diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3574/CH9/EX9.9 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3574/CH9/EX9.9')
-rw-r--r-- | 3574/CH9/EX9.9/EX9_9.png | bin | 0 -> 153294 bytes | |||
-rw-r--r-- | 3574/CH9/EX9.9/EX9_9.sce | 68 |
2 files changed, 68 insertions, 0 deletions
diff --git a/3574/CH9/EX9.9/EX9_9.png b/3574/CH9/EX9.9/EX9_9.png Binary files differnew file mode 100644 index 000000000..a837c7d8d --- /dev/null +++ b/3574/CH9/EX9.9/EX9_9.png diff --git a/3574/CH9/EX9.9/EX9_9.sce b/3574/CH9/EX9.9/EX9_9.sce new file mode 100644 index 000000000..de0d1fd19 --- /dev/null +++ b/3574/CH9/EX9.9/EX9_9.sce @@ -0,0 +1,68 @@ +// Example 9.9 +// Determine (a) Excitation voltage (b) Power angle (c) No load voltage, +// assuming the field current is not changed (d) Voltage regulation (e) No load +// voltage if the field current is reduced to 80% of its value at rated load. +// Page 369 + +clc; +clear; +close; + +// Given data +V=4800; // Voltage of synchronous generator +PF=0.900; // Lagging power factor +S_Mag=1000000/3; +Xa_Mag=13.80; // Synchronous reactance +Xa_Ang=90; +Vt_Ang=0; + +// (a) Excitation voltage +Vt=V/sqrt(3); +Theta=acosd(PF); // Angle +Ia_Magstar=S_Mag/Vt; // Magnitude of curent +Ia_Angstar=Theta-0; // Angle of current +Ia_Mag=Ia_Magstar; +Ia_Ang=-Ia_Angstar; + +// Ef=Vt+Ia*j*Xa +// First compute Ia*Xa +IaXa_Mag=Ia_Mag*Xa_Mag; +IaXa_Ang=Ia_Ang+Xa_Ang; +// Polar to Complex form for IaXa +IaXa_R=IaXa_Mag*cos(-IaXa_Ang*%pi/180); // Real part of complex number +IaXa_I=IaXa_Mag*sin(IaXa_Ang*%pi/180); // Imaginary part of complex number +// Vt term in polar form +Vt_Mag=Vt; +Vt_Ang=Vt_Ang; +// Polar to Complex form for Vt +Vt_R=Vt_Mag*cos(-Vt_Ang*%pi/180); // Real part of complex number +Vt_I=Vt_Mag*sin(Vt_Ang*%pi/180); // Imaginary part of complex number +// Ef in complex form +Ef_R=IaXa_R+Vt_R; +Ef_I=IaXa_I+Vt_I; +Ef=Ef_R+%i*Ef_I; +// Complex to Polar form for Ef +Ef_Mag=sqrt(real(Ef)^2+imag(Ef)^2); // Magnitude part +Ef_Ang= atan(imag(Ef),real(Ef))*180/%pi; // Angle part
 + +// (b) Power angle +PA=Ef_Ang; + +// (c) No load voltage, assuming the field current is not changed +// From figure 9.23 (b) +VolAxis=Vt_Mag/30; // The scale at the given voltage axis +Ef_loc=Ef_Mag/VolAxis; // Location of Ef voltage +Vnl=33.4*VolAxis; // No load voltage + +// (d) Voltage regulation +VR=(Vnl-Vt)/Vt*100; + +// (e) No load voltage if the field current is reduced to 80% +Vnlnew=31*VolAxis; + +// Display result on command window +printf("\n Excitation voltage = %0.0f V ",Ef_Mag); +printf("\n Power angle = %0.1f deg ",PA); +printf("\n No load voltage = %0.0f V ",Vnl); +printf("\n Voltage regulation = %0.0f Percent ",VR); +printf("\n No load voltage when field current is reduced to 80 percent = %0.0f V ",Vnlnew); |