diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /3407/CH8 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '3407/CH8')
-rw-r--r-- | 3407/CH8/EX8.1/Ex8_1.sce | 26 | ||||
-rw-r--r-- | 3407/CH8/EX8.2/Ex8_2.sce | 40 | ||||
-rw-r--r-- | 3407/CH8/EX8.3/Ex8_3.sce | 30 | ||||
-rw-r--r-- | 3407/CH8/EX8.4/Ex8_4.sce | 19 | ||||
-rw-r--r-- | 3407/CH8/EX8.5/Ex8_5.sce | 43 | ||||
-rw-r--r-- | 3407/CH8/EX8.6/Ex8_6.sce | 62 |
6 files changed, 220 insertions, 0 deletions
diff --git a/3407/CH8/EX8.1/Ex8_1.sce b/3407/CH8/EX8.1/Ex8_1.sce new file mode 100644 index 000000000..d7262a175 --- /dev/null +++ b/3407/CH8/EX8.1/Ex8_1.sce @@ -0,0 +1,26 @@ +clear;
+clc;
+funcprot(0);
+
+//given data
+D2 = 23.76;//diameter of rotor in cm
+N = 38140;//rotational speed in rev/min
+alpha2 = 72;//absolute flow angle in deg
+d = 0.5*D2;//rotor mean exit diameter
+
+//Calcultaions
+U2 = %pi*N*D2/(100*60);
+w2 = U2/tan(alpha2*%pi/180);
+c2 = U2*sin(alpha2*%pi/180);
+w3 = 2*w2;
+U3 = 0.5*U2;
+c3 = sqrt(w3^2 - U3^2);
+delW = 0.5*((U2^2 - U3^2)+(w3^2 - w2^2)+(c2^2 - c3^2));
+inp_U2 = 0.5*(U2^2 - U3^2)/delW;
+inp_w2 = 0.5*(w3^2 - w2^2)/delW;
+inp_c2 = 0.5*(c2^2 - c3^2)/delW;
+
+//Results
+printf('The fractional inputs from the three terms are, for the U^2 terms, %.3f; \n for the w^2 terms, %.3f; for the c^2 terms, %.3f.',inp_U2,inp_w2,inp_c2);
+
+//there are errors in the answers given in textbook
diff --git a/3407/CH8/EX8.2/Ex8_2.sce b/3407/CH8/EX8.2/Ex8_2.sce new file mode 100644 index 000000000..52959b6f2 --- /dev/null +++ b/3407/CH8/EX8.2/Ex8_2.sce @@ -0,0 +1,40 @@ +clear;
+clc;
+funcprot(0);
+
+//given data
+r = 1.5;//operating pressure ratio
+K1 = 1.44*10^-5;
+K2 = 2410;
+K3 = 4.59*10^-6;
+T01 = 400;//in K
+D2 = 72.5;//rotor inlet diamete in mm
+D3_av = 34.4;//rotor meaan outlet diameter in mm
+b = 20.1;//rotor outlet annulus width in mm
+zetaN = 0.065;//enthalpy loss coefficient
+alpha2 = 71;//in deg
+beta3_av = 53;//in deg
+Cp = 1005;//inJ/(kg.K)
+gamma = 1.4;
+
+//Calculations
+N = K2*sqrt(T01);
+U2 = %pi*N*D2/(60*1000)
+delW = U2^2;
+delh = Cp*T01*(1-(1/r)^((gamma-1)/gamma));
+eff_ts = delW/(delh);
+delW_act = K3*K2*%pi*T01/(30*K1);
+eff_ov = delW_act/delh;
+zetaR = (2*((1/eff_ts)-1) - (zetaN/sin(alpha2*%pi/180)))*((D2/D3_av)^2)*(sin(beta3_av*%pi/180))^2 - (cos(beta3_av*%pi/180))^2;
+r3 = 0.5*(D3_av-b)*10^-3;
+w3_w2av_min = (D3_av/D2)*tan(alpha2*%pi/180)*((2*r3/D3_av)^2 + (1/tan(beta3_av*%pi/180))^2)^0.5;
+w3_w2av = (D3_av/D2)*tan(alpha2*%pi/180)*(1+((1/tan(beta3_av*%pi/180))^2))^0.5;
+
+//Results
+printf('The total-to-static efficiency = %.2f percentage.',eff_ts*100);
+printf('\n The overall efficiency = %.2f percentage.',eff_ov*100);
+printf('\n The rotor enthalpy loss coefficient = %.3f',zetaR);
+printf('\n The rotor relative velocity ratio = %.2f',w3_w2av);
+
+
+//there are small errors in the answers given in textbook
diff --git a/3407/CH8/EX8.3/Ex8_3.sce b/3407/CH8/EX8.3/Ex8_3.sce new file mode 100644 index 000000000..e2f102cc9 --- /dev/null +++ b/3407/CH8/EX8.3/Ex8_3.sce @@ -0,0 +1,30 @@ +clear;
+clc;
+funcprot(0);
+
+//given data
+Z = 12;//number of vanes
+delW = 230;//in kW
+T01 = 1050;//stagnation temperature in K
+mdot = 1;//flow rate in kg/s
+eff_ts = 0.81;//total-to-static efficiency
+Cp = 1.1502;//in kJ/(kg.K)
+gamma = 1.333;
+R = 287;//gas constant
+
+//Calculations
+S = delW/(Cp*T01);
+alpha2 = (180/%pi)*acos(sqrt(1/Z));
+beta2 = 2*(90-alpha2);
+p3_p01 = (1-(S/eff_ts))^(gamma/(1-gamma));
+M02 = sqrt((S/(gamma-1))*((2*cos(beta2*%pi/180))/(1+cos(beta2*%pi/180))));
+M2 = sqrt((M02^2)/(1-0.5*(gamma-1)*(M02^2)));
+U2 = sqrt((gamma*R*T01)*(1/cos(beta2*%pi/180))*(S/(gamma-1)));
+
+//Results
+printf('(i) The absolut and relative flow angles:\n alpha2 = %.2f deg\n beta2 = %.2f deg',alpha2,beta2);
+printf('\n (ii) The overall pressure ratio = %.3f',p3_p01);
+printf('\n (iii) The rotor rip speed = %.1f m/s\n The inlet absolute Mach number = %.3f',U2,M2);
+
+
+//there are small errors in the answers given in textbook
diff --git a/3407/CH8/EX8.4/Ex8_4.sce b/3407/CH8/EX8.4/Ex8_4.sce new file mode 100644 index 000000000..3c9d29c9b --- /dev/null +++ b/3407/CH8/EX8.4/Ex8_4.sce @@ -0,0 +1,19 @@ +clear;
+clc;
+funcprot(0);
+
+//given data
+cm3_U2 = 0.25;
+nu = 0.4;
+r3s_r2 = 0.7;
+w3av_w2 = 2.0;
+
+//Calculations
+r3av_r3s = 0.5*(1+nu);
+r3av_r2 = r3av_r3s*r3s_r2;
+beta3_av = (180/%pi)*atan(r3av_r2/cm3_U2);
+beta3s = (180/%pi)*atan(r3s_r2/cm3_U2);
+w3s_w2 = 2*cos(beta3_av*%pi/180)/cos(beta3s*%pi/180);
+
+//Results
+printf('The relative velocity ratio = %.3f.',w3s_w2);
diff --git a/3407/CH8/EX8.5/Ex8_5.sce b/3407/CH8/EX8.5/Ex8_5.sce new file mode 100644 index 000000000..d1379c60d --- /dev/null +++ b/3407/CH8/EX8.5/Ex8_5.sce @@ -0,0 +1,43 @@ +clear;
+clc;
+funcprot(0);
+
+//given data
+Z = 12;//number of vanes
+delW = 230;//in kW
+T01 = 1050;//stagnation temperature in K
+mdot = 1;//flow rate in kg/s
+eff_ts = 0.81;//total-to-static efficiency
+Cp = 1.1502;//in kJ/(kg.K)
+gamma = 1.333;
+R = 287;//gas constant
+cm3_U2 = 0.25;
+nu = 0.4;
+r3s_r2 = 0.7;
+w3av_w2 = 2.0;
+p3 = 100;//static pressure at rotor exit in kPa
+zetaN = 0.06;//nozzle enthalpy loss coefficient
+U2 = 538.1;//in m/s
+p01 = 3.109*10^5;//in Pa
+
+//Calculations
+S = delW/(Cp*T01);
+T03 = T01*(1-S);
+T3 = T03 - (cm3_U2^2)*(U2^2)/(2*Cp*1000);
+r2 = sqrt(mdot/((p3*1000/(R*T3))*(cm3_U2)*U2*%pi*(r3s_r2^2)*(1-nu^2)));
+D2 = 2*r2;
+omega = U2/r2;
+N = omega*30/%pi;
+ctheta2 = S*Cp*1000*T01/U2;
+alpha2 = (180/%pi)*acos(sqrt(1/Z));
+cm2 = ctheta2/tan(alpha2*%pi/180);
+c2 = ctheta2/sin(alpha2*%pi/180);
+T2 = T01 - (c2^2)/(2*Cp*1000);
+p2 = p01*(1-(((c2^2)*(1+zetaN))/(2*Cp*1000*T01)))^(gamma/(gamma-1));
+b2_D2 = (0.25/%pi)*(R*T2/p2)*(mdot/(cm2*r2^2));
+
+//Results
+printf('(i) The diamaeter of the rotor = %.4f m\n its speed of rotation = %.1f rad/s (N = %d rev/min)',D2,omega,N);
+printf('\n(ii) The vane width to diameter ratio at rotor inlet = %.4f',b2_D2);
+
+//there are some errors in the answers given in textbook
diff --git a/3407/CH8/EX8.6/Ex8_6.sce b/3407/CH8/EX8.6/Ex8_6.sce new file mode 100644 index 000000000..35e8dbd75 --- /dev/null +++ b/3407/CH8/EX8.6/Ex8_6.sce @@ -0,0 +1,62 @@ +clear;
+clc;
+funcprot(0);
+
+//given data
+Z = 12;//number of vanes
+delW = 230;//in kW
+T01 = 1050;//stagnation temperature in K
+mdot = 1;//flow rate in kg/s
+eff_ts = 0.81;//total-to-static efficiency
+Cp = 1.1502;//in kJ/(kg.K)
+gamma = 1.333;
+R = 287;//gas constant
+cm3_U2 = 0.25;
+nu = 0.4;
+r3s_r2 = 0.7;
+w3av_w2 = 2.0;
+p3 = 100;//static pressure at rotor exit in kPa
+zetaN = 0.06;//nozzle enthalpy loss coefficient
+U2 = 538.1;//in m/s
+p01 = 3.109*10^5;//in Pa
+
+//results of Example 8.4 and Example 8.5
+r3av_r3s = 0.5*(1+nu);
+r3av_r2 = r3av_r3s*r3s_r2;
+alpha2 = (180/%pi)*acos(sqrt(1/Z));
+beta2 = 2*(90-alpha2);
+beta3_av = (180/%pi)*atan(r3av_r2/cm3_U2);
+beta3s = (180/%pi)*atan(r3s_r2/cm3_U2);
+w3s_w2 = 2*cos(beta3_av*%pi/180)/cos(beta3s*%pi/180);
+S = delW/(Cp*T01);
+T03 = T01*(1-S);
+T3 = T03 - (cm3_U2^2)*(U2^2)/(2*Cp*1000);
+r2 = sqrt(mdot/((p3*1000/(R*T3))*(cm3_U2)*U2*%pi*(r3s_r2^2)*(1-nu^2)));
+D2 = 2*r2;
+omega = U2/r2;
+N = omega*30/%pi;
+ctheta2 = S*Cp*1000*T01/U2;
+alpha2 = (180/%pi)*acos(sqrt(1/Z));
+cm2 = ctheta2/tan(alpha2*%pi/180);
+c2 = ctheta2/sin(alpha2*%pi/180);
+T2 = T01 - (c2^2)/(2*Cp*1000);
+p2 = p01*(1-(((c2^2)*(1+zetaN))/(2*Cp*1000*T01)))^(gamma/(gamma-1));
+b2_D2 = (0.25/%pi)*(R*T2/p2)*(mdot/(cm2*r2^2));
+
+//Calculations
+c3 = cm3_U2*U2;
+cm3 = c3;
+w3_av = 2*cm3/(cos(beta2*%pi/180));
+w2 = w3_av/2;
+c0 = sqrt(2*delW*1000/eff_ts);
+zetaR = (c0^2 *(1-eff_ts)- (c3^2)- zetaN*(c2^2))/(w3_av^2);
+i = beta2;
+n = 1.75;
+eff_ts_new = 1-((c3^2)+zetaN*(c2^2)+zetaR*(w3_av^2)+(1-(cos(i*%pi/180))^n)*(w2^2))/(c0^2);
+
+//Results
+printf('(a)The rotor enthalpy loss coefficient = %.4f',zetaR);
+printf('\n(b) The total-to-static efficiency of the turbine = %.3f',eff_ts_new);
+
+
+//there are some errors in the answers given in textbook
|