summaryrefslogtreecommitdiff
path: root/3638/CH17/EX17.1/Ex17_1.sce
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3638/CH17/EX17.1/Ex17_1.sce
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '3638/CH17/EX17.1/Ex17_1.sce')
-rw-r--r--3638/CH17/EX17.1/Ex17_1.sce45
1 files changed, 45 insertions, 0 deletions
diff --git a/3638/CH17/EX17.1/Ex17_1.sce b/3638/CH17/EX17.1/Ex17_1.sce
new file mode 100644
index 000000000..7fa24ba5d
--- /dev/null
+++ b/3638/CH17/EX17.1/Ex17_1.sce
@@ -0,0 +1,45 @@
+//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 17.1
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+n1=1.4532;//refractive index of core
+n2=1.45;//refractive index of cladding
+a=5e-6;//fiber core radius in m
+d=12e-6;//Distance between the fiber axes in m
+dbar=d/a;//Ratio of distance between fiber axes to the core radius
+delta=((n1)^2-(n2)^2)/((n1)^2);//Dimensionless quantity
+
+//Case (i):
+lambda0=1.3e-6;//Free space wavelength in m
+k0=2*%pi/lambda0;//free space wave number in rad/m
+V=k0*a*sqrt((n1^2)-(n2^2));//dimensionless waveguide parameter
+//The approximate expression for k consists of constants A, B and C
+A=5.2789-3.663*V+0.3841*(V^2);//Expression for constant A in terms of 'V'
+B=-0.7769+1.2252*V-0.0152*(V^2);//Expression for constant B in terms of 'V'
+C=-0.0175-0.0064*V-0.0009*(V^2);//Expression for constant C in terms of 'V'
+k=(%pi/(2*a))*sqrt(delta)*exp(-(A+B*dbar+C*(dbar)^2));//Expression for Coupling Coefficient in m^(-1)
+mprintf("\n For lambda=1.3 um:");
+mprintf("\n k=%f mm^(-1)",k/1e3);//Dividing by 10^3 to conevert into mm^(-1)
+//The answers vary due to round off error
+Lc=%pi/(2*k);//Corresponding coupling length in m
+mprintf("\n Lc =%.2f mm",Lc/1e-3);//Dividing by 10^(-3) to convert into mm
+P2=(sin(k*Lc/2))^2;//The coupled power at given wavelength
+mprintf("\n P2=%.2f",P2);
+
+//Case (ii):
+lambda0=1.35e-6;//Free space wavelength in m
+k0=2*%pi/lambda0;//free space wave number in rad/m
+V=k0*a*sqrt((n1^2)-(n2^2));//dimensionless waveguide parameter
+//The approximate expression for k consists of constants A, B and C
+A=5.2789-3.663*V+0.3841*(V^2);//Expression for constant A in terms of 'V'
+B=-0.7769+1.2252*V-0.0152*(V^2);//Expression for constant B in terms of 'V'
+C=-0.0175-0.0064*V-0.0009*(V^2);//Expression for constant C in terms of 'V'
+k=(%pi/(2*a))*sqrt(delta)*exp(-(A+B*dbar+C*(dbar)^2));//Expression for Coupling Coefficient in m^(-1)
+mprintf("\n For lambda=1.35 um:");
+mprintf("\n k=%f mm^(-1)",k/1e3);//Dividing by 10^3 to conevert into mm^(-1)
+//The answers vary due to round off error
+P2=(sin(k*Lc/2))^2;//The coupled power at given wavelength
+mprintf("\n P2=%.2f",P2);//The answers vary due to round off error