diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3532/CH4 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3532/CH4')
32 files changed, 660 insertions, 0 deletions
diff --git a/3532/CH4/EX4.1/Ex4_1.sce b/3532/CH4/EX4.1/Ex4_1.sce new file mode 100644 index 000000000..8dfd86913 --- /dev/null +++ b/3532/CH4/EX4.1/Ex4_1.sce @@ -0,0 +1,21 @@ +clc
+clear
+mprintf('Mechanical vibrations by G.K.Grover\n Example 4.2.1\n')
+//given data
+//T=To*sin(W*t)
+To=0.588 //maximum value of periodic torque in N-m
+W=4// freqency of applied force in rad/sec
+J=0.12//moment of inertia of wheel in kg-m^2
+Kt=1.176//stiffness of wire in N-m/rad
+Ct=0.392/1 //damping coefficient in N-m_sec/rad
+//calculations
+theta=To/sqrt((Kt-J*W^2)^2+(Ct*W)^2)//Equation for torsional vibration amplitude from Fig (4.2.2) and Eqn (4.2.5)
+MaxDcoup=Ct*W*theta//maximum damping couple in N-m
+if atan((Ct*W)/(Kt-J*W^2))>0 then
+ phiD=(180/%pi)*atan((Ct*W)/(Kt-J*W^2));//from eqn 4.2.6(in degrees)
+else
+ phiD=180+(180/%pi)*atan((Ct*W)/(Kt-J*W^2));
+
+end
+//output
+mprintf(' a)The maximum angular displacement from rest position is %4.4f radians\n b)The maximum couple applied to dashpot is %4.4f N-m\n c)angle by which the angular displacement lags the torque is %4.4f degrees',theta,MaxDcoup,phiD)
diff --git a/3532/CH4/EX4.10.1/Ex4_12.sce b/3532/CH4/EX4.10.1/Ex4_12.sce new file mode 100644 index 000000000..ccfe11d19 --- /dev/null +++ b/3532/CH4/EX4.10.1/Ex4_12.sce @@ -0,0 +1,28 @@ +clc
+clear
+mprintf('Mechanical vibrations by G.K.Grover\n Example 4.10.1\n')
+//given data
+m=1000//mass of machine in kg
+Fo=490//amp of force in N
+f=180//freq inRPM
+//calculations
+//case a)
+K=1.96*10^6//total stiffness of springs in N/m
+Wn=sqrt(K/m)
+W=2*%pi*f/60
+bet=(W/Wn)
+zeta=0
+Xst1=Fo/K//amplitude of steady state
+X1=Xst1*(1/(sqrt((1-bet^2)^2+(2*zeta*bet)^2)))//amp of vibration Eqn 4.2.15 in Sec 4.2.1
+Ftr1=Fo*sqrt(1+(2*zeta*bet)^2)/sqrt((1-bet^2)^2+(2*zeta*bet)^2)//force transmitted,Eqn 4.10.2 in Sec 4.10.1
+//case b)
+K=9.8*10^4//total stiffness of springs in N/m
+Wn=sqrt(K/m)
+W=2*%pi*f/60
+bet=(W/Wn)
+zeta=0
+Xst2=Fo/K//amplitude of steady state
+X2=Xst2*(1/(sqrt((1-bet^2)^2+(2*zeta*bet)^2)))//amp of vibration Eqn 4.2.15 in Sec 4.2.1
+Ftr2=Fo*sqrt(1+(2*zeta*bet)^2)/sqrt((1-bet^2)^2+(2*zeta*bet)^2)//force transmitted,Eqn 4.10.2 in Sec 4.10.1
+//output
+mprintf(' a)The amplitude of motion of machine is %f m and the maximum force transmitted\n to the foundation because of the unbalanced force when\n K=1.96*10^6 N/m is %4.4f N\n b)for same case as in a)if K=9.8*10^4 N/m then\n the amplitude of motion of machine is %f m\n and the maximum force transmitted to the foundation because of\n the unbalanced force %4.4f N',X1,Ftr1,X2,Ftr2)
diff --git a/3532/CH4/EX4.10.2/Ex4_13.sce b/3532/CH4/EX4.10.2/Ex4_13.sce new file mode 100644 index 000000000..4d2ebbd0e --- /dev/null +++ b/3532/CH4/EX4.10.2/Ex4_13.sce @@ -0,0 +1,21 @@ +clc
+clear
+mprintf('Mechanical vibrations by G.K.Grover\n Example 4.10.2\n')
+//given data
+m=75//mass of machine in kg
+K=11.76*10^5//stiffness of springs in N/m
+zeta=0.2
+mo=2//mass of piston in kg
+stroke=0.08//in m
+e=stroke/2//in m
+N=3000//spee in c.p.m
+//calculations
+Wn=sqrt(K/m)
+W=2*%pi*N/60
+bet=(W/Wn)
+y=(mo/m)
+Fo=mo*W^2*e//max force exerted
+X=y*e*bet^2/(sqrt((1-bet^2)^2+(2*zeta*bet)^2))//Eqn 4.3.2
+Ftr=Fo*sqrt(1+(2*zeta*bet)^2)/sqrt((1-bet^2)^2+(2*zeta*bet)^2)//force transmitted,Eqn 4.10.2 in Sec 4.10.1
+mprintf(' a)The amplitude of vibration of machine is %f m and the \n the vibratory force Ftr transmitted to the foundation is %5.4f N',X,Ftr)
+mprintf('\nNOTE: slight differnce in answer compared to textbook\n is due approximation of values in textbook')
diff --git a/3532/CH4/EX4.10.3/Ex4_14.sce b/3532/CH4/EX4.10.3/Ex4_14.sce new file mode 100644 index 000000000..44a536569 --- /dev/null +++ b/3532/CH4/EX4.10.3/Ex4_14.sce @@ -0,0 +1,23 @@ +clc
+clear
+mprintf('Mechanical vibrations by G.K.Grover\n Example 4.10.3\n')
+// given data
+m=20 //mass in kgs
+k=125600 //overall eqivalent stiffness i.e 4*31400 in N/m
+c=1568 //overall damping coefficient i.e 4*392 in N-sec/m
+n=500 //vibrating speed of machine in cpm
+//y=Ysin(w*t)
+Y=0.00005 //vibrating amplitude of machine in m
+W=2*%pi*n/60 //vibrating frequency in rad/sec
+Wn=sqrt(k/m) //natural frequency in rad/sec
+bet=(W/Wn) //speed ratio
+zeta=c/(2*sqrt(k*m)) //damping factor
+//calculations
+X=Y*sqrt((1+(2*zeta*bet)^2)/((1-bet^2)^2+(2*zeta*bet)^2)) //absolute amplitude of vibration of radio from eqn (4.4.6)
+Z=Y*((bet^2)/sqrt(((1-bet^2)^2+(2*zeta*bet)^2)))//from eqn 4.4.11
+FdynT=Z*sqrt((c*W)^2+k^2)//dynamic load total
+Fdyn=FdynT/4 //dynamic load on each isolator
+FdynTmax=m*W^2*X //max dynamic load on the isolators
+Fdynmax=FdynTmax/4 //max dynamic load on each isolator
+//output
+mprintf('a) The amplitude of vibration of radio is %f metres \n b)the dynamic load on each isolator due to vibration is %3.3f N',X,Fdyn)
diff --git a/3532/CH4/EX4.11.1/Ex4_15.sce b/3532/CH4/EX4.11.1/Ex4_15.sce new file mode 100644 index 000000000..4696ee57f --- /dev/null +++ b/3532/CH4/EX4.11.1/Ex4_15.sce @@ -0,0 +1,15 @@ +clc
+clear
+mprintf('Mechanical vibrations by G.K.Grover\n Example 4.11.1\n')
+//given data
+T=2//period of free vibration in sec
+f=1//vertical harmonic frequency of machine in in Hz
+Z=2.5//amplitude of vibrotometer mass relative to vibrotometer frame in mm
+//calculations
+Wn=2*%pi/T
+W=2*%pi*f
+bet=(W/Wn)
+zeta=0//for vibrotometers
+Y=Z*(sqrt((1-bet^2)^2+(2*zeta*bet)^2))/bet^2//amplitude of vibration of machine Eqn 4.4.11 in Sec 4.4.2
+//output
+mprintf(' The amplitude of vibration of support of machine is %4.4f mm',Y)
diff --git a/3532/CH4/EX4.11.2/Ex4_16.sce b/3532/CH4/EX4.11.2/Ex4_16.sce new file mode 100644 index 000000000..44826cf62 --- /dev/null +++ b/3532/CH4/EX4.11.2/Ex4_16.sce @@ -0,0 +1,35 @@ +clc
+clear
+mprintf('Mechanical vibrations by G.K.Grover\n Example 4.11.2\n')
+//given data
+fn=5.75//natural frequency in Hz
+zeta=0.65
+ZbyY=1.01
+//case 1
+//substituting for (Z/Y)=1.01 and (W/Wn)=r^2 in Eqn 4.4.11 we get the quadratic eqn as follows
+//0.02*r^4-0.31*r^2+1=0
+//solving for r in above eqn whose rootes are r1 and r2
+r1=sqrt(((0.31)+sqrt(((-0.31)^2)-4*0.02*1))/(2*0.02))
+r2=sqrt(((0.31)-sqrt(((-0.31)^2)-4*0.02*1))/(2*0.02))
+if r1>r2 then
+ r=r1
+ else r=r2
+end
+bet=r//bet=(W/Wn)
+f1=bet*fn
+//case 2
+ZbyY=0.98
+//substituting for (Z/Y)=0.98 and (W/Wn)=r^2 in Eqn 4.4.11 we get the quadratic eqn as follows
+//0.04*r^4+0.31*r^2-1=0
+//solving for r in above eqn whose rootes are r3 and r4
+r3=sqrt((-0.31+sqrt(((0.31)^2)-4*0.04*-1))/(2*0.04))
+r4=sqrt((-0.31-sqrt(((0.31)^2)-4*0.04*-1))/(2*0.04))
+t1=real(r3)
+t2=real(r4)
+if t1>t2 then
+ r=r3
+ else r=r4
+end
+bet=r//bet=(W/Wn)
+f2=bet*fn
+mprintf('The lowest frequency beyond which the amplitude can be measured within\n (i)one percent error is %4.4f Hz\n (ii)two percent error is %4.4f Hz',f1,f2)
diff --git a/3532/CH4/EX4.11.3/Ex4_17.sce b/3532/CH4/EX4.11.3/Ex4_17.sce new file mode 100644 index 000000000..827e5825e --- /dev/null +++ b/3532/CH4/EX4.11.3/Ex4_17.sce @@ -0,0 +1,19 @@ +clc
+clear
+mprintf('Mechanical vibrations by G.K.Grover\n Example 4.11.3\n')
+//given data
+J=0.049//moment of inertia in kg-m^2
+Kt=0.98//stiffness in N-m/rad
+Ct=0.11//damping coefficient in N-m_sec/rad
+N=15//R.P.M
+thetaRD=2//relative amplitude between ring and shaft in degrees
+//calculations
+W=N*2*%pi/60 //frequency of vibrating shaft in rad/sec
+Wn=sqrt(Kt/J) //natural freqency in rad/sec
+zeta=(Ct/(2*sqrt(Kt*J))) //damping factor
+thetaRR=(thetaRD/(57.3)) //relative amplitude in radians
+bet=(W/Wn)
+thetamax=thetaRR*((sqrt((1-bet^2)^2+(2*zeta*bet)^2)/bet^2))
+maxacc=(W^2)*thetamax
+//output
+mprintf('The maximum acceleration of the shaft is %4.4f rad/(sec^2)',maxacc)
diff --git a/3532/CH4/EX4.11.4/Ex4_18.sce b/3532/CH4/EX4.11.4/Ex4_18.sce new file mode 100644 index 000000000..b568e3c24 --- /dev/null +++ b/3532/CH4/EX4.11.4/Ex4_18.sce @@ -0,0 +1,15 @@ +clc
+clear
+mprintf('Mechanical vibrations by G.K.Grover\n Example 4.11.4\n')
+//given data
+RF=1800//resonant frequency in rpm
+L=0.050//lenght of steel reed in metres
+B=0.006//width of steel reed in metres
+t=0.00075//thickness of steel reed in metres
+E=19.6*10^10//young's modulus in N/(m^2)
+//calculations
+Wn=2*%pi*RF/60//natural frequency in radians
+I=(B*t^3)/12//moment of inertia in (m^4)
+m=3*E*I/((Wn^2)*L^3)//required mass
+//output
+mprintf('The required mass M to be placed at the end of the reeds of Frahm tachometer is %f Kgs',m)
diff --git a/3532/CH4/EX4.12/Ex4_12.sce b/3532/CH4/EX4.12/Ex4_12.sce new file mode 100644 index 000000000..ccfe11d19 --- /dev/null +++ b/3532/CH4/EX4.12/Ex4_12.sce @@ -0,0 +1,28 @@ +clc
+clear
+mprintf('Mechanical vibrations by G.K.Grover\n Example 4.10.1\n')
+//given data
+m=1000//mass of machine in kg
+Fo=490//amp of force in N
+f=180//freq inRPM
+//calculations
+//case a)
+K=1.96*10^6//total stiffness of springs in N/m
+Wn=sqrt(K/m)
+W=2*%pi*f/60
+bet=(W/Wn)
+zeta=0
+Xst1=Fo/K//amplitude of steady state
+X1=Xst1*(1/(sqrt((1-bet^2)^2+(2*zeta*bet)^2)))//amp of vibration Eqn 4.2.15 in Sec 4.2.1
+Ftr1=Fo*sqrt(1+(2*zeta*bet)^2)/sqrt((1-bet^2)^2+(2*zeta*bet)^2)//force transmitted,Eqn 4.10.2 in Sec 4.10.1
+//case b)
+K=9.8*10^4//total stiffness of springs in N/m
+Wn=sqrt(K/m)
+W=2*%pi*f/60
+bet=(W/Wn)
+zeta=0
+Xst2=Fo/K//amplitude of steady state
+X2=Xst2*(1/(sqrt((1-bet^2)^2+(2*zeta*bet)^2)))//amp of vibration Eqn 4.2.15 in Sec 4.2.1
+Ftr2=Fo*sqrt(1+(2*zeta*bet)^2)/sqrt((1-bet^2)^2+(2*zeta*bet)^2)//force transmitted,Eqn 4.10.2 in Sec 4.10.1
+//output
+mprintf(' a)The amplitude of motion of machine is %f m and the maximum force transmitted\n to the foundation because of the unbalanced force when\n K=1.96*10^6 N/m is %4.4f N\n b)for same case as in a)if K=9.8*10^4 N/m then\n the amplitude of motion of machine is %f m\n and the maximum force transmitted to the foundation because of\n the unbalanced force %4.4f N',X1,Ftr1,X2,Ftr2)
diff --git a/3532/CH4/EX4.13/Ex4_13.sce b/3532/CH4/EX4.13/Ex4_13.sce new file mode 100644 index 000000000..4d2ebbd0e --- /dev/null +++ b/3532/CH4/EX4.13/Ex4_13.sce @@ -0,0 +1,21 @@ +clc
+clear
+mprintf('Mechanical vibrations by G.K.Grover\n Example 4.10.2\n')
+//given data
+m=75//mass of machine in kg
+K=11.76*10^5//stiffness of springs in N/m
+zeta=0.2
+mo=2//mass of piston in kg
+stroke=0.08//in m
+e=stroke/2//in m
+N=3000//spee in c.p.m
+//calculations
+Wn=sqrt(K/m)
+W=2*%pi*N/60
+bet=(W/Wn)
+y=(mo/m)
+Fo=mo*W^2*e//max force exerted
+X=y*e*bet^2/(sqrt((1-bet^2)^2+(2*zeta*bet)^2))//Eqn 4.3.2
+Ftr=Fo*sqrt(1+(2*zeta*bet)^2)/sqrt((1-bet^2)^2+(2*zeta*bet)^2)//force transmitted,Eqn 4.10.2 in Sec 4.10.1
+mprintf(' a)The amplitude of vibration of machine is %f m and the \n the vibratory force Ftr transmitted to the foundation is %5.4f N',X,Ftr)
+mprintf('\nNOTE: slight differnce in answer compared to textbook\n is due approximation of values in textbook')
diff --git a/3532/CH4/EX4.14/Ex4_14.sce b/3532/CH4/EX4.14/Ex4_14.sce new file mode 100644 index 000000000..44a536569 --- /dev/null +++ b/3532/CH4/EX4.14/Ex4_14.sce @@ -0,0 +1,23 @@ +clc
+clear
+mprintf('Mechanical vibrations by G.K.Grover\n Example 4.10.3\n')
+// given data
+m=20 //mass in kgs
+k=125600 //overall eqivalent stiffness i.e 4*31400 in N/m
+c=1568 //overall damping coefficient i.e 4*392 in N-sec/m
+n=500 //vibrating speed of machine in cpm
+//y=Ysin(w*t)
+Y=0.00005 //vibrating amplitude of machine in m
+W=2*%pi*n/60 //vibrating frequency in rad/sec
+Wn=sqrt(k/m) //natural frequency in rad/sec
+bet=(W/Wn) //speed ratio
+zeta=c/(2*sqrt(k*m)) //damping factor
+//calculations
+X=Y*sqrt((1+(2*zeta*bet)^2)/((1-bet^2)^2+(2*zeta*bet)^2)) //absolute amplitude of vibration of radio from eqn (4.4.6)
+Z=Y*((bet^2)/sqrt(((1-bet^2)^2+(2*zeta*bet)^2)))//from eqn 4.4.11
+FdynT=Z*sqrt((c*W)^2+k^2)//dynamic load total
+Fdyn=FdynT/4 //dynamic load on each isolator
+FdynTmax=m*W^2*X //max dynamic load on the isolators
+Fdynmax=FdynTmax/4 //max dynamic load on each isolator
+//output
+mprintf('a) The amplitude of vibration of radio is %f metres \n b)the dynamic load on each isolator due to vibration is %3.3f N',X,Fdyn)
diff --git a/3532/CH4/EX4.15/Ex4_15.sce b/3532/CH4/EX4.15/Ex4_15.sce new file mode 100644 index 000000000..4696ee57f --- /dev/null +++ b/3532/CH4/EX4.15/Ex4_15.sce @@ -0,0 +1,15 @@ +clc
+clear
+mprintf('Mechanical vibrations by G.K.Grover\n Example 4.11.1\n')
+//given data
+T=2//period of free vibration in sec
+f=1//vertical harmonic frequency of machine in in Hz
+Z=2.5//amplitude of vibrotometer mass relative to vibrotometer frame in mm
+//calculations
+Wn=2*%pi/T
+W=2*%pi*f
+bet=(W/Wn)
+zeta=0//for vibrotometers
+Y=Z*(sqrt((1-bet^2)^2+(2*zeta*bet)^2))/bet^2//amplitude of vibration of machine Eqn 4.4.11 in Sec 4.4.2
+//output
+mprintf(' The amplitude of vibration of support of machine is %4.4f mm',Y)
diff --git a/3532/CH4/EX4.16/Ex4_16.sce b/3532/CH4/EX4.16/Ex4_16.sce new file mode 100644 index 000000000..44826cf62 --- /dev/null +++ b/3532/CH4/EX4.16/Ex4_16.sce @@ -0,0 +1,35 @@ +clc
+clear
+mprintf('Mechanical vibrations by G.K.Grover\n Example 4.11.2\n')
+//given data
+fn=5.75//natural frequency in Hz
+zeta=0.65
+ZbyY=1.01
+//case 1
+//substituting for (Z/Y)=1.01 and (W/Wn)=r^2 in Eqn 4.4.11 we get the quadratic eqn as follows
+//0.02*r^4-0.31*r^2+1=0
+//solving for r in above eqn whose rootes are r1 and r2
+r1=sqrt(((0.31)+sqrt(((-0.31)^2)-4*0.02*1))/(2*0.02))
+r2=sqrt(((0.31)-sqrt(((-0.31)^2)-4*0.02*1))/(2*0.02))
+if r1>r2 then
+ r=r1
+ else r=r2
+end
+bet=r//bet=(W/Wn)
+f1=bet*fn
+//case 2
+ZbyY=0.98
+//substituting for (Z/Y)=0.98 and (W/Wn)=r^2 in Eqn 4.4.11 we get the quadratic eqn as follows
+//0.04*r^4+0.31*r^2-1=0
+//solving for r in above eqn whose rootes are r3 and r4
+r3=sqrt((-0.31+sqrt(((0.31)^2)-4*0.04*-1))/(2*0.04))
+r4=sqrt((-0.31-sqrt(((0.31)^2)-4*0.04*-1))/(2*0.04))
+t1=real(r3)
+t2=real(r4)
+if t1>t2 then
+ r=r3
+ else r=r4
+end
+bet=r//bet=(W/Wn)
+f2=bet*fn
+mprintf('The lowest frequency beyond which the amplitude can be measured within\n (i)one percent error is %4.4f Hz\n (ii)two percent error is %4.4f Hz',f1,f2)
diff --git a/3532/CH4/EX4.17/Ex4_17.sce b/3532/CH4/EX4.17/Ex4_17.sce new file mode 100644 index 000000000..827e5825e --- /dev/null +++ b/3532/CH4/EX4.17/Ex4_17.sce @@ -0,0 +1,19 @@ +clc
+clear
+mprintf('Mechanical vibrations by G.K.Grover\n Example 4.11.3\n')
+//given data
+J=0.049//moment of inertia in kg-m^2
+Kt=0.98//stiffness in N-m/rad
+Ct=0.11//damping coefficient in N-m_sec/rad
+N=15//R.P.M
+thetaRD=2//relative amplitude between ring and shaft in degrees
+//calculations
+W=N*2*%pi/60 //frequency of vibrating shaft in rad/sec
+Wn=sqrt(Kt/J) //natural freqency in rad/sec
+zeta=(Ct/(2*sqrt(Kt*J))) //damping factor
+thetaRR=(thetaRD/(57.3)) //relative amplitude in radians
+bet=(W/Wn)
+thetamax=thetaRR*((sqrt((1-bet^2)^2+(2*zeta*bet)^2)/bet^2))
+maxacc=(W^2)*thetamax
+//output
+mprintf('The maximum acceleration of the shaft is %4.4f rad/(sec^2)',maxacc)
diff --git a/3532/CH4/EX4.18/Ex4_18.sce b/3532/CH4/EX4.18/Ex4_18.sce new file mode 100644 index 000000000..b568e3c24 --- /dev/null +++ b/3532/CH4/EX4.18/Ex4_18.sce @@ -0,0 +1,15 @@ +clc
+clear
+mprintf('Mechanical vibrations by G.K.Grover\n Example 4.11.4\n')
+//given data
+RF=1800//resonant frequency in rpm
+L=0.050//lenght of steel reed in metres
+B=0.006//width of steel reed in metres
+t=0.00075//thickness of steel reed in metres
+E=19.6*10^10//young's modulus in N/(m^2)
+//calculations
+Wn=2*%pi*RF/60//natural frequency in radians
+I=(B*t^3)/12//moment of inertia in (m^4)
+m=3*E*I/((Wn^2)*L^3)//required mass
+//output
+mprintf('The required mass M to be placed at the end of the reeds of Frahm tachometer is %f Kgs',m)
diff --git a/3532/CH4/EX4.2.1/Ex4_1.sce b/3532/CH4/EX4.2.1/Ex4_1.sce new file mode 100644 index 000000000..8dfd86913 --- /dev/null +++ b/3532/CH4/EX4.2.1/Ex4_1.sce @@ -0,0 +1,21 @@ +clc
+clear
+mprintf('Mechanical vibrations by G.K.Grover\n Example 4.2.1\n')
+//given data
+//T=To*sin(W*t)
+To=0.588 //maximum value of periodic torque in N-m
+W=4// freqency of applied force in rad/sec
+J=0.12//moment of inertia of wheel in kg-m^2
+Kt=1.176//stiffness of wire in N-m/rad
+Ct=0.392/1 //damping coefficient in N-m_sec/rad
+//calculations
+theta=To/sqrt((Kt-J*W^2)^2+(Ct*W)^2)//Equation for torsional vibration amplitude from Fig (4.2.2) and Eqn (4.2.5)
+MaxDcoup=Ct*W*theta//maximum damping couple in N-m
+if atan((Ct*W)/(Kt-J*W^2))>0 then
+ phiD=(180/%pi)*atan((Ct*W)/(Kt-J*W^2));//from eqn 4.2.6(in degrees)
+else
+ phiD=180+(180/%pi)*atan((Ct*W)/(Kt-J*W^2));
+
+end
+//output
+mprintf(' a)The maximum angular displacement from rest position is %4.4f radians\n b)The maximum couple applied to dashpot is %4.4f N-m\n c)angle by which the angular displacement lags the torque is %4.4f degrees',theta,MaxDcoup,phiD)
diff --git a/3532/CH4/EX4.2.2/Ex4_2.sce b/3532/CH4/EX4.2.2/Ex4_2.sce new file mode 100644 index 000000000..ebbfc6c90 --- /dev/null +++ b/3532/CH4/EX4.2.2/Ex4_2.sce @@ -0,0 +1,19 @@ +clc
+clear
+mprintf('Mechanical vibrations by G.K.Grover\n Example 4.2.2\n')
+//given data
+Wd=9.8*2*%pi// damped natural freqency in rad/sec
+Wp=9.6*2*%pi//freqency from forced vibration test in rad/sec
+//calculations
+//(Wp/Wn)=sqrt(1-2*zeta^2)...(1) from Eqn 4.2.18 from Sec 4.2.1
+//(Wd/Wn)=sqrt(1-zeta^2)...(2) from Eqn 4.2.19 from Sec 4.2.1
+//dividing (1) by (2)
+x=(Wp/Wd)
+//x=[sqrt(1-2*zeta^2)]/[sqrt(1-zeta^2)]
+zeta=sqrt((1-x)/(2-x))//damping factor obtained on simplifying the above eqn
+//substituting for zeta in eqn 2 above
+Wn=Wd/sqrt(1-zeta^2)//natural frequency of system in rad/sec
+fn=Wn/(2*%pi)//natural frequency of system in Hz
+//output
+mprintf('The damping factor for the system is %f and\n the natural frequency is %4.4f rad/sec or %4.2f Hz',zeta,Wn,fn)
+mprintf('\nNOTE:The damping factor zeta given in textbook is 0.196,which is wrong.')
diff --git a/3532/CH4/EX4.2/Ex4_2.sce b/3532/CH4/EX4.2/Ex4_2.sce new file mode 100644 index 000000000..ebbfc6c90 --- /dev/null +++ b/3532/CH4/EX4.2/Ex4_2.sce @@ -0,0 +1,19 @@ +clc
+clear
+mprintf('Mechanical vibrations by G.K.Grover\n Example 4.2.2\n')
+//given data
+Wd=9.8*2*%pi// damped natural freqency in rad/sec
+Wp=9.6*2*%pi//freqency from forced vibration test in rad/sec
+//calculations
+//(Wp/Wn)=sqrt(1-2*zeta^2)...(1) from Eqn 4.2.18 from Sec 4.2.1
+//(Wd/Wn)=sqrt(1-zeta^2)...(2) from Eqn 4.2.19 from Sec 4.2.1
+//dividing (1) by (2)
+x=(Wp/Wd)
+//x=[sqrt(1-2*zeta^2)]/[sqrt(1-zeta^2)]
+zeta=sqrt((1-x)/(2-x))//damping factor obtained on simplifying the above eqn
+//substituting for zeta in eqn 2 above
+Wn=Wd/sqrt(1-zeta^2)//natural frequency of system in rad/sec
+fn=Wn/(2*%pi)//natural frequency of system in Hz
+//output
+mprintf('The damping factor for the system is %f and\n the natural frequency is %4.4f rad/sec or %4.2f Hz',zeta,Wn,fn)
+mprintf('\nNOTE:The damping factor zeta given in textbook is 0.196,which is wrong.')
diff --git a/3532/CH4/EX4.3.1/Ex4_3.sce b/3532/CH4/EX4.3.1/Ex4_3.sce new file mode 100644 index 000000000..43d47e288 --- /dev/null +++ b/3532/CH4/EX4.3.1/Ex4_3.sce @@ -0,0 +1,20 @@ +clc
+clear
+mprintf('Mechanical vibrations b G.K.Grover\n Example 4.3.1\n')
+//given data
+m=1200//mass of motor in kg
+mo=1//unbalanced mass on motor in kg
+e=0.06//location of unbalanced mass from motor in m
+Wn=2210*(2*%pi/60)//resonant freq in rad/sec
+W=1440*(2*%pi/60)//operating freq
+//calculations
+//case 1
+zeta=0.1
+bet=(W/Wn)
+y=(mo/m)//from eqn 4.3.2
+X1=(y*e)*(bet)^2/sqrt((1-bet^2)^2+(2*zeta*bet)^2)//from eqn 4.3.2
+//case 2
+zeta=0
+X2=(y*e)*(bet)^2/sqrt((1-bet^2)^2+(2*zeta*bet)^2)//from eqn 4.3.2
+//output
+mprintf('If the damping is less than 0.1 then the amplitude of \n vibration will be between %f m and %f m',X1,X2)
diff --git a/3532/CH4/EX4.3.2/Ex4_4.sce b/3532/CH4/EX4.3.2/Ex4_4.sce new file mode 100644 index 000000000..d02fc736f --- /dev/null +++ b/3532/CH4/EX4.3.2/Ex4_4.sce @@ -0,0 +1,22 @@ +clc
+clear
+mprintf('Mechanical vibrations by G.K.Grover\n Example 4.3.2\n')
+//given data
+m=320//mass of engine in kg
+mo=24//reciprocating mass on motor in kg
+r=0.15//vertical stroke in m
+e=r/2
+delst=0.002//stati defln in m
+C=490/(0.3)//damping recistance in N-sec/m
+g=9.81// gravity in m/sec^2
+N=480//speed in rpm in case b)
+//calculation
+Wn=sqrt(g/delst) //natural freqency in rad/sec
+Nr=Wn/(2*%pi)*60 //resonant speed in rpm
+W=(2*%pi*N/60)
+bet=(W/Wn)
+zeta=(C/(2*m*Wn)) //damping factor
+y=(mo/m)//from eqn 4.3.2
+X=(y*e)*(bet)^2/sqrt((1-bet^2)^2+(2*zeta*bet)^2)//from eqn 4.3.2
+//output
+mprintf(' a)speed of driving shaft at which esonance occurs is %4.4f RPM\n b)The amplitude of steady state forced vibrations when the driving shaft \n of the engine rotates at 480 RPM is %f m',Nr,X)
diff --git a/3532/CH4/EX4.3/Ex4_3.sce b/3532/CH4/EX4.3/Ex4_3.sce new file mode 100644 index 000000000..43d47e288 --- /dev/null +++ b/3532/CH4/EX4.3/Ex4_3.sce @@ -0,0 +1,20 @@ +clc
+clear
+mprintf('Mechanical vibrations b G.K.Grover\n Example 4.3.1\n')
+//given data
+m=1200//mass of motor in kg
+mo=1//unbalanced mass on motor in kg
+e=0.06//location of unbalanced mass from motor in m
+Wn=2210*(2*%pi/60)//resonant freq in rad/sec
+W=1440*(2*%pi/60)//operating freq
+//calculations
+//case 1
+zeta=0.1
+bet=(W/Wn)
+y=(mo/m)//from eqn 4.3.2
+X1=(y*e)*(bet)^2/sqrt((1-bet^2)^2+(2*zeta*bet)^2)//from eqn 4.3.2
+//case 2
+zeta=0
+X2=(y*e)*(bet)^2/sqrt((1-bet^2)^2+(2*zeta*bet)^2)//from eqn 4.3.2
+//output
+mprintf('If the damping is less than 0.1 then the amplitude of \n vibration will be between %f m and %f m',X1,X2)
diff --git a/3532/CH4/EX4.4.1/Ex4_5.sce b/3532/CH4/EX4.4.1/Ex4_5.sce new file mode 100644 index 000000000..6b19a1838 --- /dev/null +++ b/3532/CH4/EX4.4.1/Ex4_5.sce @@ -0,0 +1,15 @@ +clc
+clear
+mprintf('Mechanical vibrations by G.K.Grover\n Example 4.4.1\n')
+//given data
+T=0.8//time period of free vibration in sec
+t=0.3//time for which the vertical distance has to be calculated
+//y=18*sin(2*pi*t)
+Y=18//max amplitude in mm
+//calculations
+W=2*%pi
+Wn=(2*%pi/T)
+bet=(W/Wn)
+x=(Y/(1-bet^2))*(sin(W*t)-bet*sin(Wn*t))// from eqn 4.4.17 explained in the same problem
+//output
+mprintf('The vertical distance moved by mass in the first 0.3 sec is %4.4f mm',x)
diff --git a/3532/CH4/EX4.4.2/Ex4_6.sce b/3532/CH4/EX4.4.2/Ex4_6.sce new file mode 100644 index 000000000..9a40f5466 --- /dev/null +++ b/3532/CH4/EX4.4.2/Ex4_6.sce @@ -0,0 +1,20 @@ +clc
+clear
+mprintf('Mechanical vibrations by G.K.Grover\n Example 4.4.2\n')
+//given data
+m=0.9//mass in kg
+K=1960//stiffness in N/m
+Y=5//amp of vibration of support in m
+N=1150//frequency in cycles per min
+//calculations
+Wn=sqrt(K/m)
+W=N*2*%pi/60//frequency of vibration of support
+bet=(W/Wn)
+//case 1
+zeta=0
+X1=Y*(sqrt(1+(2*zeta*bet)^2)/sqrt((1-bet^2)^2+(2*zeta*bet)^2))//Eqn (4.4.6)
+//case 2
+zeta =0.2
+X2=Y*(sqrt(1+(2*zeta*bet)^2)/sqrt((1-bet^2)^2+(2*zeta*bet)^2))//Eqn (4.4.6)
+//output
+mprintf('The amplitude of vibration when damping factor=0 is %4.4f mm \n If damping factor=0.2,then amplitude of vibration is %4.4f mm',X1,X2)
diff --git a/3532/CH4/EX4.4.3/Ex4_7.sce b/3532/CH4/EX4.4.3/Ex4_7.sce new file mode 100644 index 000000000..975af1a15 --- /dev/null +++ b/3532/CH4/EX4.4.3/Ex4_7.sce @@ -0,0 +1,19 @@ +clc
+clear
+mprintf('Mechanical vibrations by G.K.Grover\n Example 4.4.3\n')
+//given data
+delst=0.1//steady state defln in m
+g=9.81//acceleration due to gravity
+Y=0.08//amp of vibration of automobile in m
+lambda=14//wavelenght of profile in m
+//calculations
+Wn=sqrt(g/delst)
+fn=Wn/(2*%pi)//frequency of vibration of automobile in Hz
+Vc=(3600/1000)*lambda*fn//critical speed in km/hr
+V=60 //speed in km/hr
+W=V*(1000/3600)*(2*%pi/lambda)
+bet=(W/Wn)
+zeta=0
+X=Y*(sqrt(1+(2*zeta*bet)^2)/sqrt((1-bet^2)^2+(2*zeta*bet)^2))//Eqn (4.4.6)
+//output
+mprintf(' The critical speed of automobile %4.4f km/hr\n The amplitude of vibration at 60 Km/Hr is %4.4f m',Vc,X)
diff --git a/3532/CH4/EX4.4/Ex4_4.sce b/3532/CH4/EX4.4/Ex4_4.sce new file mode 100644 index 000000000..d02fc736f --- /dev/null +++ b/3532/CH4/EX4.4/Ex4_4.sce @@ -0,0 +1,22 @@ +clc
+clear
+mprintf('Mechanical vibrations by G.K.Grover\n Example 4.3.2\n')
+//given data
+m=320//mass of engine in kg
+mo=24//reciprocating mass on motor in kg
+r=0.15//vertical stroke in m
+e=r/2
+delst=0.002//stati defln in m
+C=490/(0.3)//damping recistance in N-sec/m
+g=9.81// gravity in m/sec^2
+N=480//speed in rpm in case b)
+//calculation
+Wn=sqrt(g/delst) //natural freqency in rad/sec
+Nr=Wn/(2*%pi)*60 //resonant speed in rpm
+W=(2*%pi*N/60)
+bet=(W/Wn)
+zeta=(C/(2*m*Wn)) //damping factor
+y=(mo/m)//from eqn 4.3.2
+X=(y*e)*(bet)^2/sqrt((1-bet^2)^2+(2*zeta*bet)^2)//from eqn 4.3.2
+//output
+mprintf(' a)speed of driving shaft at which esonance occurs is %4.4f RPM\n b)The amplitude of steady state forced vibrations when the driving shaft \n of the engine rotates at 480 RPM is %f m',Nr,X)
diff --git a/3532/CH4/EX4.5.1/Ex4_8.sce b/3532/CH4/EX4.5.1/Ex4_8.sce new file mode 100644 index 000000000..b7f52cdb5 --- /dev/null +++ b/3532/CH4/EX4.5.1/Ex4_8.sce @@ -0,0 +1,17 @@ +clc
+clear
+mprintf('Mechanical vibrations by G.K.Grover\n Example 4.5.1\n')
+//given data
+X=0.015//amplitude of vibration of spring mass dashpot system in m
+f=100//frquency of vibration of spring mass dashpot system in Hz
+zeta=0.05
+fnD=22//damped natural frequency in Hz
+m=0.5//mass in kg
+//calculations
+W=2*%pi*fnD
+c=2*m*W*zeta// from Eqn 3.3.6 and Eqn 3.3.7
+Epercycl=%pi*c*(2*%pi*f)*X^2//Eqn 4.5.1...energy dissipated per cycle
+Epersec=Epercycl*f//energy dissipated per sec
+//output
+mprintf(' The power required to vibrate spring mass dashpot system with \n an amplitude of 1.5 cm and at frequency of 100 Hz is %4.4f Watts',Epersec)
+mprintf('\nNOTE: slight differnce in answer compared to textbook\n is due approximation of value of pi')
diff --git a/3532/CH4/EX4.5/Ex4_5.sce b/3532/CH4/EX4.5/Ex4_5.sce new file mode 100644 index 000000000..6b19a1838 --- /dev/null +++ b/3532/CH4/EX4.5/Ex4_5.sce @@ -0,0 +1,15 @@ +clc
+clear
+mprintf('Mechanical vibrations by G.K.Grover\n Example 4.4.1\n')
+//given data
+T=0.8//time period of free vibration in sec
+t=0.3//time for which the vertical distance has to be calculated
+//y=18*sin(2*pi*t)
+Y=18//max amplitude in mm
+//calculations
+W=2*%pi
+Wn=(2*%pi/T)
+bet=(W/Wn)
+x=(Y/(1-bet^2))*(sin(W*t)-bet*sin(Wn*t))// from eqn 4.4.17 explained in the same problem
+//output
+mprintf('The vertical distance moved by mass in the first 0.3 sec is %4.4f mm',x)
diff --git a/3532/CH4/EX4.6.1/Ex4_9.sce b/3532/CH4/EX4.6.1/Ex4_9.sce new file mode 100644 index 000000000..5e07c87c7 --- /dev/null +++ b/3532/CH4/EX4.6.1/Ex4_9.sce @@ -0,0 +1,21 @@ +clc
+clear
+mprintf('Mechanical vibrations by G.K.Grover\n Example 4.6.1\n')
+//given data
+mprintf('NOTE:The mass given in textbook should be equal\n to 3.7 kgs and not 8.7 Kgs')
+m=3.7//mass in kg
+g=9.81// gravity
+K=7550////stiffness of in N/m
+u=0.22//coefficient of friction
+Fo=19.6//amp of force in N
+f=5//frequency of force
+//calculations
+F=u*m*g//frictional force
+W=2*%pi*f
+Wn=sqrt(K/m)
+bet=(W/Wn)
+X=(Fo/K)*sqrt(1-(4*F/(%pi*Fo))^2)/(1-bet^2)//Eqn 4.6.2 in Sec 4.6
+Ceq=4*F/(%pi*W*X)//equivalent viscous damping Eqn 4.6.1 in Sec 4.6
+//output
+mprintf('\nThe amplitude of vibration of mass is %f m\n The equivalent viscous damping is %f N-sec/m',X,Ceq)
+mprintf('\nNOTE: slight differnce in answer compared to textbook\n is due approximation of value of pi in the taxtbook')
diff --git a/3532/CH4/EX4.6/Ex4_6.sce b/3532/CH4/EX4.6/Ex4_6.sce new file mode 100644 index 000000000..9a40f5466 --- /dev/null +++ b/3532/CH4/EX4.6/Ex4_6.sce @@ -0,0 +1,20 @@ +clc
+clear
+mprintf('Mechanical vibrations by G.K.Grover\n Example 4.4.2\n')
+//given data
+m=0.9//mass in kg
+K=1960//stiffness in N/m
+Y=5//amp of vibration of support in m
+N=1150//frequency in cycles per min
+//calculations
+Wn=sqrt(K/m)
+W=N*2*%pi/60//frequency of vibration of support
+bet=(W/Wn)
+//case 1
+zeta=0
+X1=Y*(sqrt(1+(2*zeta*bet)^2)/sqrt((1-bet^2)^2+(2*zeta*bet)^2))//Eqn (4.4.6)
+//case 2
+zeta =0.2
+X2=Y*(sqrt(1+(2*zeta*bet)^2)/sqrt((1-bet^2)^2+(2*zeta*bet)^2))//Eqn (4.4.6)
+//output
+mprintf('The amplitude of vibration when damping factor=0 is %4.4f mm \n If damping factor=0.2,then amplitude of vibration is %4.4f mm',X1,X2)
diff --git a/3532/CH4/EX4.7/Ex4_7.sce b/3532/CH4/EX4.7/Ex4_7.sce new file mode 100644 index 000000000..975af1a15 --- /dev/null +++ b/3532/CH4/EX4.7/Ex4_7.sce @@ -0,0 +1,19 @@ +clc
+clear
+mprintf('Mechanical vibrations by G.K.Grover\n Example 4.4.3\n')
+//given data
+delst=0.1//steady state defln in m
+g=9.81//acceleration due to gravity
+Y=0.08//amp of vibration of automobile in m
+lambda=14//wavelenght of profile in m
+//calculations
+Wn=sqrt(g/delst)
+fn=Wn/(2*%pi)//frequency of vibration of automobile in Hz
+Vc=(3600/1000)*lambda*fn//critical speed in km/hr
+V=60 //speed in km/hr
+W=V*(1000/3600)*(2*%pi/lambda)
+bet=(W/Wn)
+zeta=0
+X=Y*(sqrt(1+(2*zeta*bet)^2)/sqrt((1-bet^2)^2+(2*zeta*bet)^2))//Eqn (4.4.6)
+//output
+mprintf(' The critical speed of automobile %4.4f km/hr\n The amplitude of vibration at 60 Km/Hr is %4.4f m',Vc,X)
diff --git a/3532/CH4/EX4.8/Ex4_8.sce b/3532/CH4/EX4.8/Ex4_8.sce new file mode 100644 index 000000000..b7f52cdb5 --- /dev/null +++ b/3532/CH4/EX4.8/Ex4_8.sce @@ -0,0 +1,17 @@ +clc
+clear
+mprintf('Mechanical vibrations by G.K.Grover\n Example 4.5.1\n')
+//given data
+X=0.015//amplitude of vibration of spring mass dashpot system in m
+f=100//frquency of vibration of spring mass dashpot system in Hz
+zeta=0.05
+fnD=22//damped natural frequency in Hz
+m=0.5//mass in kg
+//calculations
+W=2*%pi*fnD
+c=2*m*W*zeta// from Eqn 3.3.6 and Eqn 3.3.7
+Epercycl=%pi*c*(2*%pi*f)*X^2//Eqn 4.5.1...energy dissipated per cycle
+Epersec=Epercycl*f//energy dissipated per sec
+//output
+mprintf(' The power required to vibrate spring mass dashpot system with \n an amplitude of 1.5 cm and at frequency of 100 Hz is %4.4f Watts',Epersec)
+mprintf('\nNOTE: slight differnce in answer compared to textbook\n is due approximation of value of pi')
diff --git a/3532/CH4/EX4.9/Ex4_9.sce b/3532/CH4/EX4.9/Ex4_9.sce new file mode 100644 index 000000000..5e07c87c7 --- /dev/null +++ b/3532/CH4/EX4.9/Ex4_9.sce @@ -0,0 +1,21 @@ +clc
+clear
+mprintf('Mechanical vibrations by G.K.Grover\n Example 4.6.1\n')
+//given data
+mprintf('NOTE:The mass given in textbook should be equal\n to 3.7 kgs and not 8.7 Kgs')
+m=3.7//mass in kg
+g=9.81// gravity
+K=7550////stiffness of in N/m
+u=0.22//coefficient of friction
+Fo=19.6//amp of force in N
+f=5//frequency of force
+//calculations
+F=u*m*g//frictional force
+W=2*%pi*f
+Wn=sqrt(K/m)
+bet=(W/Wn)
+X=(Fo/K)*sqrt(1-(4*F/(%pi*Fo))^2)/(1-bet^2)//Eqn 4.6.2 in Sec 4.6
+Ceq=4*F/(%pi*W*X)//equivalent viscous damping Eqn 4.6.1 in Sec 4.6
+//output
+mprintf('\nThe amplitude of vibration of mass is %f m\n The equivalent viscous damping is %f N-sec/m',X,Ceq)
+mprintf('\nNOTE: slight differnce in answer compared to textbook\n is due approximation of value of pi in the taxtbook')
|