diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3751/CH6/EX6.10/Ex6_10.sce | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3751/CH6/EX6.10/Ex6_10.sce')
-rw-r--r-- | 3751/CH6/EX6.10/Ex6_10.sce | 44 |
1 files changed, 44 insertions, 0 deletions
diff --git a/3751/CH6/EX6.10/Ex6_10.sce b/3751/CH6/EX6.10/Ex6_10.sce new file mode 100644 index 000000000..958dbe84a --- /dev/null +++ b/3751/CH6/EX6.10/Ex6_10.sce @@ -0,0 +1,44 @@ +//Fluid System By Shiv Kumar
+//Chapter 6 - Kaplan and Propeller Turbines
+//Example 6.10
+//To Determine (i)Hydraulic Efficiency of turbine (ii)Discharge through the turbine (iii)Power Developed by the Runner
+
+clc
+clear
+
+//Given:
+ D=4.5; // Runner Diameter, m
+ N=48; // Speed, rpm
+ Alpha_i=145; //Guide Vane Angle at Inlet, Degrees
+ Beta_o=25; //Runner blade Angle at Outlet
+ A=30; //Flow Area, m^2
+ //As runner blade angle at inlet is radial
+ Beta_i=90 //Degrees
+
+//Data Required:
+ rho=1000; //Density of Water, Kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+//Calculations
+ u=%pi*D*N/60; //Velocity of Runner,m/s
+ ui=u;
+ uo=u;
+ Vwi=ui;
+ Vfi=ui*tand(180-Alpha_i); //m/s
+ Vfo=Vfi;
+ Vrwo=Vfo/tand(Beta_o); //m/s
+ Vwo=Vrwo-uo; //The answer vary because wrong Value of uo is used to calculate Vwo in the textbook
+ Vo=sqrt(Vfo^2+Vwo^2); //m/s //The answer vary because wrong Value of Vwo is used to calculate Vo in the textbook
+
+//(i)Hydraulic Efficiency, eta_H
+ H= (Vwi-Vwo)*u/g+Vo^2/(2*g); // Head, m //The answer vary because wrong Value of Vo and Vwo is used to calculate H in the textbook
+ eta_H=(Vwi*ui-Vwo*uo)*100/(g*H); //Percent(%)
+
+//(ii) Discharge through the turbine, Q
+ Q=A*Vfi; //m^3/s
+//(iii)Power Developed by the Runner, P
+ P=rho*Q*(Vwi-Vwo)*u/10^6; //MW
+//Results
+ printf("(i)Hydraulic Efficiency, eta_H=%.2f Percent\n",eta_H) //The answer given in the textbook is wrong
+ printf("(ii) Discharge through the turbine, Q =%.1fm^3/s\n",Q) //The answer vary due to round off error
+ printf("(iii)Power Developed by the Runner, P =%.3fMW\n",P) //The answer given in the textbook is wrong
|