diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3681/CH11/EX11.13/Ex11_13.sce | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3681/CH11/EX11.13/Ex11_13.sce')
-rw-r--r-- | 3681/CH11/EX11.13/Ex11_13.sce | 41 |
1 files changed, 41 insertions, 0 deletions
diff --git a/3681/CH11/EX11.13/Ex11_13.sce b/3681/CH11/EX11.13/Ex11_13.sce new file mode 100644 index 000000000..06f8f19c9 --- /dev/null +++ b/3681/CH11/EX11.13/Ex11_13.sce @@ -0,0 +1,41 @@ +// Calculating the stator bore and stator core length and turns per phase and armature mmf per pole and mmf for air gap and field current
+clc;
+disp('Example 11.13, Page No. = 11.37')
+// Given Data
+// 3 phase synchronous generator
+Q = 1250;// kVA rating
+E = 3300;// Voltage rating (in kV)
+f = 50;// Frequency (in Hz)
+rpm = 300;// R.p.m.
+Bav = 0.58;// Specific magnetic loading (in Wb per meter square)
+ac = 33000;// Specific electric loading (in Ampere per meter)
+lg = 5.5;// Gap length (in mm)
+T_field = 60;// Field turns per pole
+SCR = 1.2;// Short circuit ratio
+Kw = 0.955;// Winding factor
+Va = 30;// Peripheral speed (in meter per second)
+// Calculation of the stator bore and stator core length and turns per phase and armature mmf per pole and mmf for air gap and field current
+ns = rpm/60;// Synchronous speed (in r.p.s.)
+p = 2*f/ns;// Number of poles
+Co = 11*Kw*Bav*ac*10^(-3);// Output co-efficient
+D2L = Q/(Co*ns);// Product of D*D*L
+D = Va/(%pi*ns);// Stator bore (in meter)
+disp(D,'Stator bore (meter) =');
+L = D2L/D^(2);// Stator core length (in meter)
+disp(L,'Stator core length (meter)=');
+A_pole = %pi*D*L/p;// Area per pole
+F_pole = Bav*A_pole;// Flux per pole
+Eph = E/3^(1/2);// Voltage per phase
+Tph = int(Eph/(4.44*f*F_pole*Kw));// Turns per phase
+disp(Tph,'Turns per phase =');
+Iph = Q*1000/(3^(1/2)*E);// Current per phase
+ATa = 2.7*Iph*Tph*Kw/p;// Armature mmf per pole (in A)
+disp(ATa,'Armature mmf per pole (Ampere)=');
+A_effective = 0.6*A_pole;// Effective gap area is 0.6 times the actual area
+KgBg = F_pole/A_effective;// Effective gap density (in Wb per meter square)
+mmf_airgap = 800000*KgBg*lg*10^(-3);// Mmf for air gap (in A)
+disp(mmf_airgap,'Mmf for air gap (Ampere)=');
+AT_f0 = SCR*mmf_airgap;// No load field mmf per pole
+If = AT_f0 /T_field;// Field current at no load
+disp(If,'Field current at no load (Ampere)=');
+//in book answers are 1.9 meter, 0.345 meter, 150, 4240 ampere, 4250 ampere and 85 ampere respectively. The answers vary due to round off error
|