From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 3407/CH8/EX8.1/Ex8_1.sce | 26 ++++++++++++++++++++ 3407/CH8/EX8.2/Ex8_2.sce | 40 +++++++++++++++++++++++++++++++ 3407/CH8/EX8.3/Ex8_3.sce | 30 +++++++++++++++++++++++ 3407/CH8/EX8.4/Ex8_4.sce | 19 +++++++++++++++ 3407/CH8/EX8.5/Ex8_5.sce | 43 +++++++++++++++++++++++++++++++++ 3407/CH8/EX8.6/Ex8_6.sce | 62 ++++++++++++++++++++++++++++++++++++++++++++++++ 6 files changed, 220 insertions(+) create mode 100644 3407/CH8/EX8.1/Ex8_1.sce create mode 100644 3407/CH8/EX8.2/Ex8_2.sce create mode 100644 3407/CH8/EX8.3/Ex8_3.sce create mode 100644 3407/CH8/EX8.4/Ex8_4.sce create mode 100644 3407/CH8/EX8.5/Ex8_5.sce create mode 100644 3407/CH8/EX8.6/Ex8_6.sce (limited to '3407/CH8') diff --git a/3407/CH8/EX8.1/Ex8_1.sce b/3407/CH8/EX8.1/Ex8_1.sce new file mode 100644 index 000000000..d7262a175 --- /dev/null +++ b/3407/CH8/EX8.1/Ex8_1.sce @@ -0,0 +1,26 @@ +clear; +clc; +funcprot(0); + +//given data +D2 = 23.76;//diameter of rotor in cm +N = 38140;//rotational speed in rev/min +alpha2 = 72;//absolute flow angle in deg +d = 0.5*D2;//rotor mean exit diameter + +//Calcultaions +U2 = %pi*N*D2/(100*60); +w2 = U2/tan(alpha2*%pi/180); +c2 = U2*sin(alpha2*%pi/180); +w3 = 2*w2; +U3 = 0.5*U2; +c3 = sqrt(w3^2 - U3^2); +delW = 0.5*((U2^2 - U3^2)+(w3^2 - w2^2)+(c2^2 - c3^2)); +inp_U2 = 0.5*(U2^2 - U3^2)/delW; +inp_w2 = 0.5*(w3^2 - w2^2)/delW; +inp_c2 = 0.5*(c2^2 - c3^2)/delW; + +//Results +printf('The fractional inputs from the three terms are, for the U^2 terms, %.3f; \n for the w^2 terms, %.3f; for the c^2 terms, %.3f.',inp_U2,inp_w2,inp_c2); + +//there are errors in the answers given in textbook diff --git a/3407/CH8/EX8.2/Ex8_2.sce b/3407/CH8/EX8.2/Ex8_2.sce new file mode 100644 index 000000000..52959b6f2 --- /dev/null +++ b/3407/CH8/EX8.2/Ex8_2.sce @@ -0,0 +1,40 @@ +clear; +clc; +funcprot(0); + +//given data +r = 1.5;//operating pressure ratio +K1 = 1.44*10^-5; +K2 = 2410; +K3 = 4.59*10^-6; +T01 = 400;//in K +D2 = 72.5;//rotor inlet diamete in mm +D3_av = 34.4;//rotor meaan outlet diameter in mm +b = 20.1;//rotor outlet annulus width in mm +zetaN = 0.065;//enthalpy loss coefficient +alpha2 = 71;//in deg +beta3_av = 53;//in deg +Cp = 1005;//inJ/(kg.K) +gamma = 1.4; + +//Calculations +N = K2*sqrt(T01); +U2 = %pi*N*D2/(60*1000) +delW = U2^2; +delh = Cp*T01*(1-(1/r)^((gamma-1)/gamma)); +eff_ts = delW/(delh); +delW_act = K3*K2*%pi*T01/(30*K1); +eff_ov = delW_act/delh; +zetaR = (2*((1/eff_ts)-1) - (zetaN/sin(alpha2*%pi/180)))*((D2/D3_av)^2)*(sin(beta3_av*%pi/180))^2 - (cos(beta3_av*%pi/180))^2; +r3 = 0.5*(D3_av-b)*10^-3; +w3_w2av_min = (D3_av/D2)*tan(alpha2*%pi/180)*((2*r3/D3_av)^2 + (1/tan(beta3_av*%pi/180))^2)^0.5; +w3_w2av = (D3_av/D2)*tan(alpha2*%pi/180)*(1+((1/tan(beta3_av*%pi/180))^2))^0.5; + +//Results +printf('The total-to-static efficiency = %.2f percentage.',eff_ts*100); +printf('\n The overall efficiency = %.2f percentage.',eff_ov*100); +printf('\n The rotor enthalpy loss coefficient = %.3f',zetaR); +printf('\n The rotor relative velocity ratio = %.2f',w3_w2av); + + +//there are small errors in the answers given in textbook diff --git a/3407/CH8/EX8.3/Ex8_3.sce b/3407/CH8/EX8.3/Ex8_3.sce new file mode 100644 index 000000000..e2f102cc9 --- /dev/null +++ b/3407/CH8/EX8.3/Ex8_3.sce @@ -0,0 +1,30 @@ +clear; +clc; +funcprot(0); + +//given data +Z = 12;//number of vanes +delW = 230;//in kW +T01 = 1050;//stagnation temperature in K +mdot = 1;//flow rate in kg/s +eff_ts = 0.81;//total-to-static efficiency +Cp = 1.1502;//in kJ/(kg.K) +gamma = 1.333; +R = 287;//gas constant + +//Calculations +S = delW/(Cp*T01); +alpha2 = (180/%pi)*acos(sqrt(1/Z)); +beta2 = 2*(90-alpha2); +p3_p01 = (1-(S/eff_ts))^(gamma/(1-gamma)); +M02 = sqrt((S/(gamma-1))*((2*cos(beta2*%pi/180))/(1+cos(beta2*%pi/180)))); +M2 = sqrt((M02^2)/(1-0.5*(gamma-1)*(M02^2))); +U2 = sqrt((gamma*R*T01)*(1/cos(beta2*%pi/180))*(S/(gamma-1))); + +//Results +printf('(i) The absolut and relative flow angles:\n alpha2 = %.2f deg\n beta2 = %.2f deg',alpha2,beta2); +printf('\n (ii) The overall pressure ratio = %.3f',p3_p01); +printf('\n (iii) The rotor rip speed = %.1f m/s\n The inlet absolute Mach number = %.3f',U2,M2); + + +//there are small errors in the answers given in textbook diff --git a/3407/CH8/EX8.4/Ex8_4.sce b/3407/CH8/EX8.4/Ex8_4.sce new file mode 100644 index 000000000..3c9d29c9b --- /dev/null +++ b/3407/CH8/EX8.4/Ex8_4.sce @@ -0,0 +1,19 @@ +clear; +clc; +funcprot(0); + +//given data +cm3_U2 = 0.25; +nu = 0.4; +r3s_r2 = 0.7; +w3av_w2 = 2.0; + +//Calculations +r3av_r3s = 0.5*(1+nu); +r3av_r2 = r3av_r3s*r3s_r2; +beta3_av = (180/%pi)*atan(r3av_r2/cm3_U2); +beta3s = (180/%pi)*atan(r3s_r2/cm3_U2); +w3s_w2 = 2*cos(beta3_av*%pi/180)/cos(beta3s*%pi/180); + +//Results +printf('The relative velocity ratio = %.3f.',w3s_w2); diff --git a/3407/CH8/EX8.5/Ex8_5.sce b/3407/CH8/EX8.5/Ex8_5.sce new file mode 100644 index 000000000..d1379c60d --- /dev/null +++ b/3407/CH8/EX8.5/Ex8_5.sce @@ -0,0 +1,43 @@ +clear; +clc; +funcprot(0); + +//given data +Z = 12;//number of vanes +delW = 230;//in kW +T01 = 1050;//stagnation temperature in K +mdot = 1;//flow rate in kg/s +eff_ts = 0.81;//total-to-static efficiency +Cp = 1.1502;//in kJ/(kg.K) +gamma = 1.333; +R = 287;//gas constant +cm3_U2 = 0.25; +nu = 0.4; +r3s_r2 = 0.7; +w3av_w2 = 2.0; +p3 = 100;//static pressure at rotor exit in kPa +zetaN = 0.06;//nozzle enthalpy loss coefficient +U2 = 538.1;//in m/s +p01 = 3.109*10^5;//in Pa + +//Calculations +S = delW/(Cp*T01); +T03 = T01*(1-S); +T3 = T03 - (cm3_U2^2)*(U2^2)/(2*Cp*1000); +r2 = sqrt(mdot/((p3*1000/(R*T3))*(cm3_U2)*U2*%pi*(r3s_r2^2)*(1-nu^2))); +D2 = 2*r2; +omega = U2/r2; +N = omega*30/%pi; +ctheta2 = S*Cp*1000*T01/U2; +alpha2 = (180/%pi)*acos(sqrt(1/Z)); +cm2 = ctheta2/tan(alpha2*%pi/180); +c2 = ctheta2/sin(alpha2*%pi/180); +T2 = T01 - (c2^2)/(2*Cp*1000); +p2 = p01*(1-(((c2^2)*(1+zetaN))/(2*Cp*1000*T01)))^(gamma/(gamma-1)); +b2_D2 = (0.25/%pi)*(R*T2/p2)*(mdot/(cm2*r2^2)); + +//Results +printf('(i) The diamaeter of the rotor = %.4f m\n its speed of rotation = %.1f rad/s (N = %d rev/min)',D2,omega,N); +printf('\n(ii) The vane width to diameter ratio at rotor inlet = %.4f',b2_D2); + +//there are some errors in the answers given in textbook diff --git a/3407/CH8/EX8.6/Ex8_6.sce b/3407/CH8/EX8.6/Ex8_6.sce new file mode 100644 index 000000000..35e8dbd75 --- /dev/null +++ b/3407/CH8/EX8.6/Ex8_6.sce @@ -0,0 +1,62 @@ +clear; +clc; +funcprot(0); + +//given data +Z = 12;//number of vanes +delW = 230;//in kW +T01 = 1050;//stagnation temperature in K +mdot = 1;//flow rate in kg/s +eff_ts = 0.81;//total-to-static efficiency +Cp = 1.1502;//in kJ/(kg.K) +gamma = 1.333; +R = 287;//gas constant +cm3_U2 = 0.25; +nu = 0.4; +r3s_r2 = 0.7; +w3av_w2 = 2.0; +p3 = 100;//static pressure at rotor exit in kPa +zetaN = 0.06;//nozzle enthalpy loss coefficient +U2 = 538.1;//in m/s +p01 = 3.109*10^5;//in Pa + +//results of Example 8.4 and Example 8.5 +r3av_r3s = 0.5*(1+nu); +r3av_r2 = r3av_r3s*r3s_r2; +alpha2 = (180/%pi)*acos(sqrt(1/Z)); +beta2 = 2*(90-alpha2); +beta3_av = (180/%pi)*atan(r3av_r2/cm3_U2); +beta3s = (180/%pi)*atan(r3s_r2/cm3_U2); +w3s_w2 = 2*cos(beta3_av*%pi/180)/cos(beta3s*%pi/180); +S = delW/(Cp*T01); +T03 = T01*(1-S); +T3 = T03 - (cm3_U2^2)*(U2^2)/(2*Cp*1000); +r2 = sqrt(mdot/((p3*1000/(R*T3))*(cm3_U2)*U2*%pi*(r3s_r2^2)*(1-nu^2))); +D2 = 2*r2; +omega = U2/r2; +N = omega*30/%pi; +ctheta2 = S*Cp*1000*T01/U2; +alpha2 = (180/%pi)*acos(sqrt(1/Z)); +cm2 = ctheta2/tan(alpha2*%pi/180); +c2 = ctheta2/sin(alpha2*%pi/180); +T2 = T01 - (c2^2)/(2*Cp*1000); +p2 = p01*(1-(((c2^2)*(1+zetaN))/(2*Cp*1000*T01)))^(gamma/(gamma-1)); +b2_D2 = (0.25/%pi)*(R*T2/p2)*(mdot/(cm2*r2^2)); + +//Calculations +c3 = cm3_U2*U2; +cm3 = c3; +w3_av = 2*cm3/(cos(beta2*%pi/180)); +w2 = w3_av/2; +c0 = sqrt(2*delW*1000/eff_ts); +zetaR = (c0^2 *(1-eff_ts)- (c3^2)- zetaN*(c2^2))/(w3_av^2); +i = beta2; +n = 1.75; +eff_ts_new = 1-((c3^2)+zetaN*(c2^2)+zetaR*(w3_av^2)+(1-(cos(i*%pi/180))^n)*(w2^2))/(c0^2); + +//Results +printf('(a)The rotor enthalpy loss coefficient = %.4f',zetaR); +printf('\n(b) The total-to-static efficiency of the turbine = %.3f',eff_ts_new); + + +//there are some errors in the answers given in textbook -- cgit