From 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:27:19 +0530 Subject: initial commit / add all books --- 3681/CH11/EX11.13/Ex11_13.sce | 41 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 41 insertions(+) create mode 100644 3681/CH11/EX11.13/Ex11_13.sce (limited to '3681/CH11/EX11.13/Ex11_13.sce') diff --git a/3681/CH11/EX11.13/Ex11_13.sce b/3681/CH11/EX11.13/Ex11_13.sce new file mode 100644 index 000000000..06f8f19c9 --- /dev/null +++ b/3681/CH11/EX11.13/Ex11_13.sce @@ -0,0 +1,41 @@ +// Calculating the stator bore and stator core length and turns per phase and armature mmf per pole and mmf for air gap and field current +clc; +disp('Example 11.13, Page No. = 11.37') +// Given Data +// 3 phase synchronous generator +Q = 1250;// kVA rating +E = 3300;// Voltage rating (in kV) +f = 50;// Frequency (in Hz) +rpm = 300;// R.p.m. +Bav = 0.58;// Specific magnetic loading (in Wb per meter square) +ac = 33000;// Specific electric loading (in Ampere per meter) +lg = 5.5;// Gap length (in mm) +T_field = 60;// Field turns per pole +SCR = 1.2;// Short circuit ratio +Kw = 0.955;// Winding factor +Va = 30;// Peripheral speed (in meter per second) +// Calculation of the stator bore and stator core length and turns per phase and armature mmf per pole and mmf for air gap and field current +ns = rpm/60;// Synchronous speed (in r.p.s.) +p = 2*f/ns;// Number of poles +Co = 11*Kw*Bav*ac*10^(-3);// Output co-efficient +D2L = Q/(Co*ns);// Product of D*D*L +D = Va/(%pi*ns);// Stator bore (in meter) +disp(D,'Stator bore (meter) ='); +L = D2L/D^(2);// Stator core length (in meter) +disp(L,'Stator core length (meter)='); +A_pole = %pi*D*L/p;// Area per pole +F_pole = Bav*A_pole;// Flux per pole +Eph = E/3^(1/2);// Voltage per phase +Tph = int(Eph/(4.44*f*F_pole*Kw));// Turns per phase +disp(Tph,'Turns per phase ='); +Iph = Q*1000/(3^(1/2)*E);// Current per phase +ATa = 2.7*Iph*Tph*Kw/p;// Armature mmf per pole (in A) +disp(ATa,'Armature mmf per pole (Ampere)='); +A_effective = 0.6*A_pole;// Effective gap area is 0.6 times the actual area +KgBg = F_pole/A_effective;// Effective gap density (in Wb per meter square) +mmf_airgap = 800000*KgBg*lg*10^(-3);// Mmf for air gap (in A) +disp(mmf_airgap,'Mmf for air gap (Ampere)='); +AT_f0 = SCR*mmf_airgap;// No load field mmf per pole +If = AT_f0 /T_field;// Field current at no load +disp(If,'Field current at no load (Ampere)='); +//in book answers are 1.9 meter, 0.345 meter, 150, 4240 ampere, 4250 ampere and 85 ampere respectively. The answers vary due to round off error -- cgit