diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3472/CH27/EX27.3/Example27_3.sce | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3472/CH27/EX27.3/Example27_3.sce')
-rw-r--r-- | 3472/CH27/EX27.3/Example27_3.sce | 82 |
1 files changed, 82 insertions, 0 deletions
diff --git a/3472/CH27/EX27.3/Example27_3.sce b/3472/CH27/EX27.3/Example27_3.sce new file mode 100644 index 000000000..f219efe4a --- /dev/null +++ b/3472/CH27/EX27.3/Example27_3.sce @@ -0,0 +1,82 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART III : SWITCHGEAR AND PROTECTION
+// CHAPTER 1: SYMMETRICAL SHORT CIRCUIT CAPACITY CALCULATIONS
+
+// EXAMPLE : 1.3 :
+// Page number 468-469
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+kVA_a = 40000.0 // Capacity of transmission line(kVA)
+x_a = 10.0 // Reactance of transmission line(%)
+kVA_b = 20000.0 // Capacity of transmission line(kVA)
+x_b = 5.0 // Reactance of transmission line(%)
+kVA_c = 50000.0 // Capacity of transmission line(kVA)
+x_c = 20.0 // Reactance of transmission line(%)
+kVA_d = 30000.0 // Capacity of transmission line(kVA)
+x_d = 15.0 // Reactance of transmission line(%)
+kVA_e = 10000.0 // Capacity of transmission line(kVA)
+x_e = 6.0 // Reactance of transmission line(%)
+kVA_T1 = 150000.0 // Capacity of transformer(kVA)
+x_T1 = 10.0 // Reactance of transformer(%)
+kVA_T2 = 50000.0 // Capacity of transformer(kVA)
+x_T2 = 8.0 // Reactance of transformer(%)
+kVA_T3 = 20000.0 // Capacity of transformer(kVA)
+x_T3 = 5.0 // Reactance of transformer(%)
+kVA_GA = 150000.0 // Capacity of generator(kVA)
+x_sA = 90.0 // Synchronous reactance of generator(%)
+x_tA = 30.0 // Transient reactance of generator(%)
+kVA_GB = 50000.0 // Capacity of generator(kVA)
+x_sB = 50.0 // Synchronous reactance of generator(%)
+x_tB = 17.5 // Transient reactance of generator(%)
+V = 33.0 // Feeder voltage(kV)
+
+// Calculations
+kVA_base = 200000.0 // Base rating(kVA)
+X_a = kVA_base/kVA_a*x_a // Reactance(%)
+X_b = kVA_base/kVA_b*x_b // Reactance(%)
+X_c = kVA_base/kVA_c*x_c // Reactance(%)
+X_d = kVA_base/kVA_d*x_d // Reactance(%)
+X_e = kVA_base/kVA_e*x_e // Reactance(%)
+X_T1 = kVA_base/kVA_T1*x_T1 // Reactance(%)
+X_T2 = kVA_base/kVA_T2*x_T2 // Reactance(%)
+X_T3 = kVA_base/kVA_T3*x_T3 // Reactance(%)
+X_sA = kVA_base/kVA_GA*x_sA // Synchronous reactance(%)
+X_tA = kVA_base/kVA_GA*x_tA // Transient reactance(%)
+X_sB = kVA_base/kVA_GB*x_sB // Synchronous reactance(%)
+X_tB = kVA_base/kVA_GB*x_tB // Transient reactance(%)
+X_eq_ab = X_a+X_b // Equivalent reactance of transmission lines a & b(%)
+X_eq_abc = X_eq_ab*X_c/(X_eq_ab+X_c) // Equivalent reactance of transmission line c with series combination of a & b(%)
+X_CF = (X_eq_abc+X_sA)*X_d/(X_eq_abc+X_sA+X_d) // Total reactance b/w sub-station C & F(%)
+// Case(i)
+X_tr_genA = kVA_base/kVA_GA*x_tA // Reactance in transient state of generator A(%)
+X_T1_tr = kVA_base/kVA_T1*x_T1 // Reactance in transient state of transformer T1(%)
+X_CF_tr = X_CF // Total reactance in transient state b/w sub-station C & F(%)
+X_eq_tAF = X_tr_genA+X_T1_tr+X_CF_tr // Equivalent transient reactance from generator A to substation F(%)
+X_tr_genB = kVA_base/kVA_GB*x_tB // Reactance in transient state of generator B(%)
+X_T2_tr = kVA_base/kVA_T2*x_T2 // Reactance in transient state of transformer T2(%)
+X_eq_tBF = X_tr_genB+X_T2_tr // Equivalent transient reactance from generator B to substation F(%)
+X_eq_tF = X_eq_tAF*X_eq_tBF/(X_eq_tAF+X_eq_tBF) // Equivalent transient reactance upto substation F(%)
+X_eq_tfault = X_eq_tF+X_T3 // Equivalent transient reactance upto fault point(%)
+kVA_t_sc = kVA_base/X_eq_tfault*100 // Transient short circuit kVA(kVA)
+I_t_sc = kVA_t_sc/(3**0.5*V) // Transient short circuit rms current(A)
+I_t_sc_peak = 2**0.5*I_t_sc // Peak value of transient short circuit current(A)
+// Case(ii)
+X_S_genA = kVA_base/kVA_GA*x_sA // Reactance in steady state of generator A(%)
+X_eq_SAF = X_S_genA+X_T1+X_CF // Equivalent steady state reactance from generator A to substation F(%)
+X_eq_SBF = X_sB+X_T2 // Equivalent steady state reactance from generator B to substation F(%)
+X_eq_SF = X_eq_SAF*X_eq_SBF/(X_eq_SAF+X_eq_SBF) // Equivalent steady state reactance upto substation F(%)
+X_eq_Sfault = X_eq_SF+X_T3 // Equivalent steady state reactance upto fault point(%)
+kVA_S_sc = kVA_base/X_eq_Sfault*100 // Steady state short circuit kVA(kVA)
+I_S_sc = kVA_S_sc/(3**0.5*V) // Sustained short circuit rms current(A)
+I_S_sc_peak = 2**0.5*I_S_sc // Peak value of sustained short circuit current(A)
+
+// Results
+disp("PART III - EXAMPLE : 1.3 : SOLUTION :-")
+printf("\nCase(i) : Transient short circuit current at X = %.f A (peak value)", I_t_sc_peak)
+printf("\nCase(ii): Sustained short circuit current at X = %.f A (peak value) \n", I_S_sc_peak)
+printf("\nNOTE: Changes in the obtained answer from that of textbook is due to more precision here")
|