summaryrefslogtreecommitdiff
path: root/3472/CH39/EX39.32
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3472/CH39/EX39.32
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '3472/CH39/EX39.32')
-rw-r--r--3472/CH39/EX39.32/Example39_32.sce42
1 files changed, 42 insertions, 0 deletions
diff --git a/3472/CH39/EX39.32/Example39_32.sce b/3472/CH39/EX39.32/Example39_32.sce
new file mode 100644
index 000000000..806eba506
--- /dev/null
+++ b/3472/CH39/EX39.32/Example39_32.sce
@@ -0,0 +1,42 @@
+// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART IV : UTILIZATION AND TRACTION
+// CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC MOTORS
+
+// EXAMPLE : 1.32 :
+// Page number 711
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+V = 400.0 // Voltage of synchronous motor(V)
+p = 8.0 // Number of poles
+J = 630.0 // Moment of inertia(kg-m^2)
+T_E = 165.0 // Braking torque(kg-m)
+kw_1 = 690.0 // Electric braking torque(kg-m)
+T_F = 1.4 // Frictional torque(kg-m)
+f = 50.0 // Frequency(Hz). Assumed normal supply frequency
+
+// Calculations
+g = 9.81
+// Case(a) Plugging
+T_B = T_E+T_F // Torque(kg-m)
+beta = T_B*g/J // Retardation(rad/sec^2)
+N_s = 120*f/p // Synchronous speed(rad/sec)
+w = 2*%pi*N_s/60 // ω(rad/sec)
+t_a = integrate('-1.0/beta','w', w, 0) // Time taken to stop the motor(sec)
+n_a = integrate('-w/(2*%pi*beta)','w', w, 0) // Number of revolutions
+// Case(b) Rheostatic braking
+k = kw_1/w
+t_b = J/(g*k)*log((T_F+kw_1)/T_F) // Time taken to stop the motor(sec)
+n_b = 1.0/(2*%pi*k)*(J/(g*k)*(T_F+kw_1)*(1-exp(-k*g*t_b/J))-T_F*t_b) // Number of revolutions
+
+// Results
+disp("PART IV - EXAMPLE : 1.32 : SOLUTION :-")
+printf("\nCase(a): Time taken to come to standstill by plugging, t = %.1f sec", t_a)
+printf("\n Number of revolutions made to come to standstill by plugging, n = %.f revolutions", n_a)
+printf("\nCase(b): Time taken to come to standstill by rheostatic braking, t = %.1f sec", t_b)
+printf("\n Number of revolutions made to come to standstill by rheostatic braking, n = %.f revolutions\n", n_b)
+printf("\nNOTE: ERROR: Calculation mistake in finding number of revolution in case(a) in textbook solution")