summaryrefslogtreecommitdiff
path: root/3472/CH27/EX27.2/Example27_2.sce
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3472/CH27/EX27.2/Example27_2.sce
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '3472/CH27/EX27.2/Example27_2.sce')
-rw-r--r--3472/CH27/EX27.2/Example27_2.sce42
1 files changed, 42 insertions, 0 deletions
diff --git a/3472/CH27/EX27.2/Example27_2.sce b/3472/CH27/EX27.2/Example27_2.sce
new file mode 100644
index 000000000..9de270bce
--- /dev/null
+++ b/3472/CH27/EX27.2/Example27_2.sce
@@ -0,0 +1,42 @@
+// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART III : SWITCHGEAR AND PROTECTION
+// CHAPTER 1: SYMMETRICAL SHORT CIRCUIT CAPACITY CALCULATIONS
+
+// EXAMPLE : 1.2 :
+// Page number 467-468
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+kV = 33.0 // Transmission line operating voltage(kV)
+R = 5.0 // Transmission line resistance(ohm)
+X = 20.0 // Transmission line reactance(ohm)
+kVA_tr = 5000.0 // Rating of step-up transformer(kVA)
+X_tr = 6.0 // Reactance of transformer(%)
+kVA_A = 10000.0 // Rating of alternator A(kVA)
+X_A = 10.0 // Reactance of alternator A(%)
+kVA_B = 5000.0 // Rating of alternator B(kVA)
+X_B = 7.5 // Reactance of alternator B(%)
+
+// Calculations
+kVA_base = kVA_A // Base rating(kVA)
+X_gen_A = X_A*kVA_base/kVA_A // Reactance of generator A(%)
+X_gen_B = X_B*kVA_base/kVA_B // Reactance of generator B(%)
+X_trans = X_tr*kVA_base/kVA_tr // Reactance of transformer(%)
+X_per = kVA_base*X/(10*kV**2) // X(%)
+R_per = kVA_base*R/(10*kV**2) // R(%)
+Z_F1 = (X_gen_A*X_gen_B/(X_gen_A+X_gen_B))+X_trans // Impedance upto fault(%)
+kVA_F1 = kVA_base*(100/Z_F1) // Short-circuit kVA fed into the fault(kVA)
+R_per_F2 = R_per // R(%)
+X_per_F2 = X_per+Z_F1 // X(%)
+Z_F2 = (R_per_F2**2+X_per_F2**2)**0.5 // Total impedance upto F2(%)
+kVA_F2 = kVA_base*(100/Z_F2) // Short-circuit kVA fed into the fault at F2(kVA)
+
+// Results
+disp("PART III - EXAMPLE : 1.2 : SOLUTION :-")
+printf("\nCase(a): kVA at a short-circuit fault between phases at the HV terminal of transformers = %.f kVA", kVA_F1)
+printf("\nCase(b): kVA at a short-circuit fault between phases at load end of transmission line = %.f kVA \n", kVA_F2)
+printf("\nNOTE: Changes in the obtained answer from that of textbook is due to more precision here & approximation in textbook")