1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
|
// A Texbook on POWER SYSTEM ENGINEERING
// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART IV : UTILIZATION AND TRACTION
// CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC MOTORS
// EXAMPLE : 1.32 :
// Page number 711
clear ; clc ; close ; // Clear the work space and console
// Given data
V = 400.0 // Voltage of synchronous motor(V)
p = 8.0 // Number of poles
J = 630.0 // Moment of inertia(kg-m^2)
T_E = 165.0 // Braking torque(kg-m)
kw_1 = 690.0 // Electric braking torque(kg-m)
T_F = 1.4 // Frictional torque(kg-m)
f = 50.0 // Frequency(Hz). Assumed normal supply frequency
// Calculations
g = 9.81
// Case(a) Plugging
T_B = T_E+T_F // Torque(kg-m)
beta = T_B*g/J // Retardation(rad/sec^2)
N_s = 120*f/p // Synchronous speed(rad/sec)
w = 2*%pi*N_s/60 // ω(rad/sec)
t_a = integrate('-1.0/beta','w', w, 0) // Time taken to stop the motor(sec)
n_a = integrate('-w/(2*%pi*beta)','w', w, 0) // Number of revolutions
// Case(b) Rheostatic braking
k = kw_1/w
t_b = J/(g*k)*log((T_F+kw_1)/T_F) // Time taken to stop the motor(sec)
n_b = 1.0/(2*%pi*k)*(J/(g*k)*(T_F+kw_1)*(1-exp(-k*g*t_b/J))-T_F*t_b) // Number of revolutions
// Results
disp("PART IV - EXAMPLE : 1.32 : SOLUTION :-")
printf("\nCase(a): Time taken to come to standstill by plugging, t = %.1f sec", t_a)
printf("\n Number of revolutions made to come to standstill by plugging, n = %.f revolutions", n_a)
printf("\nCase(b): Time taken to come to standstill by rheostatic braking, t = %.1f sec", t_b)
printf("\n Number of revolutions made to come to standstill by rheostatic braking, n = %.f revolutions\n", n_b)
printf("\nNOTE: ERROR: Calculation mistake in finding number of revolution in case(a) in textbook solution")
|