From 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:27:19 +0530 Subject: initial commit / add all books --- 3472/CH42/EX42.2/Example42_2.sce | 34 +++++++++++++++++++++ 3472/CH42/EX42.3/Example42_3.sce | 37 ++++++++++++++++++++++ 3472/CH42/EX42.5/Example42_5.sce | 28 +++++++++++++++++ 3472/CH42/EX42.6/Ex42_6.png | Bin 0 -> 13473 bytes 3472/CH42/EX42.6/Example42_6.sce | 64 +++++++++++++++++++++++++++++++++++++++ 3472/CH42/EX42.7/Example42_7.sce | 39 ++++++++++++++++++++++++ 3472/CH42/EX42.8/Example42_8.sce | 30 ++++++++++++++++++ 3472/CH42/EX42.9/Example42_9.sce | 39 ++++++++++++++++++++++++ 8 files changed, 271 insertions(+) create mode 100644 3472/CH42/EX42.2/Example42_2.sce create mode 100644 3472/CH42/EX42.3/Example42_3.sce create mode 100644 3472/CH42/EX42.5/Example42_5.sce create mode 100644 3472/CH42/EX42.6/Ex42_6.png create mode 100644 3472/CH42/EX42.6/Example42_6.sce create mode 100644 3472/CH42/EX42.7/Example42_7.sce create mode 100644 3472/CH42/EX42.8/Example42_8.sce create mode 100644 3472/CH42/EX42.9/Example42_9.sce (limited to '3472/CH42') diff --git a/3472/CH42/EX42.2/Example42_2.sce b/3472/CH42/EX42.2/Example42_2.sce new file mode 100644 index 000000000..a5b368b0a --- /dev/null +++ b/3472/CH42/EX42.2/Example42_2.sce @@ -0,0 +1,34 @@ +// A Texbook on POWER SYSTEM ENGINEERING +// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar +// DHANPAT RAI & Co. +// SECOND EDITION + +// PART IV : UTILIZATION AND TRACTION +// CHAPTER 4: ILLUMINATION + +// EXAMPLE : 4.2 : +// Page number 753 +clear ; clc ; close ; // Clear the work space and console + +// Given data +lumens = 800.0 // Flux emitted by a lamp(lumens) +cp = 100.0 // cp of a lamp +d = 2.0 // Distance b/w plane surface & lamp(m) +theta_ii = 45.0 // Inclined surface(°) +theta_iii = 90.0 // Parallel rays(°) + +// Calculations +// Case(a) +mscp = lumens/(4.0*%pi) // mscp of lamp +// Case(b) +I_i = cp/d**2 // Illumination on the surface when it is normal(lux) +I_ii = cp/d**2*cosd(theta_ii) // Illumination on the surface when it is inclined to 45°(lux) +I_iii = cp/d**2*cosd(theta_iii) // Illumination on the surface when it is parallel to rays(lux) + +// Results +disp("PART IV - EXAMPLE : 4.2 : SOLUTION :-") +printf("\nCase(a): mscp of the lamp, mscp = %.f ", mscp) +printf("\nCase(b): Case(i) : Illumination on the surface when it is normal, I = %.f lux", I_i) +printf("\n Case(ii) : Illumination on the surface when it is inclined to 45°, I = %.3f lux", I_ii) +printf("\n Case(iii): Illumination on the surface when it is parallel to rays, I = %.f lux\n", abs(I_iii)) +printf("\nNOTE: ERROR: Calculation mistake in case(a) in textbook solution") diff --git a/3472/CH42/EX42.3/Example42_3.sce b/3472/CH42/EX42.3/Example42_3.sce new file mode 100644 index 000000000..f33a8cecd --- /dev/null +++ b/3472/CH42/EX42.3/Example42_3.sce @@ -0,0 +1,37 @@ +// A Texbook on POWER SYSTEM ENGINEERING +// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar +// DHANPAT RAI & Co. +// SECOND EDITION + +// PART IV : UTILIZATION AND TRACTION +// CHAPTER 4: ILLUMINATION + +// EXAMPLE : 4.3 : +// Page number 753-754 +clear ; clc ; close ; // Clear the work space and console + +// Given data +cp = 200.0 // cp of a lamp +per = 0.6 // Reflector directing light +D = 10.0 // Diameter(m) +h = 6.0 // Height at which lamp is hung(m) + +// Calculations +flux = cp*4*%pi // Flux(lumens) +I_i = cp/h**2 // Illumination at the centre without reflector(lux) +d = (h**2+(D/2)**2)**0.5 // (m) +I_without = (cp/h**2)*(h/d) // Illumination at the edge without reflector(lux) +I_with = cp*4*%pi*per/(25*%pi) // Illumination at the edge with reflector(lux) +theta = acosd(h/d) // θ(°) +w = 2.0*%pi*(1-cosd(theta/2)) // ω(steradian) +phi = cp*w // Φ(lumens) +I_avg = phi/(25*%pi) // Average illumination over the area without reflector(lux) + +// Results +disp("PART IV - EXAMPLE : 4.3 : SOLUTION :-") +printf("\nCase(i) : Illumination at the centre without reflector = %.2f lux", I_i) +printf("\n Illumination at the centre with reflector = %.1f lux", I_with) +printf("\nCase(ii): Illumination at the edge of the surface without reflector = %.2f lux", I_without) +printf("\n Illumination at the edge of the surface with reflector = %.1f lux", I_with) +printf("\nAverage illumination over the area without the reflector, I = %.3f lux\n", I_avg) +printf("\nNOTE: ERROR: Slight calculation mistake & more approximation in textbook solution") diff --git a/3472/CH42/EX42.5/Example42_5.sce b/3472/CH42/EX42.5/Example42_5.sce new file mode 100644 index 000000000..e0bd6a1ac --- /dev/null +++ b/3472/CH42/EX42.5/Example42_5.sce @@ -0,0 +1,28 @@ +// A Texbook on POWER SYSTEM ENGINEERING +// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar +// DHANPAT RAI & Co. +// SECOND EDITION + +// PART IV : UTILIZATION AND TRACTION +// CHAPTER 4: ILLUMINATION + +// EXAMPLE : 4.5 : +// Page number 754 +clear ; clc ; close ; // Clear the work space and console + +// Given data +flux = 900.0 // Lamp emitting light(lumens) +D = 30.5 // Diameter of globe(cm) +B = 250.0*10**-3 // Uniform brightness(Ambert) + +// Calculations +cp = %pi/4*D**2*(B/%pi) // Candle power +flux_emit = cp*4*%pi // Flux emitted by globe(lumens) +flux_abs = flux-flux_emit // Flux absorbed by globe(lumens) +light_abs_per = flux_abs/flux*100 // Light absorbed(%) + +// Results +disp("PART IV - EXAMPLE : 4.5 : SOLUTION :-") +printf("\ncp of the globe = %.f ", cp) +printf("\nPercentage of light emitted by lamp that is absorbed by the globe = %.1f percent\n", light_abs_per) +printf("\nNOTE: Changes in the obtained answer from that of textbook is due to more precision here & approximation in textbook solution") diff --git a/3472/CH42/EX42.6/Ex42_6.png b/3472/CH42/EX42.6/Ex42_6.png new file mode 100644 index 000000000..bdc30ba94 Binary files /dev/null and b/3472/CH42/EX42.6/Ex42_6.png differ diff --git a/3472/CH42/EX42.6/Example42_6.sce b/3472/CH42/EX42.6/Example42_6.sce new file mode 100644 index 000000000..f28dfd28f --- /dev/null +++ b/3472/CH42/EX42.6/Example42_6.sce @@ -0,0 +1,64 @@ +// A Texbook on POWER SYSTEM ENGINEERING +// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar +// DHANPAT RAI & Co. +// SECOND EDITION + +// PART IV : UTILIZATION AND TRACTION +// CHAPTER 4: ILLUMINATION + +// EXAMPLE : 4.6 : +// Page number 754-755 +clear ; clc ; close ; // Clear the work space and console + +// Given data +cp_0 = 500.0 // Candle power +theta_0 = 0.0 // θ(°) +cp_1 = 560.0 // Candle power +theta_1 = 10.0 // θ(°) +cp_2 = 600.0 // Candle power +theta_2 = 20.0 // θ(°) +cp_3 = 520.0 // Candle power +theta_3 = 30.0 // θ(°) +cp_4 = 400.0 // Candle power +theta_4 = 40.0 // θ(°) +cp_5 = 300.0 // Candle power +theta_5 = 50.0 // θ(°) +cp_6 = 150.0 // Candle power +theta_6 = 60.0 // θ(°) +cp_7 = 50.0 // Candle power +theta_7 = 70.0 // θ(°) +h = 6.0 // Height of lamp(m) + +// Calculations +I_0 = cp_0/h**2*(cosd(theta_0))**3 // Illumination(lux) +l_0 = h*tand(theta_0) // Distance(m) +I_1 = cp_1/h**2*(cosd(theta_1))**3 // Illumination(lux) +l_1 = h*tand(theta_1) // Distance(m) +I_2 = cp_2/h**2*(cosd(theta_2))**3 // Illumination(lux) +l_2 = h*tand(theta_2) // Distance(m) +I_3 = cp_3/h**2*(cosd(theta_3))**3 // Illumination(lux) +l_3 = h*tand(theta_3) // Distance(m) +I_4 = cp_4/h**2*(cosd(theta_4))**3 // Illumination(lux) +l_4 = h*tand(theta_4) // Distance(m) +I_5 = cp_5/h**2*(cosd(theta_5))**3 // Illumination(lux) +l_5 = h*tand(theta_5) // Distance(m) +I_6 = cp_6/h**2*(cosd(theta_6))**3 // Illumination(lux) +l_6 = h*tand(theta_6) // Distance(m) +I_7 = cp_7/h**2*(cosd(theta_7))**3 // Illumination(lux) +l_7 = h*tand(theta_7) // Distance(m) +l = [-l_7,-l_6,-l_5,-l_4,-l_3,-l_2,-l_1,l_0,l_0,l_1,l_2,l_3,l_4,l_5,l_6,l_7] +I = [I_7,I_6,I_5,I_4,I_3,I_2,I_1,I_0,I_0,I_1,I_2,I_3,I_4,I_5,I_6,I_7] +a = gca() ; +a.thickness = 2 // sets thickness of plot +plot(l,I,'ro-') // Plot of illumination curve +x = [0,0,0,0,0,0] +y = [0,5,10,11,14,16] +plot(x,y) // Plot of straight line +a.x_label.text = 'Distance(metres)' // labels x-axis +a.y_label.text = 'Illumination(flux)' // labels y-axis +xtitle("Fig E4.4 . Illumination on a horizontal line below the lamp") +xset('thickness',2) // sets thickness of axes + +// Results +disp("PART IV - EXAMPLE : 4.6 : SOLUTION :-") +printf("\nThe curve showing illumination on a horizontal line below lamp is represented in Figure E4.4") diff --git a/3472/CH42/EX42.7/Example42_7.sce b/3472/CH42/EX42.7/Example42_7.sce new file mode 100644 index 000000000..749f4853e --- /dev/null +++ b/3472/CH42/EX42.7/Example42_7.sce @@ -0,0 +1,39 @@ +// A Texbook on POWER SYSTEM ENGINEERING +// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar +// DHANPAT RAI & Co. +// SECOND EDITION + +// PART IV : UTILIZATION AND TRACTION +// CHAPTER 4: ILLUMINATION + +// EXAMPLE : 4.7 : +// Page number 755 +clear ; clc ; close ; // Clear the work space and console + +// Given data +d = 9.15 // Lamp space(m) +h = 4.575 // Height(m) +P = 100.0 // Power(candle) + +// Calculations +theta_3_max = 0 // θ(°) +cos_theta_3_max_cubic = cosd(theta_3_max)**3 +theta_4_max = atand(2) // θ(°) +cos_theta_4_max_cubic = cosd(theta_4_max)**3 +theta_5_max = atand(4) // θ(°) +cos_theta_5_max_cubic = cosd(theta_5_max)**3 +theta_6_max = atand(6) // θ(°) +cos_theta_6_max_cubic = cosd(theta_6_max)**3 +I_max = P/h**2*(cos_theta_3_max_cubic+2*cos_theta_4_max_cubic+2*cos_theta_5_max_cubic+2*cos_theta_6_max_cubic) // Max illumination(lux) +theta_4_min = atand(1) // θ(°) +cos_theta_4_min_cubic = cosd(theta_4_min)**3 +theta_5_min = atand(3) // θ(°) +cos_theta_5_min_cubic = cosd(theta_5_min)**3 +theta_6_min = atand(5) // θ(°) +cos_theta_6_min_cubic = cosd(theta_6_min)**3 +I_min = P/h**2*2*(cos_theta_4_min_cubic+cos_theta_5_min_cubic+cos_theta_6_min_cubic) // Minimum illumination(lux) + +// Results +disp("PART IV - EXAMPLE : 4.7 : SOLUTION :-") +printf("\nMaximum illumination on the floor along the centre line = %.2f lux", I_max) +printf("\nMinimum illumination on the floor along the centre line = %.2f lux", I_min) diff --git a/3472/CH42/EX42.8/Example42_8.sce b/3472/CH42/EX42.8/Example42_8.sce new file mode 100644 index 000000000..f2f4f675b --- /dev/null +++ b/3472/CH42/EX42.8/Example42_8.sce @@ -0,0 +1,30 @@ +// A Texbook on POWER SYSTEM ENGINEERING +// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar +// DHANPAT RAI & Co. +// SECOND EDITION + +// PART IV : UTILIZATION AND TRACTION +// CHAPTER 4: ILLUMINATION + +// EXAMPLE : 4.8 : +// Page number 758 +clear ; clc ; close ; // Clear the work space and console + +// Given data +b = 15.25 // Breadth of workshop(m) +l = 36.6 // Length of workshop(m) +no = 20.0 // Number of lamps +P = 500.0 // Power of each lamp(W) +n = 15.0 // Luminous efficiency of each lamp(lumens/watt) +df = 0.7 // Depreciation factor +cou = 0.5 // Co-efficient of utilization + +// Calculations +lumen_lamp = no*P*n // Lamp lumens +lumen_plane = lumen_lamp*df*cou // Lumens on the working plane +I = lumen_plane/(l*b) // Illumination(lm/sq.m) + +// Results +disp("PART IV - EXAMPLE : 4.8 : SOLUTION :-") +printf("\nIllumination on the working plane = %.1f lm per sq.m\n", I) +printf("\nNOTE: ERROR: The breadth should be 15.25m but mentioned as 5.25m in textbook statement") diff --git a/3472/CH42/EX42.9/Example42_9.sce b/3472/CH42/EX42.9/Example42_9.sce new file mode 100644 index 000000000..cdca63f25 --- /dev/null +++ b/3472/CH42/EX42.9/Example42_9.sce @@ -0,0 +1,39 @@ +// A Texbook on POWER SYSTEM ENGINEERING +// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar +// DHANPAT RAI & Co. +// SECOND EDITION + +// PART IV : UTILIZATION AND TRACTION +// CHAPTER 4: ILLUMINATION + +// EXAMPLE : 4.9 : +// Page number 758-759 +clear ; clc ; close ; // Clear the work space and console + +// Given data +b = 27.45 // Breadth of hall(m) +l = 45.75 // Length of hall(m) +I_avg = 108.0 // Average illumination(lumens/sq.m) +h = 0.75 // Height(m) +cou = 0.35 // Co-efficient of utilization +pf = 0.9 // Pereciation factor +P_fl = 80.0 // Fluorescent lamp power(W) +n_100 = 13.4 // Luminous efficiency for 100W filament lamp(lumens/watt) +n_200 = 14.4 // Luminous efficiency for 200W filament lamp(lumens/watt) +n_80 = 30.0 // Luminous efficiency for 80W fluorescent lamp(lumens/watt) + +// Calculations +area = b*l // Area to be illuminated(Sq.m) +I_total = area*I_avg // Total illumination on working plane(lumens) +gross_lumen = I_total/(cou*pf) // Gross lumens required +P_required = gross_lumen/n_200 // Power required for illumination(W) +P_required_kW = P_required/1000 // Power required for illumination(kW) +no_lamp = P_required/200 // Number of lamps +P_required_new = gross_lumen/n_80 // Power required when fluorescent lamp used(W) +P_required_new_kW = P_required_new/1000 // Power required when fluorescent lamp used(kW) +P_saving = P_required_kW-P_required_new_kW // Saving in power(kW) + +// Results +disp("PART IV - EXAMPLE : 4.9 : SOLUTION :-") +printf("\nSuitable scheme: Whole area divided into %.f rectangles & 200-watt fitting is suspended at centre of each rectangle", no_lamp) +printf("\nSaving in power consumption = %.1f kW", P_saving) -- cgit