diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3472/CH42 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3472/CH42')
-rw-r--r-- | 3472/CH42/EX42.2/Example42_2.sce | 34 | ||||
-rw-r--r-- | 3472/CH42/EX42.3/Example42_3.sce | 37 | ||||
-rw-r--r-- | 3472/CH42/EX42.5/Example42_5.sce | 28 | ||||
-rw-r--r-- | 3472/CH42/EX42.6/Ex42_6.png | bin | 0 -> 13473 bytes | |||
-rw-r--r-- | 3472/CH42/EX42.6/Example42_6.sce | 64 | ||||
-rw-r--r-- | 3472/CH42/EX42.7/Example42_7.sce | 39 | ||||
-rw-r--r-- | 3472/CH42/EX42.8/Example42_8.sce | 30 | ||||
-rw-r--r-- | 3472/CH42/EX42.9/Example42_9.sce | 39 |
8 files changed, 271 insertions, 0 deletions
diff --git a/3472/CH42/EX42.2/Example42_2.sce b/3472/CH42/EX42.2/Example42_2.sce new file mode 100644 index 000000000..a5b368b0a --- /dev/null +++ b/3472/CH42/EX42.2/Example42_2.sce @@ -0,0 +1,34 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART IV : UTILIZATION AND TRACTION
+// CHAPTER 4: ILLUMINATION
+
+// EXAMPLE : 4.2 :
+// Page number 753
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+lumens = 800.0 // Flux emitted by a lamp(lumens)
+cp = 100.0 // cp of a lamp
+d = 2.0 // Distance b/w plane surface & lamp(m)
+theta_ii = 45.0 // Inclined surface(°)
+theta_iii = 90.0 // Parallel rays(°)
+
+// Calculations
+// Case(a)
+mscp = lumens/(4.0*%pi) // mscp of lamp
+// Case(b)
+I_i = cp/d**2 // Illumination on the surface when it is normal(lux)
+I_ii = cp/d**2*cosd(theta_ii) // Illumination on the surface when it is inclined to 45°(lux)
+I_iii = cp/d**2*cosd(theta_iii) // Illumination on the surface when it is parallel to rays(lux)
+
+// Results
+disp("PART IV - EXAMPLE : 4.2 : SOLUTION :-")
+printf("\nCase(a): mscp of the lamp, mscp = %.f ", mscp)
+printf("\nCase(b): Case(i) : Illumination on the surface when it is normal, I = %.f lux", I_i)
+printf("\n Case(ii) : Illumination on the surface when it is inclined to 45°, I = %.3f lux", I_ii)
+printf("\n Case(iii): Illumination on the surface when it is parallel to rays, I = %.f lux\n", abs(I_iii))
+printf("\nNOTE: ERROR: Calculation mistake in case(a) in textbook solution")
diff --git a/3472/CH42/EX42.3/Example42_3.sce b/3472/CH42/EX42.3/Example42_3.sce new file mode 100644 index 000000000..f33a8cecd --- /dev/null +++ b/3472/CH42/EX42.3/Example42_3.sce @@ -0,0 +1,37 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART IV : UTILIZATION AND TRACTION
+// CHAPTER 4: ILLUMINATION
+
+// EXAMPLE : 4.3 :
+// Page number 753-754
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+cp = 200.0 // cp of a lamp
+per = 0.6 // Reflector directing light
+D = 10.0 // Diameter(m)
+h = 6.0 // Height at which lamp is hung(m)
+
+// Calculations
+flux = cp*4*%pi // Flux(lumens)
+I_i = cp/h**2 // Illumination at the centre without reflector(lux)
+d = (h**2+(D/2)**2)**0.5 // (m)
+I_without = (cp/h**2)*(h/d) // Illumination at the edge without reflector(lux)
+I_with = cp*4*%pi*per/(25*%pi) // Illumination at the edge with reflector(lux)
+theta = acosd(h/d) // θ(°)
+w = 2.0*%pi*(1-cosd(theta/2)) // ω(steradian)
+phi = cp*w // Φ(lumens)
+I_avg = phi/(25*%pi) // Average illumination over the area without reflector(lux)
+
+// Results
+disp("PART IV - EXAMPLE : 4.3 : SOLUTION :-")
+printf("\nCase(i) : Illumination at the centre without reflector = %.2f lux", I_i)
+printf("\n Illumination at the centre with reflector = %.1f lux", I_with)
+printf("\nCase(ii): Illumination at the edge of the surface without reflector = %.2f lux", I_without)
+printf("\n Illumination at the edge of the surface with reflector = %.1f lux", I_with)
+printf("\nAverage illumination over the area without the reflector, I = %.3f lux\n", I_avg)
+printf("\nNOTE: ERROR: Slight calculation mistake & more approximation in textbook solution")
diff --git a/3472/CH42/EX42.5/Example42_5.sce b/3472/CH42/EX42.5/Example42_5.sce new file mode 100644 index 000000000..e0bd6a1ac --- /dev/null +++ b/3472/CH42/EX42.5/Example42_5.sce @@ -0,0 +1,28 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART IV : UTILIZATION AND TRACTION
+// CHAPTER 4: ILLUMINATION
+
+// EXAMPLE : 4.5 :
+// Page number 754
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+flux = 900.0 // Lamp emitting light(lumens)
+D = 30.5 // Diameter of globe(cm)
+B = 250.0*10**-3 // Uniform brightness(Ambert)
+
+// Calculations
+cp = %pi/4*D**2*(B/%pi) // Candle power
+flux_emit = cp*4*%pi // Flux emitted by globe(lumens)
+flux_abs = flux-flux_emit // Flux absorbed by globe(lumens)
+light_abs_per = flux_abs/flux*100 // Light absorbed(%)
+
+// Results
+disp("PART IV - EXAMPLE : 4.5 : SOLUTION :-")
+printf("\ncp of the globe = %.f ", cp)
+printf("\nPercentage of light emitted by lamp that is absorbed by the globe = %.1f percent\n", light_abs_per)
+printf("\nNOTE: Changes in the obtained answer from that of textbook is due to more precision here & approximation in textbook solution")
diff --git a/3472/CH42/EX42.6/Ex42_6.png b/3472/CH42/EX42.6/Ex42_6.png Binary files differnew file mode 100644 index 000000000..bdc30ba94 --- /dev/null +++ b/3472/CH42/EX42.6/Ex42_6.png diff --git a/3472/CH42/EX42.6/Example42_6.sce b/3472/CH42/EX42.6/Example42_6.sce new file mode 100644 index 000000000..f28dfd28f --- /dev/null +++ b/3472/CH42/EX42.6/Example42_6.sce @@ -0,0 +1,64 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART IV : UTILIZATION AND TRACTION
+// CHAPTER 4: ILLUMINATION
+
+// EXAMPLE : 4.6 :
+// Page number 754-755
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+cp_0 = 500.0 // Candle power
+theta_0 = 0.0 // θ(°)
+cp_1 = 560.0 // Candle power
+theta_1 = 10.0 // θ(°)
+cp_2 = 600.0 // Candle power
+theta_2 = 20.0 // θ(°)
+cp_3 = 520.0 // Candle power
+theta_3 = 30.0 // θ(°)
+cp_4 = 400.0 // Candle power
+theta_4 = 40.0 // θ(°)
+cp_5 = 300.0 // Candle power
+theta_5 = 50.0 // θ(°)
+cp_6 = 150.0 // Candle power
+theta_6 = 60.0 // θ(°)
+cp_7 = 50.0 // Candle power
+theta_7 = 70.0 // θ(°)
+h = 6.0 // Height of lamp(m)
+
+// Calculations
+I_0 = cp_0/h**2*(cosd(theta_0))**3 // Illumination(lux)
+l_0 = h*tand(theta_0) // Distance(m)
+I_1 = cp_1/h**2*(cosd(theta_1))**3 // Illumination(lux)
+l_1 = h*tand(theta_1) // Distance(m)
+I_2 = cp_2/h**2*(cosd(theta_2))**3 // Illumination(lux)
+l_2 = h*tand(theta_2) // Distance(m)
+I_3 = cp_3/h**2*(cosd(theta_3))**3 // Illumination(lux)
+l_3 = h*tand(theta_3) // Distance(m)
+I_4 = cp_4/h**2*(cosd(theta_4))**3 // Illumination(lux)
+l_4 = h*tand(theta_4) // Distance(m)
+I_5 = cp_5/h**2*(cosd(theta_5))**3 // Illumination(lux)
+l_5 = h*tand(theta_5) // Distance(m)
+I_6 = cp_6/h**2*(cosd(theta_6))**3 // Illumination(lux)
+l_6 = h*tand(theta_6) // Distance(m)
+I_7 = cp_7/h**2*(cosd(theta_7))**3 // Illumination(lux)
+l_7 = h*tand(theta_7) // Distance(m)
+l = [-l_7,-l_6,-l_5,-l_4,-l_3,-l_2,-l_1,l_0,l_0,l_1,l_2,l_3,l_4,l_5,l_6,l_7]
+I = [I_7,I_6,I_5,I_4,I_3,I_2,I_1,I_0,I_0,I_1,I_2,I_3,I_4,I_5,I_6,I_7]
+a = gca() ;
+a.thickness = 2 // sets thickness of plot
+plot(l,I,'ro-') // Plot of illumination curve
+x = [0,0,0,0,0,0]
+y = [0,5,10,11,14,16]
+plot(x,y) // Plot of straight line
+a.x_label.text = 'Distance(metres)' // labels x-axis
+a.y_label.text = 'Illumination(flux)' // labels y-axis
+xtitle("Fig E4.4 . Illumination on a horizontal line below the lamp")
+xset('thickness',2) // sets thickness of axes
+
+// Results
+disp("PART IV - EXAMPLE : 4.6 : SOLUTION :-")
+printf("\nThe curve showing illumination on a horizontal line below lamp is represented in Figure E4.4")
diff --git a/3472/CH42/EX42.7/Example42_7.sce b/3472/CH42/EX42.7/Example42_7.sce new file mode 100644 index 000000000..749f4853e --- /dev/null +++ b/3472/CH42/EX42.7/Example42_7.sce @@ -0,0 +1,39 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART IV : UTILIZATION AND TRACTION
+// CHAPTER 4: ILLUMINATION
+
+// EXAMPLE : 4.7 :
+// Page number 755
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+d = 9.15 // Lamp space(m)
+h = 4.575 // Height(m)
+P = 100.0 // Power(candle)
+
+// Calculations
+theta_3_max = 0 // θ(°)
+cos_theta_3_max_cubic = cosd(theta_3_max)**3
+theta_4_max = atand(2) // θ(°)
+cos_theta_4_max_cubic = cosd(theta_4_max)**3
+theta_5_max = atand(4) // θ(°)
+cos_theta_5_max_cubic = cosd(theta_5_max)**3
+theta_6_max = atand(6) // θ(°)
+cos_theta_6_max_cubic = cosd(theta_6_max)**3
+I_max = P/h**2*(cos_theta_3_max_cubic+2*cos_theta_4_max_cubic+2*cos_theta_5_max_cubic+2*cos_theta_6_max_cubic) // Max illumination(lux)
+theta_4_min = atand(1) // θ(°)
+cos_theta_4_min_cubic = cosd(theta_4_min)**3
+theta_5_min = atand(3) // θ(°)
+cos_theta_5_min_cubic = cosd(theta_5_min)**3
+theta_6_min = atand(5) // θ(°)
+cos_theta_6_min_cubic = cosd(theta_6_min)**3
+I_min = P/h**2*2*(cos_theta_4_min_cubic+cos_theta_5_min_cubic+cos_theta_6_min_cubic) // Minimum illumination(lux)
+
+// Results
+disp("PART IV - EXAMPLE : 4.7 : SOLUTION :-")
+printf("\nMaximum illumination on the floor along the centre line = %.2f lux", I_max)
+printf("\nMinimum illumination on the floor along the centre line = %.2f lux", I_min)
diff --git a/3472/CH42/EX42.8/Example42_8.sce b/3472/CH42/EX42.8/Example42_8.sce new file mode 100644 index 000000000..f2f4f675b --- /dev/null +++ b/3472/CH42/EX42.8/Example42_8.sce @@ -0,0 +1,30 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART IV : UTILIZATION AND TRACTION
+// CHAPTER 4: ILLUMINATION
+
+// EXAMPLE : 4.8 :
+// Page number 758
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+b = 15.25 // Breadth of workshop(m)
+l = 36.6 // Length of workshop(m)
+no = 20.0 // Number of lamps
+P = 500.0 // Power of each lamp(W)
+n = 15.0 // Luminous efficiency of each lamp(lumens/watt)
+df = 0.7 // Depreciation factor
+cou = 0.5 // Co-efficient of utilization
+
+// Calculations
+lumen_lamp = no*P*n // Lamp lumens
+lumen_plane = lumen_lamp*df*cou // Lumens on the working plane
+I = lumen_plane/(l*b) // Illumination(lm/sq.m)
+
+// Results
+disp("PART IV - EXAMPLE : 4.8 : SOLUTION :-")
+printf("\nIllumination on the working plane = %.1f lm per sq.m\n", I)
+printf("\nNOTE: ERROR: The breadth should be 15.25m but mentioned as 5.25m in textbook statement")
diff --git a/3472/CH42/EX42.9/Example42_9.sce b/3472/CH42/EX42.9/Example42_9.sce new file mode 100644 index 000000000..cdca63f25 --- /dev/null +++ b/3472/CH42/EX42.9/Example42_9.sce @@ -0,0 +1,39 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART IV : UTILIZATION AND TRACTION
+// CHAPTER 4: ILLUMINATION
+
+// EXAMPLE : 4.9 :
+// Page number 758-759
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+b = 27.45 // Breadth of hall(m)
+l = 45.75 // Length of hall(m)
+I_avg = 108.0 // Average illumination(lumens/sq.m)
+h = 0.75 // Height(m)
+cou = 0.35 // Co-efficient of utilization
+pf = 0.9 // Pereciation factor
+P_fl = 80.0 // Fluorescent lamp power(W)
+n_100 = 13.4 // Luminous efficiency for 100W filament lamp(lumens/watt)
+n_200 = 14.4 // Luminous efficiency for 200W filament lamp(lumens/watt)
+n_80 = 30.0 // Luminous efficiency for 80W fluorescent lamp(lumens/watt)
+
+// Calculations
+area = b*l // Area to be illuminated(Sq.m)
+I_total = area*I_avg // Total illumination on working plane(lumens)
+gross_lumen = I_total/(cou*pf) // Gross lumens required
+P_required = gross_lumen/n_200 // Power required for illumination(W)
+P_required_kW = P_required/1000 // Power required for illumination(kW)
+no_lamp = P_required/200 // Number of lamps
+P_required_new = gross_lumen/n_80 // Power required when fluorescent lamp used(W)
+P_required_new_kW = P_required_new/1000 // Power required when fluorescent lamp used(kW)
+P_saving = P_required_kW-P_required_new_kW // Saving in power(kW)
+
+// Results
+disp("PART IV - EXAMPLE : 4.9 : SOLUTION :-")
+printf("\nSuitable scheme: Whole area divided into %.f rectangles & 200-watt fitting is suspended at centre of each rectangle", no_lamp)
+printf("\nSaving in power consumption = %.1f kW", P_saving)
|