summaryrefslogtreecommitdiff
path: root/3574/CH9/EX9.9
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3574/CH9/EX9.9
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '3574/CH9/EX9.9')
-rw-r--r--3574/CH9/EX9.9/EX9_9.pngbin0 -> 153294 bytes
-rw-r--r--3574/CH9/EX9.9/EX9_9.sce68
2 files changed, 68 insertions, 0 deletions
diff --git a/3574/CH9/EX9.9/EX9_9.png b/3574/CH9/EX9.9/EX9_9.png
new file mode 100644
index 000000000..a837c7d8d
--- /dev/null
+++ b/3574/CH9/EX9.9/EX9_9.png
Binary files differ
diff --git a/3574/CH9/EX9.9/EX9_9.sce b/3574/CH9/EX9.9/EX9_9.sce
new file mode 100644
index 000000000..de0d1fd19
--- /dev/null
+++ b/3574/CH9/EX9.9/EX9_9.sce
@@ -0,0 +1,68 @@
+// Example 9.9
+// Determine (a) Excitation voltage (b) Power angle (c) No load voltage,
+// assuming the field current is not changed (d) Voltage regulation (e) No load
+// voltage if the field current is reduced to 80% of its value at rated load.
+// Page 369
+
+clc;
+clear;
+close;
+
+// Given data
+V=4800; // Voltage of synchronous generator
+PF=0.900; // Lagging power factor
+S_Mag=1000000/3;
+Xa_Mag=13.80; // Synchronous reactance
+Xa_Ang=90;
+Vt_Ang=0;
+
+// (a) Excitation voltage
+Vt=V/sqrt(3);
+Theta=acosd(PF); // Angle
+Ia_Magstar=S_Mag/Vt; // Magnitude of curent
+Ia_Angstar=Theta-0; // Angle of current
+Ia_Mag=Ia_Magstar;
+Ia_Ang=-Ia_Angstar;
+
+// Ef=Vt+Ia*j*Xa
+// First compute Ia*Xa
+IaXa_Mag=Ia_Mag*Xa_Mag;
+IaXa_Ang=Ia_Ang+Xa_Ang;
+// Polar to Complex form for IaXa
+IaXa_R=IaXa_Mag*cos(-IaXa_Ang*%pi/180); // Real part of complex number
+IaXa_I=IaXa_Mag*sin(IaXa_Ang*%pi/180); // Imaginary part of complex number
+// Vt term in polar form
+Vt_Mag=Vt;
+Vt_Ang=Vt_Ang;
+// Polar to Complex form for Vt
+Vt_R=Vt_Mag*cos(-Vt_Ang*%pi/180); // Real part of complex number
+Vt_I=Vt_Mag*sin(Vt_Ang*%pi/180); // Imaginary part of complex number
+// Ef in complex form
+Ef_R=IaXa_R+Vt_R;
+Ef_I=IaXa_I+Vt_I;
+Ef=Ef_R+%i*Ef_I;
+// Complex to Polar form for Ef
+Ef_Mag=sqrt(real(Ef)^2+imag(Ef)^2); // Magnitude part
+Ef_Ang= atan(imag(Ef),real(Ef))*180/%pi; // Angle part

+
+// (b) Power angle
+PA=Ef_Ang;
+
+// (c) No load voltage, assuming the field current is not changed
+// From figure 9.23 (b)
+VolAxis=Vt_Mag/30; // The scale at the given voltage axis
+Ef_loc=Ef_Mag/VolAxis; // Location of Ef voltage
+Vnl=33.4*VolAxis; // No load voltage
+
+// (d) Voltage regulation
+VR=(Vnl-Vt)/Vt*100;
+
+// (e) No load voltage if the field current is reduced to 80%
+Vnlnew=31*VolAxis;
+
+// Display result on command window
+printf("\n Excitation voltage = %0.0f V ",Ef_Mag);
+printf("\n Power angle = %0.1f deg ",PA);
+printf("\n No load voltage = %0.0f V ",Vnl);
+printf("\n Voltage regulation = %0.0f Percent ",VR);
+printf("\n No load voltage when field current is reduced to 80 percent = %0.0f V ",Vnlnew);