From 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:27:19 +0530 Subject: initial commit / add all books --- 3532/CH4/EX4.1/Ex4_1.sce | 21 +++++++++++++++++++++ 3532/CH4/EX4.10.1/Ex4_12.sce | 28 ++++++++++++++++++++++++++++ 3532/CH4/EX4.10.2/Ex4_13.sce | 21 +++++++++++++++++++++ 3532/CH4/EX4.10.3/Ex4_14.sce | 23 +++++++++++++++++++++++ 3532/CH4/EX4.11.1/Ex4_15.sce | 15 +++++++++++++++ 3532/CH4/EX4.11.2/Ex4_16.sce | 35 +++++++++++++++++++++++++++++++++++ 3532/CH4/EX4.11.3/Ex4_17.sce | 19 +++++++++++++++++++ 3532/CH4/EX4.11.4/Ex4_18.sce | 15 +++++++++++++++ 3532/CH4/EX4.12/Ex4_12.sce | 28 ++++++++++++++++++++++++++++ 3532/CH4/EX4.13/Ex4_13.sce | 21 +++++++++++++++++++++ 3532/CH4/EX4.14/Ex4_14.sce | 23 +++++++++++++++++++++++ 3532/CH4/EX4.15/Ex4_15.sce | 15 +++++++++++++++ 3532/CH4/EX4.16/Ex4_16.sce | 35 +++++++++++++++++++++++++++++++++++ 3532/CH4/EX4.17/Ex4_17.sce | 19 +++++++++++++++++++ 3532/CH4/EX4.18/Ex4_18.sce | 15 +++++++++++++++ 3532/CH4/EX4.2.1/Ex4_1.sce | 21 +++++++++++++++++++++ 3532/CH4/EX4.2.2/Ex4_2.sce | 19 +++++++++++++++++++ 3532/CH4/EX4.2/Ex4_2.sce | 19 +++++++++++++++++++ 3532/CH4/EX4.3.1/Ex4_3.sce | 20 ++++++++++++++++++++ 3532/CH4/EX4.3.2/Ex4_4.sce | 22 ++++++++++++++++++++++ 3532/CH4/EX4.3/Ex4_3.sce | 20 ++++++++++++++++++++ 3532/CH4/EX4.4.1/Ex4_5.sce | 15 +++++++++++++++ 3532/CH4/EX4.4.2/Ex4_6.sce | 20 ++++++++++++++++++++ 3532/CH4/EX4.4.3/Ex4_7.sce | 19 +++++++++++++++++++ 3532/CH4/EX4.4/Ex4_4.sce | 22 ++++++++++++++++++++++ 3532/CH4/EX4.5.1/Ex4_8.sce | 17 +++++++++++++++++ 3532/CH4/EX4.5/Ex4_5.sce | 15 +++++++++++++++ 3532/CH4/EX4.6.1/Ex4_9.sce | 21 +++++++++++++++++++++ 3532/CH4/EX4.6/Ex4_6.sce | 20 ++++++++++++++++++++ 3532/CH4/EX4.7/Ex4_7.sce | 19 +++++++++++++++++++ 3532/CH4/EX4.8/Ex4_8.sce | 17 +++++++++++++++++ 3532/CH4/EX4.9/Ex4_9.sce | 21 +++++++++++++++++++++ 32 files changed, 660 insertions(+) create mode 100644 3532/CH4/EX4.1/Ex4_1.sce create mode 100644 3532/CH4/EX4.10.1/Ex4_12.sce create mode 100644 3532/CH4/EX4.10.2/Ex4_13.sce create mode 100644 3532/CH4/EX4.10.3/Ex4_14.sce create mode 100644 3532/CH4/EX4.11.1/Ex4_15.sce create mode 100644 3532/CH4/EX4.11.2/Ex4_16.sce create mode 100644 3532/CH4/EX4.11.3/Ex4_17.sce create mode 100644 3532/CH4/EX4.11.4/Ex4_18.sce create mode 100644 3532/CH4/EX4.12/Ex4_12.sce create mode 100644 3532/CH4/EX4.13/Ex4_13.sce create mode 100644 3532/CH4/EX4.14/Ex4_14.sce create mode 100644 3532/CH4/EX4.15/Ex4_15.sce create mode 100644 3532/CH4/EX4.16/Ex4_16.sce create mode 100644 3532/CH4/EX4.17/Ex4_17.sce create mode 100644 3532/CH4/EX4.18/Ex4_18.sce create mode 100644 3532/CH4/EX4.2.1/Ex4_1.sce create mode 100644 3532/CH4/EX4.2.2/Ex4_2.sce create mode 100644 3532/CH4/EX4.2/Ex4_2.sce create mode 100644 3532/CH4/EX4.3.1/Ex4_3.sce create mode 100644 3532/CH4/EX4.3.2/Ex4_4.sce create mode 100644 3532/CH4/EX4.3/Ex4_3.sce create mode 100644 3532/CH4/EX4.4.1/Ex4_5.sce create mode 100644 3532/CH4/EX4.4.2/Ex4_6.sce create mode 100644 3532/CH4/EX4.4.3/Ex4_7.sce create mode 100644 3532/CH4/EX4.4/Ex4_4.sce create mode 100644 3532/CH4/EX4.5.1/Ex4_8.sce create mode 100644 3532/CH4/EX4.5/Ex4_5.sce create mode 100644 3532/CH4/EX4.6.1/Ex4_9.sce create mode 100644 3532/CH4/EX4.6/Ex4_6.sce create mode 100644 3532/CH4/EX4.7/Ex4_7.sce create mode 100644 3532/CH4/EX4.8/Ex4_8.sce create mode 100644 3532/CH4/EX4.9/Ex4_9.sce (limited to '3532/CH4') diff --git a/3532/CH4/EX4.1/Ex4_1.sce b/3532/CH4/EX4.1/Ex4_1.sce new file mode 100644 index 000000000..8dfd86913 --- /dev/null +++ b/3532/CH4/EX4.1/Ex4_1.sce @@ -0,0 +1,21 @@ +clc +clear +mprintf('Mechanical vibrations by G.K.Grover\n Example 4.2.1\n') +//given data +//T=To*sin(W*t) +To=0.588 //maximum value of periodic torque in N-m +W=4// freqency of applied force in rad/sec +J=0.12//moment of inertia of wheel in kg-m^2 +Kt=1.176//stiffness of wire in N-m/rad +Ct=0.392/1 //damping coefficient in N-m_sec/rad +//calculations +theta=To/sqrt((Kt-J*W^2)^2+(Ct*W)^2)//Equation for torsional vibration amplitude from Fig (4.2.2) and Eqn (4.2.5) +MaxDcoup=Ct*W*theta//maximum damping couple in N-m +if atan((Ct*W)/(Kt-J*W^2))>0 then + phiD=(180/%pi)*atan((Ct*W)/(Kt-J*W^2));//from eqn 4.2.6(in degrees) +else + phiD=180+(180/%pi)*atan((Ct*W)/(Kt-J*W^2)); + +end +//output +mprintf(' a)The maximum angular displacement from rest position is %4.4f radians\n b)The maximum couple applied to dashpot is %4.4f N-m\n c)angle by which the angular displacement lags the torque is %4.4f degrees',theta,MaxDcoup,phiD) diff --git a/3532/CH4/EX4.10.1/Ex4_12.sce b/3532/CH4/EX4.10.1/Ex4_12.sce new file mode 100644 index 000000000..ccfe11d19 --- /dev/null +++ b/3532/CH4/EX4.10.1/Ex4_12.sce @@ -0,0 +1,28 @@ +clc +clear +mprintf('Mechanical vibrations by G.K.Grover\n Example 4.10.1\n') +//given data +m=1000//mass of machine in kg +Fo=490//amp of force in N +f=180//freq inRPM +//calculations +//case a) +K=1.96*10^6//total stiffness of springs in N/m +Wn=sqrt(K/m) +W=2*%pi*f/60 +bet=(W/Wn) +zeta=0 +Xst1=Fo/K//amplitude of steady state +X1=Xst1*(1/(sqrt((1-bet^2)^2+(2*zeta*bet)^2)))//amp of vibration Eqn 4.2.15 in Sec 4.2.1 +Ftr1=Fo*sqrt(1+(2*zeta*bet)^2)/sqrt((1-bet^2)^2+(2*zeta*bet)^2)//force transmitted,Eqn 4.10.2 in Sec 4.10.1 +//case b) +K=9.8*10^4//total stiffness of springs in N/m +Wn=sqrt(K/m) +W=2*%pi*f/60 +bet=(W/Wn) +zeta=0 +Xst2=Fo/K//amplitude of steady state +X2=Xst2*(1/(sqrt((1-bet^2)^2+(2*zeta*bet)^2)))//amp of vibration Eqn 4.2.15 in Sec 4.2.1 +Ftr2=Fo*sqrt(1+(2*zeta*bet)^2)/sqrt((1-bet^2)^2+(2*zeta*bet)^2)//force transmitted,Eqn 4.10.2 in Sec 4.10.1 +//output +mprintf(' a)The amplitude of motion of machine is %f m and the maximum force transmitted\n to the foundation because of the unbalanced force when\n K=1.96*10^6 N/m is %4.4f N\n b)for same case as in a)if K=9.8*10^4 N/m then\n the amplitude of motion of machine is %f m\n and the maximum force transmitted to the foundation because of\n the unbalanced force %4.4f N',X1,Ftr1,X2,Ftr2) diff --git a/3532/CH4/EX4.10.2/Ex4_13.sce b/3532/CH4/EX4.10.2/Ex4_13.sce new file mode 100644 index 000000000..4d2ebbd0e --- /dev/null +++ b/3532/CH4/EX4.10.2/Ex4_13.sce @@ -0,0 +1,21 @@ +clc +clear +mprintf('Mechanical vibrations by G.K.Grover\n Example 4.10.2\n') +//given data +m=75//mass of machine in kg +K=11.76*10^5//stiffness of springs in N/m +zeta=0.2 +mo=2//mass of piston in kg +stroke=0.08//in m +e=stroke/2//in m +N=3000//spee in c.p.m +//calculations +Wn=sqrt(K/m) +W=2*%pi*N/60 +bet=(W/Wn) +y=(mo/m) +Fo=mo*W^2*e//max force exerted +X=y*e*bet^2/(sqrt((1-bet^2)^2+(2*zeta*bet)^2))//Eqn 4.3.2 +Ftr=Fo*sqrt(1+(2*zeta*bet)^2)/sqrt((1-bet^2)^2+(2*zeta*bet)^2)//force transmitted,Eqn 4.10.2 in Sec 4.10.1 +mprintf(' a)The amplitude of vibration of machine is %f m and the \n the vibratory force Ftr transmitted to the foundation is %5.4f N',X,Ftr) +mprintf('\nNOTE: slight differnce in answer compared to textbook\n is due approximation of values in textbook') diff --git a/3532/CH4/EX4.10.3/Ex4_14.sce b/3532/CH4/EX4.10.3/Ex4_14.sce new file mode 100644 index 000000000..44a536569 --- /dev/null +++ b/3532/CH4/EX4.10.3/Ex4_14.sce @@ -0,0 +1,23 @@ +clc +clear +mprintf('Mechanical vibrations by G.K.Grover\n Example 4.10.3\n') +// given data +m=20 //mass in kgs +k=125600 //overall eqivalent stiffness i.e 4*31400 in N/m +c=1568 //overall damping coefficient i.e 4*392 in N-sec/m +n=500 //vibrating speed of machine in cpm +//y=Ysin(w*t) +Y=0.00005 //vibrating amplitude of machine in m +W=2*%pi*n/60 //vibrating frequency in rad/sec +Wn=sqrt(k/m) //natural frequency in rad/sec +bet=(W/Wn) //speed ratio +zeta=c/(2*sqrt(k*m)) //damping factor +//calculations +X=Y*sqrt((1+(2*zeta*bet)^2)/((1-bet^2)^2+(2*zeta*bet)^2)) //absolute amplitude of vibration of radio from eqn (4.4.6) +Z=Y*((bet^2)/sqrt(((1-bet^2)^2+(2*zeta*bet)^2)))//from eqn 4.4.11 +FdynT=Z*sqrt((c*W)^2+k^2)//dynamic load total +Fdyn=FdynT/4 //dynamic load on each isolator +FdynTmax=m*W^2*X //max dynamic load on the isolators +Fdynmax=FdynTmax/4 //max dynamic load on each isolator +//output +mprintf('a) The amplitude of vibration of radio is %f metres \n b)the dynamic load on each isolator due to vibration is %3.3f N',X,Fdyn) diff --git a/3532/CH4/EX4.11.1/Ex4_15.sce b/3532/CH4/EX4.11.1/Ex4_15.sce new file mode 100644 index 000000000..4696ee57f --- /dev/null +++ b/3532/CH4/EX4.11.1/Ex4_15.sce @@ -0,0 +1,15 @@ +clc +clear +mprintf('Mechanical vibrations by G.K.Grover\n Example 4.11.1\n') +//given data +T=2//period of free vibration in sec +f=1//vertical harmonic frequency of machine in in Hz +Z=2.5//amplitude of vibrotometer mass relative to vibrotometer frame in mm +//calculations +Wn=2*%pi/T +W=2*%pi*f +bet=(W/Wn) +zeta=0//for vibrotometers +Y=Z*(sqrt((1-bet^2)^2+(2*zeta*bet)^2))/bet^2//amplitude of vibration of machine Eqn 4.4.11 in Sec 4.4.2 +//output +mprintf(' The amplitude of vibration of support of machine is %4.4f mm',Y) diff --git a/3532/CH4/EX4.11.2/Ex4_16.sce b/3532/CH4/EX4.11.2/Ex4_16.sce new file mode 100644 index 000000000..44826cf62 --- /dev/null +++ b/3532/CH4/EX4.11.2/Ex4_16.sce @@ -0,0 +1,35 @@ +clc +clear +mprintf('Mechanical vibrations by G.K.Grover\n Example 4.11.2\n') +//given data +fn=5.75//natural frequency in Hz +zeta=0.65 +ZbyY=1.01 +//case 1 +//substituting for (Z/Y)=1.01 and (W/Wn)=r^2 in Eqn 4.4.11 we get the quadratic eqn as follows +//0.02*r^4-0.31*r^2+1=0 +//solving for r in above eqn whose rootes are r1 and r2 +r1=sqrt(((0.31)+sqrt(((-0.31)^2)-4*0.02*1))/(2*0.02)) +r2=sqrt(((0.31)-sqrt(((-0.31)^2)-4*0.02*1))/(2*0.02)) +if r1>r2 then + r=r1 + else r=r2 +end +bet=r//bet=(W/Wn) +f1=bet*fn +//case 2 +ZbyY=0.98 +//substituting for (Z/Y)=0.98 and (W/Wn)=r^2 in Eqn 4.4.11 we get the quadratic eqn as follows +//0.04*r^4+0.31*r^2-1=0 +//solving for r in above eqn whose rootes are r3 and r4 +r3=sqrt((-0.31+sqrt(((0.31)^2)-4*0.04*-1))/(2*0.04)) +r4=sqrt((-0.31-sqrt(((0.31)^2)-4*0.04*-1))/(2*0.04)) +t1=real(r3) +t2=real(r4) +if t1>t2 then + r=r3 + else r=r4 +end +bet=r//bet=(W/Wn) +f2=bet*fn +mprintf('The lowest frequency beyond which the amplitude can be measured within\n (i)one percent error is %4.4f Hz\n (ii)two percent error is %4.4f Hz',f1,f2) diff --git a/3532/CH4/EX4.11.3/Ex4_17.sce b/3532/CH4/EX4.11.3/Ex4_17.sce new file mode 100644 index 000000000..827e5825e --- /dev/null +++ b/3532/CH4/EX4.11.3/Ex4_17.sce @@ -0,0 +1,19 @@ +clc +clear +mprintf('Mechanical vibrations by G.K.Grover\n Example 4.11.3\n') +//given data +J=0.049//moment of inertia in kg-m^2 +Kt=0.98//stiffness in N-m/rad +Ct=0.11//damping coefficient in N-m_sec/rad +N=15//R.P.M +thetaRD=2//relative amplitude between ring and shaft in degrees +//calculations +W=N*2*%pi/60 //frequency of vibrating shaft in rad/sec +Wn=sqrt(Kt/J) //natural freqency in rad/sec +zeta=(Ct/(2*sqrt(Kt*J))) //damping factor +thetaRR=(thetaRD/(57.3)) //relative amplitude in radians +bet=(W/Wn) +thetamax=thetaRR*((sqrt((1-bet^2)^2+(2*zeta*bet)^2)/bet^2)) +maxacc=(W^2)*thetamax +//output +mprintf('The maximum acceleration of the shaft is %4.4f rad/(sec^2)',maxacc) diff --git a/3532/CH4/EX4.11.4/Ex4_18.sce b/3532/CH4/EX4.11.4/Ex4_18.sce new file mode 100644 index 000000000..b568e3c24 --- /dev/null +++ b/3532/CH4/EX4.11.4/Ex4_18.sce @@ -0,0 +1,15 @@ +clc +clear +mprintf('Mechanical vibrations by G.K.Grover\n Example 4.11.4\n') +//given data +RF=1800//resonant frequency in rpm +L=0.050//lenght of steel reed in metres +B=0.006//width of steel reed in metres +t=0.00075//thickness of steel reed in metres +E=19.6*10^10//young's modulus in N/(m^2) +//calculations +Wn=2*%pi*RF/60//natural frequency in radians +I=(B*t^3)/12//moment of inertia in (m^4) +m=3*E*I/((Wn^2)*L^3)//required mass +//output +mprintf('The required mass M to be placed at the end of the reeds of Frahm tachometer is %f Kgs',m) diff --git a/3532/CH4/EX4.12/Ex4_12.sce b/3532/CH4/EX4.12/Ex4_12.sce new file mode 100644 index 000000000..ccfe11d19 --- /dev/null +++ b/3532/CH4/EX4.12/Ex4_12.sce @@ -0,0 +1,28 @@ +clc +clear +mprintf('Mechanical vibrations by G.K.Grover\n Example 4.10.1\n') +//given data +m=1000//mass of machine in kg +Fo=490//amp of force in N +f=180//freq inRPM +//calculations +//case a) +K=1.96*10^6//total stiffness of springs in N/m +Wn=sqrt(K/m) +W=2*%pi*f/60 +bet=(W/Wn) +zeta=0 +Xst1=Fo/K//amplitude of steady state +X1=Xst1*(1/(sqrt((1-bet^2)^2+(2*zeta*bet)^2)))//amp of vibration Eqn 4.2.15 in Sec 4.2.1 +Ftr1=Fo*sqrt(1+(2*zeta*bet)^2)/sqrt((1-bet^2)^2+(2*zeta*bet)^2)//force transmitted,Eqn 4.10.2 in Sec 4.10.1 +//case b) +K=9.8*10^4//total stiffness of springs in N/m +Wn=sqrt(K/m) +W=2*%pi*f/60 +bet=(W/Wn) +zeta=0 +Xst2=Fo/K//amplitude of steady state +X2=Xst2*(1/(sqrt((1-bet^2)^2+(2*zeta*bet)^2)))//amp of vibration Eqn 4.2.15 in Sec 4.2.1 +Ftr2=Fo*sqrt(1+(2*zeta*bet)^2)/sqrt((1-bet^2)^2+(2*zeta*bet)^2)//force transmitted,Eqn 4.10.2 in Sec 4.10.1 +//output +mprintf(' a)The amplitude of motion of machine is %f m and the maximum force transmitted\n to the foundation because of the unbalanced force when\n K=1.96*10^6 N/m is %4.4f N\n b)for same case as in a)if K=9.8*10^4 N/m then\n the amplitude of motion of machine is %f m\n and the maximum force transmitted to the foundation because of\n the unbalanced force %4.4f N',X1,Ftr1,X2,Ftr2) diff --git a/3532/CH4/EX4.13/Ex4_13.sce b/3532/CH4/EX4.13/Ex4_13.sce new file mode 100644 index 000000000..4d2ebbd0e --- /dev/null +++ b/3532/CH4/EX4.13/Ex4_13.sce @@ -0,0 +1,21 @@ +clc +clear +mprintf('Mechanical vibrations by G.K.Grover\n Example 4.10.2\n') +//given data +m=75//mass of machine in kg +K=11.76*10^5//stiffness of springs in N/m +zeta=0.2 +mo=2//mass of piston in kg +stroke=0.08//in m +e=stroke/2//in m +N=3000//spee in c.p.m +//calculations +Wn=sqrt(K/m) +W=2*%pi*N/60 +bet=(W/Wn) +y=(mo/m) +Fo=mo*W^2*e//max force exerted +X=y*e*bet^2/(sqrt((1-bet^2)^2+(2*zeta*bet)^2))//Eqn 4.3.2 +Ftr=Fo*sqrt(1+(2*zeta*bet)^2)/sqrt((1-bet^2)^2+(2*zeta*bet)^2)//force transmitted,Eqn 4.10.2 in Sec 4.10.1 +mprintf(' a)The amplitude of vibration of machine is %f m and the \n the vibratory force Ftr transmitted to the foundation is %5.4f N',X,Ftr) +mprintf('\nNOTE: slight differnce in answer compared to textbook\n is due approximation of values in textbook') diff --git a/3532/CH4/EX4.14/Ex4_14.sce b/3532/CH4/EX4.14/Ex4_14.sce new file mode 100644 index 000000000..44a536569 --- /dev/null +++ b/3532/CH4/EX4.14/Ex4_14.sce @@ -0,0 +1,23 @@ +clc +clear +mprintf('Mechanical vibrations by G.K.Grover\n Example 4.10.3\n') +// given data +m=20 //mass in kgs +k=125600 //overall eqivalent stiffness i.e 4*31400 in N/m +c=1568 //overall damping coefficient i.e 4*392 in N-sec/m +n=500 //vibrating speed of machine in cpm +//y=Ysin(w*t) +Y=0.00005 //vibrating amplitude of machine in m +W=2*%pi*n/60 //vibrating frequency in rad/sec +Wn=sqrt(k/m) //natural frequency in rad/sec +bet=(W/Wn) //speed ratio +zeta=c/(2*sqrt(k*m)) //damping factor +//calculations +X=Y*sqrt((1+(2*zeta*bet)^2)/((1-bet^2)^2+(2*zeta*bet)^2)) //absolute amplitude of vibration of radio from eqn (4.4.6) +Z=Y*((bet^2)/sqrt(((1-bet^2)^2+(2*zeta*bet)^2)))//from eqn 4.4.11 +FdynT=Z*sqrt((c*W)^2+k^2)//dynamic load total +Fdyn=FdynT/4 //dynamic load on each isolator +FdynTmax=m*W^2*X //max dynamic load on the isolators +Fdynmax=FdynTmax/4 //max dynamic load on each isolator +//output +mprintf('a) The amplitude of vibration of radio is %f metres \n b)the dynamic load on each isolator due to vibration is %3.3f N',X,Fdyn) diff --git a/3532/CH4/EX4.15/Ex4_15.sce b/3532/CH4/EX4.15/Ex4_15.sce new file mode 100644 index 000000000..4696ee57f --- /dev/null +++ b/3532/CH4/EX4.15/Ex4_15.sce @@ -0,0 +1,15 @@ +clc +clear +mprintf('Mechanical vibrations by G.K.Grover\n Example 4.11.1\n') +//given data +T=2//period of free vibration in sec +f=1//vertical harmonic frequency of machine in in Hz +Z=2.5//amplitude of vibrotometer mass relative to vibrotometer frame in mm +//calculations +Wn=2*%pi/T +W=2*%pi*f +bet=(W/Wn) +zeta=0//for vibrotometers +Y=Z*(sqrt((1-bet^2)^2+(2*zeta*bet)^2))/bet^2//amplitude of vibration of machine Eqn 4.4.11 in Sec 4.4.2 +//output +mprintf(' The amplitude of vibration of support of machine is %4.4f mm',Y) diff --git a/3532/CH4/EX4.16/Ex4_16.sce b/3532/CH4/EX4.16/Ex4_16.sce new file mode 100644 index 000000000..44826cf62 --- /dev/null +++ b/3532/CH4/EX4.16/Ex4_16.sce @@ -0,0 +1,35 @@ +clc +clear +mprintf('Mechanical vibrations by G.K.Grover\n Example 4.11.2\n') +//given data +fn=5.75//natural frequency in Hz +zeta=0.65 +ZbyY=1.01 +//case 1 +//substituting for (Z/Y)=1.01 and (W/Wn)=r^2 in Eqn 4.4.11 we get the quadratic eqn as follows +//0.02*r^4-0.31*r^2+1=0 +//solving for r in above eqn whose rootes are r1 and r2 +r1=sqrt(((0.31)+sqrt(((-0.31)^2)-4*0.02*1))/(2*0.02)) +r2=sqrt(((0.31)-sqrt(((-0.31)^2)-4*0.02*1))/(2*0.02)) +if r1>r2 then + r=r1 + else r=r2 +end +bet=r//bet=(W/Wn) +f1=bet*fn +//case 2 +ZbyY=0.98 +//substituting for (Z/Y)=0.98 and (W/Wn)=r^2 in Eqn 4.4.11 we get the quadratic eqn as follows +//0.04*r^4+0.31*r^2-1=0 +//solving for r in above eqn whose rootes are r3 and r4 +r3=sqrt((-0.31+sqrt(((0.31)^2)-4*0.04*-1))/(2*0.04)) +r4=sqrt((-0.31-sqrt(((0.31)^2)-4*0.04*-1))/(2*0.04)) +t1=real(r3) +t2=real(r4) +if t1>t2 then + r=r3 + else r=r4 +end +bet=r//bet=(W/Wn) +f2=bet*fn +mprintf('The lowest frequency beyond which the amplitude can be measured within\n (i)one percent error is %4.4f Hz\n (ii)two percent error is %4.4f Hz',f1,f2) diff --git a/3532/CH4/EX4.17/Ex4_17.sce b/3532/CH4/EX4.17/Ex4_17.sce new file mode 100644 index 000000000..827e5825e --- /dev/null +++ b/3532/CH4/EX4.17/Ex4_17.sce @@ -0,0 +1,19 @@ +clc +clear +mprintf('Mechanical vibrations by G.K.Grover\n Example 4.11.3\n') +//given data +J=0.049//moment of inertia in kg-m^2 +Kt=0.98//stiffness in N-m/rad +Ct=0.11//damping coefficient in N-m_sec/rad +N=15//R.P.M +thetaRD=2//relative amplitude between ring and shaft in degrees +//calculations +W=N*2*%pi/60 //frequency of vibrating shaft in rad/sec +Wn=sqrt(Kt/J) //natural freqency in rad/sec +zeta=(Ct/(2*sqrt(Kt*J))) //damping factor +thetaRR=(thetaRD/(57.3)) //relative amplitude in radians +bet=(W/Wn) +thetamax=thetaRR*((sqrt((1-bet^2)^2+(2*zeta*bet)^2)/bet^2)) +maxacc=(W^2)*thetamax +//output +mprintf('The maximum acceleration of the shaft is %4.4f rad/(sec^2)',maxacc) diff --git a/3532/CH4/EX4.18/Ex4_18.sce b/3532/CH4/EX4.18/Ex4_18.sce new file mode 100644 index 000000000..b568e3c24 --- /dev/null +++ b/3532/CH4/EX4.18/Ex4_18.sce @@ -0,0 +1,15 @@ +clc +clear +mprintf('Mechanical vibrations by G.K.Grover\n Example 4.11.4\n') +//given data +RF=1800//resonant frequency in rpm +L=0.050//lenght of steel reed in metres +B=0.006//width of steel reed in metres +t=0.00075//thickness of steel reed in metres +E=19.6*10^10//young's modulus in N/(m^2) +//calculations +Wn=2*%pi*RF/60//natural frequency in radians +I=(B*t^3)/12//moment of inertia in (m^4) +m=3*E*I/((Wn^2)*L^3)//required mass +//output +mprintf('The required mass M to be placed at the end of the reeds of Frahm tachometer is %f Kgs',m) diff --git a/3532/CH4/EX4.2.1/Ex4_1.sce b/3532/CH4/EX4.2.1/Ex4_1.sce new file mode 100644 index 000000000..8dfd86913 --- /dev/null +++ b/3532/CH4/EX4.2.1/Ex4_1.sce @@ -0,0 +1,21 @@ +clc +clear +mprintf('Mechanical vibrations by G.K.Grover\n Example 4.2.1\n') +//given data +//T=To*sin(W*t) +To=0.588 //maximum value of periodic torque in N-m +W=4// freqency of applied force in rad/sec +J=0.12//moment of inertia of wheel in kg-m^2 +Kt=1.176//stiffness of wire in N-m/rad +Ct=0.392/1 //damping coefficient in N-m_sec/rad +//calculations +theta=To/sqrt((Kt-J*W^2)^2+(Ct*W)^2)//Equation for torsional vibration amplitude from Fig (4.2.2) and Eqn (4.2.5) +MaxDcoup=Ct*W*theta//maximum damping couple in N-m +if atan((Ct*W)/(Kt-J*W^2))>0 then + phiD=(180/%pi)*atan((Ct*W)/(Kt-J*W^2));//from eqn 4.2.6(in degrees) +else + phiD=180+(180/%pi)*atan((Ct*W)/(Kt-J*W^2)); + +end +//output +mprintf(' a)The maximum angular displacement from rest position is %4.4f radians\n b)The maximum couple applied to dashpot is %4.4f N-m\n c)angle by which the angular displacement lags the torque is %4.4f degrees',theta,MaxDcoup,phiD) diff --git a/3532/CH4/EX4.2.2/Ex4_2.sce b/3532/CH4/EX4.2.2/Ex4_2.sce new file mode 100644 index 000000000..ebbfc6c90 --- /dev/null +++ b/3532/CH4/EX4.2.2/Ex4_2.sce @@ -0,0 +1,19 @@ +clc +clear +mprintf('Mechanical vibrations by G.K.Grover\n Example 4.2.2\n') +//given data +Wd=9.8*2*%pi// damped natural freqency in rad/sec +Wp=9.6*2*%pi//freqency from forced vibration test in rad/sec +//calculations +//(Wp/Wn)=sqrt(1-2*zeta^2)...(1) from Eqn 4.2.18 from Sec 4.2.1 +//(Wd/Wn)=sqrt(1-zeta^2)...(2) from Eqn 4.2.19 from Sec 4.2.1 +//dividing (1) by (2) +x=(Wp/Wd) +//x=[sqrt(1-2*zeta^2)]/[sqrt(1-zeta^2)] +zeta=sqrt((1-x)/(2-x))//damping factor obtained on simplifying the above eqn +//substituting for zeta in eqn 2 above +Wn=Wd/sqrt(1-zeta^2)//natural frequency of system in rad/sec +fn=Wn/(2*%pi)//natural frequency of system in Hz +//output +mprintf('The damping factor for the system is %f and\n the natural frequency is %4.4f rad/sec or %4.2f Hz',zeta,Wn,fn) +mprintf('\nNOTE:The damping factor zeta given in textbook is 0.196,which is wrong.') diff --git a/3532/CH4/EX4.2/Ex4_2.sce b/3532/CH4/EX4.2/Ex4_2.sce new file mode 100644 index 000000000..ebbfc6c90 --- /dev/null +++ b/3532/CH4/EX4.2/Ex4_2.sce @@ -0,0 +1,19 @@ +clc +clear +mprintf('Mechanical vibrations by G.K.Grover\n Example 4.2.2\n') +//given data +Wd=9.8*2*%pi// damped natural freqency in rad/sec +Wp=9.6*2*%pi//freqency from forced vibration test in rad/sec +//calculations +//(Wp/Wn)=sqrt(1-2*zeta^2)...(1) from Eqn 4.2.18 from Sec 4.2.1 +//(Wd/Wn)=sqrt(1-zeta^2)...(2) from Eqn 4.2.19 from Sec 4.2.1 +//dividing (1) by (2) +x=(Wp/Wd) +//x=[sqrt(1-2*zeta^2)]/[sqrt(1-zeta^2)] +zeta=sqrt((1-x)/(2-x))//damping factor obtained on simplifying the above eqn +//substituting for zeta in eqn 2 above +Wn=Wd/sqrt(1-zeta^2)//natural frequency of system in rad/sec +fn=Wn/(2*%pi)//natural frequency of system in Hz +//output +mprintf('The damping factor for the system is %f and\n the natural frequency is %4.4f rad/sec or %4.2f Hz',zeta,Wn,fn) +mprintf('\nNOTE:The damping factor zeta given in textbook is 0.196,which is wrong.') diff --git a/3532/CH4/EX4.3.1/Ex4_3.sce b/3532/CH4/EX4.3.1/Ex4_3.sce new file mode 100644 index 000000000..43d47e288 --- /dev/null +++ b/3532/CH4/EX4.3.1/Ex4_3.sce @@ -0,0 +1,20 @@ +clc +clear +mprintf('Mechanical vibrations b G.K.Grover\n Example 4.3.1\n') +//given data +m=1200//mass of motor in kg +mo=1//unbalanced mass on motor in kg +e=0.06//location of unbalanced mass from motor in m +Wn=2210*(2*%pi/60)//resonant freq in rad/sec +W=1440*(2*%pi/60)//operating freq +//calculations +//case 1 +zeta=0.1 +bet=(W/Wn) +y=(mo/m)//from eqn 4.3.2 +X1=(y*e)*(bet)^2/sqrt((1-bet^2)^2+(2*zeta*bet)^2)//from eqn 4.3.2 +//case 2 +zeta=0 +X2=(y*e)*(bet)^2/sqrt((1-bet^2)^2+(2*zeta*bet)^2)//from eqn 4.3.2 +//output +mprintf('If the damping is less than 0.1 then the amplitude of \n vibration will be between %f m and %f m',X1,X2) diff --git a/3532/CH4/EX4.3.2/Ex4_4.sce b/3532/CH4/EX4.3.2/Ex4_4.sce new file mode 100644 index 000000000..d02fc736f --- /dev/null +++ b/3532/CH4/EX4.3.2/Ex4_4.sce @@ -0,0 +1,22 @@ +clc +clear +mprintf('Mechanical vibrations by G.K.Grover\n Example 4.3.2\n') +//given data +m=320//mass of engine in kg +mo=24//reciprocating mass on motor in kg +r=0.15//vertical stroke in m +e=r/2 +delst=0.002//stati defln in m +C=490/(0.3)//damping recistance in N-sec/m +g=9.81// gravity in m/sec^2 +N=480//speed in rpm in case b) +//calculation +Wn=sqrt(g/delst) //natural freqency in rad/sec +Nr=Wn/(2*%pi)*60 //resonant speed in rpm +W=(2*%pi*N/60) +bet=(W/Wn) +zeta=(C/(2*m*Wn)) //damping factor +y=(mo/m)//from eqn 4.3.2 +X=(y*e)*(bet)^2/sqrt((1-bet^2)^2+(2*zeta*bet)^2)//from eqn 4.3.2 +//output +mprintf(' a)speed of driving shaft at which esonance occurs is %4.4f RPM\n b)The amplitude of steady state forced vibrations when the driving shaft \n of the engine rotates at 480 RPM is %f m',Nr,X) diff --git a/3532/CH4/EX4.3/Ex4_3.sce b/3532/CH4/EX4.3/Ex4_3.sce new file mode 100644 index 000000000..43d47e288 --- /dev/null +++ b/3532/CH4/EX4.3/Ex4_3.sce @@ -0,0 +1,20 @@ +clc +clear +mprintf('Mechanical vibrations b G.K.Grover\n Example 4.3.1\n') +//given data +m=1200//mass of motor in kg +mo=1//unbalanced mass on motor in kg +e=0.06//location of unbalanced mass from motor in m +Wn=2210*(2*%pi/60)//resonant freq in rad/sec +W=1440*(2*%pi/60)//operating freq +//calculations +//case 1 +zeta=0.1 +bet=(W/Wn) +y=(mo/m)//from eqn 4.3.2 +X1=(y*e)*(bet)^2/sqrt((1-bet^2)^2+(2*zeta*bet)^2)//from eqn 4.3.2 +//case 2 +zeta=0 +X2=(y*e)*(bet)^2/sqrt((1-bet^2)^2+(2*zeta*bet)^2)//from eqn 4.3.2 +//output +mprintf('If the damping is less than 0.1 then the amplitude of \n vibration will be between %f m and %f m',X1,X2) diff --git a/3532/CH4/EX4.4.1/Ex4_5.sce b/3532/CH4/EX4.4.1/Ex4_5.sce new file mode 100644 index 000000000..6b19a1838 --- /dev/null +++ b/3532/CH4/EX4.4.1/Ex4_5.sce @@ -0,0 +1,15 @@ +clc +clear +mprintf('Mechanical vibrations by G.K.Grover\n Example 4.4.1\n') +//given data +T=0.8//time period of free vibration in sec +t=0.3//time for which the vertical distance has to be calculated +//y=18*sin(2*pi*t) +Y=18//max amplitude in mm +//calculations +W=2*%pi +Wn=(2*%pi/T) +bet=(W/Wn) +x=(Y/(1-bet^2))*(sin(W*t)-bet*sin(Wn*t))// from eqn 4.4.17 explained in the same problem +//output +mprintf('The vertical distance moved by mass in the first 0.3 sec is %4.4f mm',x) diff --git a/3532/CH4/EX4.4.2/Ex4_6.sce b/3532/CH4/EX4.4.2/Ex4_6.sce new file mode 100644 index 000000000..9a40f5466 --- /dev/null +++ b/3532/CH4/EX4.4.2/Ex4_6.sce @@ -0,0 +1,20 @@ +clc +clear +mprintf('Mechanical vibrations by G.K.Grover\n Example 4.4.2\n') +//given data +m=0.9//mass in kg +K=1960//stiffness in N/m +Y=5//amp of vibration of support in m +N=1150//frequency in cycles per min +//calculations +Wn=sqrt(K/m) +W=N*2*%pi/60//frequency of vibration of support +bet=(W/Wn) +//case 1 +zeta=0 +X1=Y*(sqrt(1+(2*zeta*bet)^2)/sqrt((1-bet^2)^2+(2*zeta*bet)^2))//Eqn (4.4.6) +//case 2 +zeta =0.2 +X2=Y*(sqrt(1+(2*zeta*bet)^2)/sqrt((1-bet^2)^2+(2*zeta*bet)^2))//Eqn (4.4.6) +//output +mprintf('The amplitude of vibration when damping factor=0 is %4.4f mm \n If damping factor=0.2,then amplitude of vibration is %4.4f mm',X1,X2) diff --git a/3532/CH4/EX4.4.3/Ex4_7.sce b/3532/CH4/EX4.4.3/Ex4_7.sce new file mode 100644 index 000000000..975af1a15 --- /dev/null +++ b/3532/CH4/EX4.4.3/Ex4_7.sce @@ -0,0 +1,19 @@ +clc +clear +mprintf('Mechanical vibrations by G.K.Grover\n Example 4.4.3\n') +//given data +delst=0.1//steady state defln in m +g=9.81//acceleration due to gravity +Y=0.08//amp of vibration of automobile in m +lambda=14//wavelenght of profile in m +//calculations +Wn=sqrt(g/delst) +fn=Wn/(2*%pi)//frequency of vibration of automobile in Hz +Vc=(3600/1000)*lambda*fn//critical speed in km/hr +V=60 //speed in km/hr +W=V*(1000/3600)*(2*%pi/lambda) +bet=(W/Wn) +zeta=0 +X=Y*(sqrt(1+(2*zeta*bet)^2)/sqrt((1-bet^2)^2+(2*zeta*bet)^2))//Eqn (4.4.6) +//output +mprintf(' The critical speed of automobile %4.4f km/hr\n The amplitude of vibration at 60 Km/Hr is %4.4f m',Vc,X) diff --git a/3532/CH4/EX4.4/Ex4_4.sce b/3532/CH4/EX4.4/Ex4_4.sce new file mode 100644 index 000000000..d02fc736f --- /dev/null +++ b/3532/CH4/EX4.4/Ex4_4.sce @@ -0,0 +1,22 @@ +clc +clear +mprintf('Mechanical vibrations by G.K.Grover\n Example 4.3.2\n') +//given data +m=320//mass of engine in kg +mo=24//reciprocating mass on motor in kg +r=0.15//vertical stroke in m +e=r/2 +delst=0.002//stati defln in m +C=490/(0.3)//damping recistance in N-sec/m +g=9.81// gravity in m/sec^2 +N=480//speed in rpm in case b) +//calculation +Wn=sqrt(g/delst) //natural freqency in rad/sec +Nr=Wn/(2*%pi)*60 //resonant speed in rpm +W=(2*%pi*N/60) +bet=(W/Wn) +zeta=(C/(2*m*Wn)) //damping factor +y=(mo/m)//from eqn 4.3.2 +X=(y*e)*(bet)^2/sqrt((1-bet^2)^2+(2*zeta*bet)^2)//from eqn 4.3.2 +//output +mprintf(' a)speed of driving shaft at which esonance occurs is %4.4f RPM\n b)The amplitude of steady state forced vibrations when the driving shaft \n of the engine rotates at 480 RPM is %f m',Nr,X) diff --git a/3532/CH4/EX4.5.1/Ex4_8.sce b/3532/CH4/EX4.5.1/Ex4_8.sce new file mode 100644 index 000000000..b7f52cdb5 --- /dev/null +++ b/3532/CH4/EX4.5.1/Ex4_8.sce @@ -0,0 +1,17 @@ +clc +clear +mprintf('Mechanical vibrations by G.K.Grover\n Example 4.5.1\n') +//given data +X=0.015//amplitude of vibration of spring mass dashpot system in m +f=100//frquency of vibration of spring mass dashpot system in Hz +zeta=0.05 +fnD=22//damped natural frequency in Hz +m=0.5//mass in kg +//calculations +W=2*%pi*fnD +c=2*m*W*zeta// from Eqn 3.3.6 and Eqn 3.3.7 +Epercycl=%pi*c*(2*%pi*f)*X^2//Eqn 4.5.1...energy dissipated per cycle +Epersec=Epercycl*f//energy dissipated per sec +//output +mprintf(' The power required to vibrate spring mass dashpot system with \n an amplitude of 1.5 cm and at frequency of 100 Hz is %4.4f Watts',Epersec) +mprintf('\nNOTE: slight differnce in answer compared to textbook\n is due approximation of value of pi') diff --git a/3532/CH4/EX4.5/Ex4_5.sce b/3532/CH4/EX4.5/Ex4_5.sce new file mode 100644 index 000000000..6b19a1838 --- /dev/null +++ b/3532/CH4/EX4.5/Ex4_5.sce @@ -0,0 +1,15 @@ +clc +clear +mprintf('Mechanical vibrations by G.K.Grover\n Example 4.4.1\n') +//given data +T=0.8//time period of free vibration in sec +t=0.3//time for which the vertical distance has to be calculated +//y=18*sin(2*pi*t) +Y=18//max amplitude in mm +//calculations +W=2*%pi +Wn=(2*%pi/T) +bet=(W/Wn) +x=(Y/(1-bet^2))*(sin(W*t)-bet*sin(Wn*t))// from eqn 4.4.17 explained in the same problem +//output +mprintf('The vertical distance moved by mass in the first 0.3 sec is %4.4f mm',x) diff --git a/3532/CH4/EX4.6.1/Ex4_9.sce b/3532/CH4/EX4.6.1/Ex4_9.sce new file mode 100644 index 000000000..5e07c87c7 --- /dev/null +++ b/3532/CH4/EX4.6.1/Ex4_9.sce @@ -0,0 +1,21 @@ +clc +clear +mprintf('Mechanical vibrations by G.K.Grover\n Example 4.6.1\n') +//given data +mprintf('NOTE:The mass given in textbook should be equal\n to 3.7 kgs and not 8.7 Kgs') +m=3.7//mass in kg +g=9.81// gravity +K=7550////stiffness of in N/m +u=0.22//coefficient of friction +Fo=19.6//amp of force in N +f=5//frequency of force +//calculations +F=u*m*g//frictional force +W=2*%pi*f +Wn=sqrt(K/m) +bet=(W/Wn) +X=(Fo/K)*sqrt(1-(4*F/(%pi*Fo))^2)/(1-bet^2)//Eqn 4.6.2 in Sec 4.6 +Ceq=4*F/(%pi*W*X)//equivalent viscous damping Eqn 4.6.1 in Sec 4.6 +//output +mprintf('\nThe amplitude of vibration of mass is %f m\n The equivalent viscous damping is %f N-sec/m',X,Ceq) +mprintf('\nNOTE: slight differnce in answer compared to textbook\n is due approximation of value of pi in the taxtbook') diff --git a/3532/CH4/EX4.6/Ex4_6.sce b/3532/CH4/EX4.6/Ex4_6.sce new file mode 100644 index 000000000..9a40f5466 --- /dev/null +++ b/3532/CH4/EX4.6/Ex4_6.sce @@ -0,0 +1,20 @@ +clc +clear +mprintf('Mechanical vibrations by G.K.Grover\n Example 4.4.2\n') +//given data +m=0.9//mass in kg +K=1960//stiffness in N/m +Y=5//amp of vibration of support in m +N=1150//frequency in cycles per min +//calculations +Wn=sqrt(K/m) +W=N*2*%pi/60//frequency of vibration of support +bet=(W/Wn) +//case 1 +zeta=0 +X1=Y*(sqrt(1+(2*zeta*bet)^2)/sqrt((1-bet^2)^2+(2*zeta*bet)^2))//Eqn (4.4.6) +//case 2 +zeta =0.2 +X2=Y*(sqrt(1+(2*zeta*bet)^2)/sqrt((1-bet^2)^2+(2*zeta*bet)^2))//Eqn (4.4.6) +//output +mprintf('The amplitude of vibration when damping factor=0 is %4.4f mm \n If damping factor=0.2,then amplitude of vibration is %4.4f mm',X1,X2) diff --git a/3532/CH4/EX4.7/Ex4_7.sce b/3532/CH4/EX4.7/Ex4_7.sce new file mode 100644 index 000000000..975af1a15 --- /dev/null +++ b/3532/CH4/EX4.7/Ex4_7.sce @@ -0,0 +1,19 @@ +clc +clear +mprintf('Mechanical vibrations by G.K.Grover\n Example 4.4.3\n') +//given data +delst=0.1//steady state defln in m +g=9.81//acceleration due to gravity +Y=0.08//amp of vibration of automobile in m +lambda=14//wavelenght of profile in m +//calculations +Wn=sqrt(g/delst) +fn=Wn/(2*%pi)//frequency of vibration of automobile in Hz +Vc=(3600/1000)*lambda*fn//critical speed in km/hr +V=60 //speed in km/hr +W=V*(1000/3600)*(2*%pi/lambda) +bet=(W/Wn) +zeta=0 +X=Y*(sqrt(1+(2*zeta*bet)^2)/sqrt((1-bet^2)^2+(2*zeta*bet)^2))//Eqn (4.4.6) +//output +mprintf(' The critical speed of automobile %4.4f km/hr\n The amplitude of vibration at 60 Km/Hr is %4.4f m',Vc,X) diff --git a/3532/CH4/EX4.8/Ex4_8.sce b/3532/CH4/EX4.8/Ex4_8.sce new file mode 100644 index 000000000..b7f52cdb5 --- /dev/null +++ b/3532/CH4/EX4.8/Ex4_8.sce @@ -0,0 +1,17 @@ +clc +clear +mprintf('Mechanical vibrations by G.K.Grover\n Example 4.5.1\n') +//given data +X=0.015//amplitude of vibration of spring mass dashpot system in m +f=100//frquency of vibration of spring mass dashpot system in Hz +zeta=0.05 +fnD=22//damped natural frequency in Hz +m=0.5//mass in kg +//calculations +W=2*%pi*fnD +c=2*m*W*zeta// from Eqn 3.3.6 and Eqn 3.3.7 +Epercycl=%pi*c*(2*%pi*f)*X^2//Eqn 4.5.1...energy dissipated per cycle +Epersec=Epercycl*f//energy dissipated per sec +//output +mprintf(' The power required to vibrate spring mass dashpot system with \n an amplitude of 1.5 cm and at frequency of 100 Hz is %4.4f Watts',Epersec) +mprintf('\nNOTE: slight differnce in answer compared to textbook\n is due approximation of value of pi') diff --git a/3532/CH4/EX4.9/Ex4_9.sce b/3532/CH4/EX4.9/Ex4_9.sce new file mode 100644 index 000000000..5e07c87c7 --- /dev/null +++ b/3532/CH4/EX4.9/Ex4_9.sce @@ -0,0 +1,21 @@ +clc +clear +mprintf('Mechanical vibrations by G.K.Grover\n Example 4.6.1\n') +//given data +mprintf('NOTE:The mass given in textbook should be equal\n to 3.7 kgs and not 8.7 Kgs') +m=3.7//mass in kg +g=9.81// gravity +K=7550////stiffness of in N/m +u=0.22//coefficient of friction +Fo=19.6//amp of force in N +f=5//frequency of force +//calculations +F=u*m*g//frictional force +W=2*%pi*f +Wn=sqrt(K/m) +bet=(W/Wn) +X=(Fo/K)*sqrt(1-(4*F/(%pi*Fo))^2)/(1-bet^2)//Eqn 4.6.2 in Sec 4.6 +Ceq=4*F/(%pi*W*X)//equivalent viscous damping Eqn 4.6.1 in Sec 4.6 +//output +mprintf('\nThe amplitude of vibration of mass is %f m\n The equivalent viscous damping is %f N-sec/m',X,Ceq) +mprintf('\nNOTE: slight differnce in answer compared to textbook\n is due approximation of value of pi in the taxtbook') -- cgit