diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3472/CH27 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3472/CH27')
-rw-r--r-- | 3472/CH27/EX27.1/Example27_1.sce | 41 | ||||
-rw-r--r-- | 3472/CH27/EX27.10/Example27_10.sce | 30 | ||||
-rw-r--r-- | 3472/CH27/EX27.11/Example27_11.sce | 33 | ||||
-rw-r--r-- | 3472/CH27/EX27.12/Example27_12.sce | 36 | ||||
-rw-r--r-- | 3472/CH27/EX27.2/Example27_2.sce | 42 | ||||
-rw-r--r-- | 3472/CH27/EX27.3/Example27_3.sce | 82 | ||||
-rw-r--r-- | 3472/CH27/EX27.4/Example27_4.sce | 42 | ||||
-rw-r--r-- | 3472/CH27/EX27.5/Example27_5.sce | 81 | ||||
-rw-r--r-- | 3472/CH27/EX27.6/Example27_6.sce | 43 | ||||
-rw-r--r-- | 3472/CH27/EX27.7/Example27_7.sce | 38 | ||||
-rw-r--r-- | 3472/CH27/EX27.8/Example27_8.sce | 32 | ||||
-rw-r--r-- | 3472/CH27/EX27.9/Example27_9.sce | 35 |
12 files changed, 535 insertions, 0 deletions
diff --git a/3472/CH27/EX27.1/Example27_1.sce b/3472/CH27/EX27.1/Example27_1.sce new file mode 100644 index 000000000..330f770b0 --- /dev/null +++ b/3472/CH27/EX27.1/Example27_1.sce @@ -0,0 +1,41 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART III : SWITCHGEAR AND PROTECTION
+// CHAPTER 1: SYMMETRICAL SHORT CIRCUIT CAPACITY CALCULATIONS
+
+// EXAMPLE : 1.1 :
+// Page number 466-467
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+V = 500.0 // Generator voltage(V)
+rating = 10.0 // Rating of the generator(kVA)
+n_up = 1.0/2 // Turns ratio of step-up transformer
+Z_line = complex(1.0,2.0) // Transmission line impedance(ohm)
+n_down = 10.0/1 // Turns ratio of step-down transformer
+load = complex(2.0,4.0) // Load(ohm)
+
+// Calculations
+V_base_gen = V // Base voltage(V)
+kVA_base_gen = rating // Base rating(kVA)
+I_base_gen = kVA_base_gen*1000/V_base_gen // Base current(A)
+Z_base_gen = V_base_gen/I_base_gen // Base impedance(ohm)
+V_base_line = V_base_gen/n_up // Voltage base of the transmission line(V)
+kVA_base_line = rating // Base rating of transmission line(kVA)
+I_base_line = kVA_base_line*1000/V_base_line // Base current of transmission line(A)
+Z_base_line = V_base_line/I_base_line // Base impedance of transmission line(ohm)
+Z_line_1 = Z_line/Z_base_line // Impedance of transmission line(p.u)
+V_base_load = V_base_line/n_down // Base voltage at the load(V)
+kVA_base_load = rating // Base rating of load(kVA)
+I_base_load = kVA_base_load*1000/V_base_load // Base current of load(A)
+Z_base_load = V_base_load/I_base_load // Base impedance of load(ohm)
+Z_load = load/Z_base_load // Load impedance(p.u)
+Z_total = Z_line_1+Z_load // Total impedance(p.u)
+I = 1.0/Z_total // Current(p.u)
+
+// Results
+disp("PART III - EXAMPLE : 1.1 : SOLUTION :-")
+printf("\nCurrent, I = %.3f∠%.2f° p.u", abs(I),phasemag(I))
diff --git a/3472/CH27/EX27.10/Example27_10.sce b/3472/CH27/EX27.10/Example27_10.sce new file mode 100644 index 000000000..ee218b356 --- /dev/null +++ b/3472/CH27/EX27.10/Example27_10.sce @@ -0,0 +1,30 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART III : SWITCHGEAR AND PROTECTION
+// CHAPTER 1: SYMMETRICAL SHORT CIRCUIT CAPACITY CALCULATIONS
+
+// EXAMPLE : 1.10 :
+// Page number 472
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+kVA_alt = 625.0 // Alternator rating(kVA)
+V_alt = 480.0 // Voltage rating of alternator(V)
+load = 500.0 // Load(kW)
+V_load = 480.0 // Load voltage(V)
+X_st = 8.0/100 // Sub-transient reactance
+
+// Calculations
+kVA_base = 625.0 // Base kVA
+V_base = 480.0 // Base voltage(V)
+I_load = load/kVA_base // Load cuurent(A)
+V = 1.0 // Terminal voltage(p.u)
+E_st = V+%i*I_load*X_st // Sub-transient voltage(p.u)
+I_st = E_st/(%i*X_st) // Sub-transient current(p.u)
+
+// Results
+disp("PART III - EXAMPLE : 1.10 : SOLUTION :-")
+printf("\nInitial symmetrical rms current at the generator terminal = (%.1f%.1fj) p.u", real(I_st),imag(I_st))
diff --git a/3472/CH27/EX27.11/Example27_11.sce b/3472/CH27/EX27.11/Example27_11.sce new file mode 100644 index 000000000..e74e57098 --- /dev/null +++ b/3472/CH27/EX27.11/Example27_11.sce @@ -0,0 +1,33 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART III : SWITCHGEAR AND PROTECTION
+// CHAPTER 1: SYMMETRICAL SHORT CIRCUIT CAPACITY CALCULATIONS
+
+// EXAMPLE : 1.11 :
+// Page number 472-473
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+X_d_st_G = 0.15 // Sub-transient reactance of generator(p.u)
+X_d_st_M = 0.45 // Sub-transient reactance of motor(p.u)
+X = 0.10 // Leakage reactance of transformer(p.u)
+V = 0.9 // Terminal voltage of the generator(p.u)
+I_G = 1.0 // Output current of the generator(p.u)
+PF = 0.8 // Power factor of the load
+
+// Calculations
+sin_phi = (1-PF**2)**0.5
+I = I_G*(PF+%i*sin_phi) // Load current(p.u)
+E_st_G = V+%i*I*X_d_st_G // Sub-transient voltage of the generator(p.u)
+E_st_M = V-%i*I*X_d_st_M // Sub-transient voltage of the motor(p.u)
+I_st_g = E_st_G/(%i*(X_d_st_G+X)) // Sub-transient current in the generator at fault(p.u)
+I_st_m = E_st_M/(%i*(X_d_st_M-X)) // Sub-transient current in the motor at fault(p.u)
+
+// Results
+disp("PART III - EXAMPLE : 1.11 : SOLUTION :-")
+printf("\nCase(a): Sub-transient current in the fault in generator = %.3f∠%.3f° p.u", abs(I_st_g),phasemag(I_st_g))
+printf("\nCase(b): Sub-transient current in the fault in motor = %.3f∠%.2f° p.u \n", abs(I_st_m),180+phasemag(I_st_m))
+printf("\nNOTE: ERROR: Sub-transient reactance of motor is 0.45 p.u & not 0.35 p.u as mentioned in textbook statement")
diff --git a/3472/CH27/EX27.12/Example27_12.sce b/3472/CH27/EX27.12/Example27_12.sce new file mode 100644 index 000000000..6106a0e66 --- /dev/null +++ b/3472/CH27/EX27.12/Example27_12.sce @@ -0,0 +1,36 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART III : SWITCHGEAR AND PROTECTION
+// CHAPTER 1: SYMMETRICAL SHORT CIRCUIT CAPACITY CALCULATIONS
+
+// EXAMPLE : 1.12 :
+// Page number 473-474
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+kVA_G = 625.0 // Generator rating(kVA)
+V_G = 2.4 // Voltage rating of generator(kV)
+X_st_G = 8.0/100 // Sub-transient reactance of generator
+rating_M = 250.0 // Motor rating(HP)
+V_M = 2.4 // Voltage rating of motor(kV)
+n = 90.0/100 // Efficiency of motor
+X_st_M = 20.0/100 // Sub-transient reactance of motor
+
+// Calculations
+kVA_base = 625.0 // Base kVA
+input_M = rating_M*0.746/n // Each motor input(kVA)
+X_st_m_pu = X_st_M*kVA_base/input_M // Sub-transient reactance of motor(p.u)
+I_base = kVA_base/(3**0.5*V_M) // Base current(A)
+Z_th = %i*X_st_m_pu/3*X_st_G/(X_st_m_pu/3+X_st_G) // Thevenin impedance(p.u)
+I_st = 1.0/Z_th // Initial symmetrical current at F(p.u)
+I_st_g = I_st*(X_st_m_pu/3/(X_st_m_pu/3+X_st_G)) // Fault current rating of generator breaker(p.u)
+I_st_m = (I_st-I_st_g)/3 // Fault current rating of each motor breaker(p.u)
+
+// Results
+disp("PART III - EXAMPLE : 1.12 : SOLUTION :-")
+printf("\nSub-transient fault current at F = %.2fj p.u", imag(I_st))
+printf("\nFault current rating of generator breaker = %.1fj p.u", imag(I_st_g))
+printf("\nFault current rating of each motor breaker = %.2fj p.u", imag(I_st_m))
diff --git a/3472/CH27/EX27.2/Example27_2.sce b/3472/CH27/EX27.2/Example27_2.sce new file mode 100644 index 000000000..9de270bce --- /dev/null +++ b/3472/CH27/EX27.2/Example27_2.sce @@ -0,0 +1,42 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART III : SWITCHGEAR AND PROTECTION
+// CHAPTER 1: SYMMETRICAL SHORT CIRCUIT CAPACITY CALCULATIONS
+
+// EXAMPLE : 1.2 :
+// Page number 467-468
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+kV = 33.0 // Transmission line operating voltage(kV)
+R = 5.0 // Transmission line resistance(ohm)
+X = 20.0 // Transmission line reactance(ohm)
+kVA_tr = 5000.0 // Rating of step-up transformer(kVA)
+X_tr = 6.0 // Reactance of transformer(%)
+kVA_A = 10000.0 // Rating of alternator A(kVA)
+X_A = 10.0 // Reactance of alternator A(%)
+kVA_B = 5000.0 // Rating of alternator B(kVA)
+X_B = 7.5 // Reactance of alternator B(%)
+
+// Calculations
+kVA_base = kVA_A // Base rating(kVA)
+X_gen_A = X_A*kVA_base/kVA_A // Reactance of generator A(%)
+X_gen_B = X_B*kVA_base/kVA_B // Reactance of generator B(%)
+X_trans = X_tr*kVA_base/kVA_tr // Reactance of transformer(%)
+X_per = kVA_base*X/(10*kV**2) // X(%)
+R_per = kVA_base*R/(10*kV**2) // R(%)
+Z_F1 = (X_gen_A*X_gen_B/(X_gen_A+X_gen_B))+X_trans // Impedance upto fault(%)
+kVA_F1 = kVA_base*(100/Z_F1) // Short-circuit kVA fed into the fault(kVA)
+R_per_F2 = R_per // R(%)
+X_per_F2 = X_per+Z_F1 // X(%)
+Z_F2 = (R_per_F2**2+X_per_F2**2)**0.5 // Total impedance upto F2(%)
+kVA_F2 = kVA_base*(100/Z_F2) // Short-circuit kVA fed into the fault at F2(kVA)
+
+// Results
+disp("PART III - EXAMPLE : 1.2 : SOLUTION :-")
+printf("\nCase(a): kVA at a short-circuit fault between phases at the HV terminal of transformers = %.f kVA", kVA_F1)
+printf("\nCase(b): kVA at a short-circuit fault between phases at load end of transmission line = %.f kVA \n", kVA_F2)
+printf("\nNOTE: Changes in the obtained answer from that of textbook is due to more precision here & approximation in textbook")
diff --git a/3472/CH27/EX27.3/Example27_3.sce b/3472/CH27/EX27.3/Example27_3.sce new file mode 100644 index 000000000..f219efe4a --- /dev/null +++ b/3472/CH27/EX27.3/Example27_3.sce @@ -0,0 +1,82 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART III : SWITCHGEAR AND PROTECTION
+// CHAPTER 1: SYMMETRICAL SHORT CIRCUIT CAPACITY CALCULATIONS
+
+// EXAMPLE : 1.3 :
+// Page number 468-469
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+kVA_a = 40000.0 // Capacity of transmission line(kVA)
+x_a = 10.0 // Reactance of transmission line(%)
+kVA_b = 20000.0 // Capacity of transmission line(kVA)
+x_b = 5.0 // Reactance of transmission line(%)
+kVA_c = 50000.0 // Capacity of transmission line(kVA)
+x_c = 20.0 // Reactance of transmission line(%)
+kVA_d = 30000.0 // Capacity of transmission line(kVA)
+x_d = 15.0 // Reactance of transmission line(%)
+kVA_e = 10000.0 // Capacity of transmission line(kVA)
+x_e = 6.0 // Reactance of transmission line(%)
+kVA_T1 = 150000.0 // Capacity of transformer(kVA)
+x_T1 = 10.0 // Reactance of transformer(%)
+kVA_T2 = 50000.0 // Capacity of transformer(kVA)
+x_T2 = 8.0 // Reactance of transformer(%)
+kVA_T3 = 20000.0 // Capacity of transformer(kVA)
+x_T3 = 5.0 // Reactance of transformer(%)
+kVA_GA = 150000.0 // Capacity of generator(kVA)
+x_sA = 90.0 // Synchronous reactance of generator(%)
+x_tA = 30.0 // Transient reactance of generator(%)
+kVA_GB = 50000.0 // Capacity of generator(kVA)
+x_sB = 50.0 // Synchronous reactance of generator(%)
+x_tB = 17.5 // Transient reactance of generator(%)
+V = 33.0 // Feeder voltage(kV)
+
+// Calculations
+kVA_base = 200000.0 // Base rating(kVA)
+X_a = kVA_base/kVA_a*x_a // Reactance(%)
+X_b = kVA_base/kVA_b*x_b // Reactance(%)
+X_c = kVA_base/kVA_c*x_c // Reactance(%)
+X_d = kVA_base/kVA_d*x_d // Reactance(%)
+X_e = kVA_base/kVA_e*x_e // Reactance(%)
+X_T1 = kVA_base/kVA_T1*x_T1 // Reactance(%)
+X_T2 = kVA_base/kVA_T2*x_T2 // Reactance(%)
+X_T3 = kVA_base/kVA_T3*x_T3 // Reactance(%)
+X_sA = kVA_base/kVA_GA*x_sA // Synchronous reactance(%)
+X_tA = kVA_base/kVA_GA*x_tA // Transient reactance(%)
+X_sB = kVA_base/kVA_GB*x_sB // Synchronous reactance(%)
+X_tB = kVA_base/kVA_GB*x_tB // Transient reactance(%)
+X_eq_ab = X_a+X_b // Equivalent reactance of transmission lines a & b(%)
+X_eq_abc = X_eq_ab*X_c/(X_eq_ab+X_c) // Equivalent reactance of transmission line c with series combination of a & b(%)
+X_CF = (X_eq_abc+X_sA)*X_d/(X_eq_abc+X_sA+X_d) // Total reactance b/w sub-station C & F(%)
+// Case(i)
+X_tr_genA = kVA_base/kVA_GA*x_tA // Reactance in transient state of generator A(%)
+X_T1_tr = kVA_base/kVA_T1*x_T1 // Reactance in transient state of transformer T1(%)
+X_CF_tr = X_CF // Total reactance in transient state b/w sub-station C & F(%)
+X_eq_tAF = X_tr_genA+X_T1_tr+X_CF_tr // Equivalent transient reactance from generator A to substation F(%)
+X_tr_genB = kVA_base/kVA_GB*x_tB // Reactance in transient state of generator B(%)
+X_T2_tr = kVA_base/kVA_T2*x_T2 // Reactance in transient state of transformer T2(%)
+X_eq_tBF = X_tr_genB+X_T2_tr // Equivalent transient reactance from generator B to substation F(%)
+X_eq_tF = X_eq_tAF*X_eq_tBF/(X_eq_tAF+X_eq_tBF) // Equivalent transient reactance upto substation F(%)
+X_eq_tfault = X_eq_tF+X_T3 // Equivalent transient reactance upto fault point(%)
+kVA_t_sc = kVA_base/X_eq_tfault*100 // Transient short circuit kVA(kVA)
+I_t_sc = kVA_t_sc/(3**0.5*V) // Transient short circuit rms current(A)
+I_t_sc_peak = 2**0.5*I_t_sc // Peak value of transient short circuit current(A)
+// Case(ii)
+X_S_genA = kVA_base/kVA_GA*x_sA // Reactance in steady state of generator A(%)
+X_eq_SAF = X_S_genA+X_T1+X_CF // Equivalent steady state reactance from generator A to substation F(%)
+X_eq_SBF = X_sB+X_T2 // Equivalent steady state reactance from generator B to substation F(%)
+X_eq_SF = X_eq_SAF*X_eq_SBF/(X_eq_SAF+X_eq_SBF) // Equivalent steady state reactance upto substation F(%)
+X_eq_Sfault = X_eq_SF+X_T3 // Equivalent steady state reactance upto fault point(%)
+kVA_S_sc = kVA_base/X_eq_Sfault*100 // Steady state short circuit kVA(kVA)
+I_S_sc = kVA_S_sc/(3**0.5*V) // Sustained short circuit rms current(A)
+I_S_sc_peak = 2**0.5*I_S_sc // Peak value of sustained short circuit current(A)
+
+// Results
+disp("PART III - EXAMPLE : 1.3 : SOLUTION :-")
+printf("\nCase(i) : Transient short circuit current at X = %.f A (peak value)", I_t_sc_peak)
+printf("\nCase(ii): Sustained short circuit current at X = %.f A (peak value) \n", I_S_sc_peak)
+printf("\nNOTE: Changes in the obtained answer from that of textbook is due to more precision here")
diff --git a/3472/CH27/EX27.4/Example27_4.sce b/3472/CH27/EX27.4/Example27_4.sce new file mode 100644 index 000000000..03026583b --- /dev/null +++ b/3472/CH27/EX27.4/Example27_4.sce @@ -0,0 +1,42 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART III : SWITCHGEAR AND PROTECTION
+// CHAPTER 1: SYMMETRICAL SHORT CIRCUIT CAPACITY CALCULATIONS
+
+// EXAMPLE : 1.4 :
+// Page number 469-470
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+kVA_gen = 21000.0 // Generator rating(kVA)
+kV_gen = 13.8 // Voltage rating of generator(kV)
+X_tr_gen = 30.0 // Transient reactance of generator(%)
+kVA_trans = 7000.0 // Transformer rating(kVA)
+kV_trans_lv = 13.8 // LV voltage rating of transformer(kV)
+kV_trans_hv = 66.0 // HV voltage rating of transformer(kV)
+X_trans = 8.4 // Reactance of transformer(%)
+l = 50.0 // Tie line length(miles)
+x = 0.848 // Reactance of tie line(ohm/mile)
+l_fault = 20.0 // Location of fault from station A(miles)
+
+// Calculations
+kVA_base = kVA_gen // Base rating(kVA)
+X_A = X_tr_gen // Reactance of generator A(%)
+X_B = X_tr_gen // Reactance of generator B(%)
+X_T1 = 3.0*X_trans // Reactance of transformer T1(%)
+X_T2 = 3.0*X_trans // Reactance of transformer T2(%)
+X_1 = kVA_base/(10*kV_trans_hv**2)*x*l_fault // Reactance(%)
+X_2 = X_1*(l-l_fault)/l_fault // Reactance(%)
+X_AF = X_A+X_T1+X_1 // Resultant reactance A to F(%)
+X_BF = X_B+X_T2+X_2 // Resultant reactance B to F(%)
+X_eq_fault = X_AF*X_BF/(X_AF+X_BF) // Equivalent reactance upto fault(%)
+kVA_SC = kVA_base/X_eq_fault*100 // Short circuit kVA((kVA)
+I_SC = kVA_SC/(3**0.5*kV_trans_hv) // Short circuit current(A)
+
+// Results
+disp("PART III - EXAMPLE : 1.4 : SOLUTION :-")
+printf("\nShort circuit current = %.f A \n", I_SC)
+printf("\nNOTE: Changes in the obtained answer from that of textbook is due to more precision here")
diff --git a/3472/CH27/EX27.5/Example27_5.sce b/3472/CH27/EX27.5/Example27_5.sce new file mode 100644 index 000000000..f48af78f8 --- /dev/null +++ b/3472/CH27/EX27.5/Example27_5.sce @@ -0,0 +1,81 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART III : SWITCHGEAR AND PROTECTION
+// CHAPTER 1: SYMMETRICAL SHORT CIRCUIT CAPACITY CALCULATIONS
+
+// EXAMPLE : 1.5 :
+// Page number 470-471
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+MVA_G1 = 100.0 // Generator rating(MVA)
+X_G1 = 30.0 // Reactance of generator(%)
+MVA_G2 = 150.0 // Generator rating(MVA)
+X_G2 = 20.0 // Reactance of generator(%)
+MVA_G3 = 200.0 // Generator rating(MVA)
+X_G3 = 15.0 // Reactance of generator(%)
+MVA_T1 = 150.0 // Transformer rating(MVA)
+X_T1 = 10.0 // Reactance of transformer(%)
+MVA_T2 = 175.0 // Transformer rating(MVA)
+X_T2 = 8.0 // Reactance of transformer(%)
+MVA_T3 = 200.0 // Transformer rating(MVA)
+X_T3 = 6.0 // Reactance of transformer(%)
+MVA_T4 = 100.0 // Transformer rating(MVA)
+X_T4 = 5.0 // Reactance of transformer(%)
+MVA_T5 = 150.0 // Transformer rating(MVA)
+X_T5 = 5.0 // Reactance of transformer(%)
+Z_L1 = complex(0.5,1.0) // Line impedance(ohm/km)
+L1 = 100.0 // Line length(km)
+Z_L2 = complex(0.4,1.2) // Line impedance(ohm/km)
+L2 = 50.0 // Line length(km)
+Z_L3 = complex(0.4,1.2) // Line impedance(ohm/km)
+L3 = 50.0 // Line length(km)
+Z_L4 = complex(0.3,1.0) // Line impedance(ohm/km)
+L4 = 60.0 // Line length(km)
+kV_L1 = 220.0 // Voltage towards line(kV)
+kV_L2 = 220.0 // Voltage towards line(kV)
+kV_L3 = 132.0 // Voltage towards line(kV)
+kV_L4 = 132.0 // Voltage towards line(kV)
+
+// Calculations
+MVA_base = 200.0 // Base rating(MVA)
+X_d_G1 = (MVA_base/MVA_G1)*(X_G1/100) // Reactance of generator(p.u)
+X_d_G2 = (MVA_base/MVA_G2)*(X_G2/100) // Reactance of generator(p.u)
+X_d_G3 = (MVA_base/MVA_G3)*(X_G3/100) // Reactance of generator(p.u)
+X_T_1 = (MVA_base/MVA_T1)*(X_T1/100) // Reactance of transformer(p.u)
+X_T_2 = (MVA_base/MVA_T2)*(X_T2/100) // Reactance of transformer(p.u)
+X_T_3 = (MVA_base/MVA_T3)*(X_T3/100) // Reactance of transformer(p.u)
+X_T_4 = (MVA_base/MVA_T4)*(X_T4/100) // Reactance of transformer(p.u)
+X_T_5 = (MVA_base/MVA_T5)*(X_T5/100) // Reactance of transformer(p.u)
+Z_L1_base = kV_L1**2/MVA_base // L1 base impedance(ohm)
+Z_L_1 = Z_L1*L1/Z_L1_base // Line impedance(p.u)
+Z_L2_base = kV_L2**2/MVA_base // L2 base impedance(ohm)
+Z_L_2 = Z_L2*L2/Z_L2_base // Line impedance(p.u)
+Z_L3_base = kV_L3**2/MVA_base // L3 base impedance(ohm)
+Z_L_3 = Z_L3*L3/Z_L3_base // Line impedance(p.u)
+Z_L4_base = kV_L4**2/MVA_base // L4 base impedance(ohm)
+Z_L_4 = Z_L4*L4/Z_L4_base // Line impedance(p.u)
+
+// Results
+disp("PART III - EXAMPLE : 1.5 : SOLUTION :-")
+printf("\np.u values of the single line diagram are as below")
+printf("\nGenerators p.u reactances :")
+printf("\n X_d_G1 = %.1f p.u", X_d_G1)
+printf("\n X_d_G2 = %.3f p.u", X_d_G2)
+printf("\n X_d_G3 = %.2f p.u", X_d_G3)
+printf("\nTransformers p.u reactances :")
+printf("\n X_T1 = %.3f p.u", X_T_1)
+printf("\n X_T2 = %.4f p.u", X_T_2)
+printf("\n X_T3 = %.2f p.u", X_T_3)
+printf("\n X_T4 = %.1f p.u", X_T_4)
+printf("\n X_T5 = %.3f p.u", X_T_5)
+printf("\nLines p.u impedances :")
+printf("\n Z_L1 = (%.3f + %.3fj) p.u", real(Z_L_1),imag(Z_L_1))
+printf("\n Z_L2 = (%.3f + %.3fj) p.u", real(Z_L_2),imag(Z_L_2))
+printf("\n Z_L3 = (%.3f + %.3fj) p.u", real(Z_L_3),imag(Z_L_3))
+printf("\n Z_L4 = (%.3f + %.3fj) p.u \n", real(Z_L_4),imag(Z_L_4))
+printf("\nNOTE: ERROR: (1). Reactance of T2 is 8 percent & not 1 percent as mentioned in the textbook problem statement")
+printf("\n (2). Several calculation mistakes in the textbook")
diff --git a/3472/CH27/EX27.6/Example27_6.sce b/3472/CH27/EX27.6/Example27_6.sce new file mode 100644 index 000000000..746c48c42 --- /dev/null +++ b/3472/CH27/EX27.6/Example27_6.sce @@ -0,0 +1,43 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART III : SWITCHGEAR AND PROTECTION
+// CHAPTER 1: SYMMETRICAL SHORT CIRCUIT CAPACITY CALCULATIONS
+
+// EXAMPLE : 1.6 :
+// Page number 471
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+kVA_gen = 21000.0 // Generator rating(kVA)
+kV_gen = 13.8 // Voltage rating of generator(kV)
+X_tr_gen = 30.0 // Transient reactance of generator(%)
+kVA_trans = 7000.0 // Transformer rating(kVA)
+kV_trans_lv = 13.8 // LV voltage rating of transformer(kV)
+kV_trans_hv = 66.0 // HV voltage rating of transformer(kV)
+X_trans = 8.4 // Reactance of transformer(%)
+l = 50.0 // Tie line length(miles)
+x = 0.848 // Reactance of tie line(ohm/mile)
+l_fault = 20.0 // Location of fault from station A(miles)
+
+// Calculations
+kVA_base = kVA_gen // Base rating(kVA)
+kV_base_lv = kV_trans_lv // Base voltage on L.V side(kV)
+kV_base_hv = kV_trans_hv // Base voltage on H.V side(kV)
+Z_gen_pu = %i*X_tr_gen/100 // Impedance of generator(p.u)
+Z_trans_pu = %i*X_trans*3/100 // Impedance of transformer(p.u)
+Z_F_left = %i*x*l_fault*kVA_base/(kV_base_hv**2*1000) // Impedance of line to left of fault F(p.u)
+Z_F_right = Z_F_left*(l-l_fault)/l_fault // Impedance of line to right of fault(p.u)
+Z_AF = Z_gen_pu+Z_trans_pu+Z_F_left // Impedance(p.u)
+Z_BF = Z_gen_pu+Z_trans_pu+Z_F_right // Impedance(p.u)
+Z_eq = Z_AF*Z_BF/(Z_AF+Z_BF) // Equivalent impedance(p.u)
+I_F = 1.0/abs(Z_eq) // Fault current(p.u)
+I_base = kVA_base/(3**0.5*kV_base_hv) // Base current(A)
+I_F_actual = I_F*I_base // Actual fault current(A)
+
+// Results
+disp("PART III - EXAMPLE : 1.6 : SOLUTION :-")
+printf("\nActual fault current = %.f A \n", I_F_actual)
+printf("\nNOTE: Changes in the obtained answer from that of textbook is due to more precision here")
diff --git a/3472/CH27/EX27.7/Example27_7.sce b/3472/CH27/EX27.7/Example27_7.sce new file mode 100644 index 000000000..a61e5ba94 --- /dev/null +++ b/3472/CH27/EX27.7/Example27_7.sce @@ -0,0 +1,38 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART III : SWITCHGEAR AND PROTECTION
+// CHAPTER 1: SYMMETRICAL SHORT CIRCUIT CAPACITY CALCULATIONS
+
+// EXAMPLE : 1.7 :
+// Page number 471-472
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+MVA_G1 = 50.0 // Generator rating(MVA)
+kV_G1 = 15.0 // Voltage rating of generator(kV)
+X_G1 = 0.2 // Reactance of generator(p.u)
+MVA_G2 = 25.0 // Generator rating(MVA)
+kV_G2 = 15.0 // Voltage rating of generator(kV)
+X_G2 = 0.2 // Reactance of generator(p.u)
+kV_T = 66.0 // Voltage rating of transformer(kV)
+X_T = 0.1 // Reactance of transformer(p.u)
+kV_fault = 66.0 // Voltage at fault occurence(kV)
+kv_base = 69.0 // Base voltage(kV)
+MVA_base = 100.0 // Base MVA
+
+// Calculations
+X_d_G1 = X_G1*MVA_base/MVA_G1 // Sub-transient reactance referred to 100 MVA(p.u)
+E_G1 = kV_fault/kv_base // Voltage(p.u)
+X_d_G2 = X_G2*MVA_base/MVA_G2 // Sub-transient reactance referred to 100 MVA(p.u)
+E_G2 = kV_fault/kv_base // Voltage(p.u)
+X_net = X_d_G1*X_d_G2/(X_d_G1+X_d_G2) // Net sub-transient reactance(p.u)
+E_g = (E_G1+E_G2)/2 // Net voltage(p.u). NOTE: Not sure how this comes
+I_fault = E_g/(%i*(X_net+X_T)) // Sub-transient fault current(p.u)
+
+// Results
+disp("PART III - EXAMPLE : 1.7 : SOLUTION :-")
+printf("\nSub-transient fault current = %.3fj p.u \n", imag(I_fault))
+printf("\nNOTE: Changes in the obtained answer from that of textbook is due to more precision here")
diff --git a/3472/CH27/EX27.8/Example27_8.sce b/3472/CH27/EX27.8/Example27_8.sce new file mode 100644 index 000000000..9e5bfe023 --- /dev/null +++ b/3472/CH27/EX27.8/Example27_8.sce @@ -0,0 +1,32 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART III : SWITCHGEAR AND PROTECTION
+// CHAPTER 1: SYMMETRICAL SHORT CIRCUIT CAPACITY CALCULATIONS
+
+// EXAMPLE : 1.8 :
+// Page number 472
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+X_d_st = 0.2 // Sub-transient reactance(p.u)
+X_d_t = 0.4 // Transient reactance(p.u)
+X_d = 1.0 // Direct axis reactance(p.u)
+I_pu = 1.0 // Load current(p.u)
+PF = 0.80 // Lagging power factor
+
+// Calculations
+V = 1.0 // Terminal voltage(p.u)
+sin_phi = (1-PF**2)**0.5
+I = I_pu*(PF-%i*sin_phi) // Load current(p.u)
+E_st = V+%i*I*X_d_st // Voltage behind sub-transient reactance(p.u)
+E_t = V+%i*I*X_d_t // Voltage behind transient reactance(p.u)
+E = V+%i*I*X_d // Voltage behind direct axis reactance(p.u)
+
+// Results
+disp("PART III - EXAMPLE : 1.8 : SOLUTION :-")
+printf("\nVoltage behind sub-transient reactance = %.2f∠%.2f° p.u", abs(E_st),phasemag(E_st))
+printf("\nVoltage behind transient reactance = %.2f∠%.2f° p.u", abs(E_t),phasemag(E_t))
+printf("\nVoltage behind direct axis reactance, E = %.2f∠%.2f° p.u", abs(E),phasemag(E))
diff --git a/3472/CH27/EX27.9/Example27_9.sce b/3472/CH27/EX27.9/Example27_9.sce new file mode 100644 index 000000000..06277625e --- /dev/null +++ b/3472/CH27/EX27.9/Example27_9.sce @@ -0,0 +1,35 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART III : SWITCHGEAR AND PROTECTION
+// CHAPTER 1: SYMMETRICAL SHORT CIRCUIT CAPACITY CALCULATIONS
+
+// EXAMPLE : 1.9 :
+// Page number 472
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+kVA_G = 7500.0 // Generator rating(kVA)
+kV_G = 6.9 // Voltage rating of generator(kV)
+X_d_st = 9.0/100 // Sub-transient reactance of generator
+X_d_t = 15.0/100 // Transient reactance of generator
+X_d = 100.0 // Synchronous reactance of generator(%)
+kVA_T = 7500.0 // Transformer rating(kVA)
+kV_T_delta = 6.9 // Voltage rating of transformer delta side(kV)
+kV_T_wye = 115.0 // Voltage rating of transformer wye side(kV)
+X = 10.0/100 // Transformer reactance
+
+// Calculations
+I_base_ht = kVA_T/(3**0.5*kV_T_wye) // Base current at ht side(A)
+I_base_lt = kVA_T/(3**0.5*kV_T_delta) // Base current at lt side(A)
+I_f_st = 1.0/(%i*(X_d_st+X)) // Sub-transient current after fault(p.u)
+I_f_ht = abs(I_f_st)*I_base_ht // Initial fault current in h.t side(A)
+I_f_lt = abs(I_f_st)*I_base_lt // Initial fault current in l.t side(A)
+
+// Results
+disp("PART III - EXAMPLE : 1.9 : SOLUTION :-")
+printf("\nInitial symmetrical rms current in the h.v side = %.f A", I_f_ht)
+printf("\nInitial symmetrical rms current in the l.v side = %.f A \n", I_f_lt)
+printf("\nNOTE: Changes in the obtained answer from that of textbook is due to more precision here")
|