4f K",Tc) +printf("\nlamda0 = %.f nm",round((sqrt(1-(T2/Tc)**4)*lamda_L1)*10**9)) |