diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /3407/CH8/EX8.6 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '3407/CH8/EX8.6')
-rw-r--r-- | 3407/CH8/EX8.6/Ex8_6.sce | 62 |
1 files changed, 62 insertions, 0 deletions
diff --git a/3407/CH8/EX8.6/Ex8_6.sce b/3407/CH8/EX8.6/Ex8_6.sce new file mode 100644 index 000000000..35e8dbd75 --- /dev/null +++ b/3407/CH8/EX8.6/Ex8_6.sce @@ -0,0 +1,62 @@ +clear;
+clc;
+funcprot(0);
+
+//given data
+Z = 12;//number of vanes
+delW = 230;//in kW
+T01 = 1050;//stagnation temperature in K
+mdot = 1;//flow rate in kg/s
+eff_ts = 0.81;//total-to-static efficiency
+Cp = 1.1502;//in kJ/(kg.K)
+gamma = 1.333;
+R = 287;//gas constant
+cm3_U2 = 0.25;
+nu = 0.4;
+r3s_r2 = 0.7;
+w3av_w2 = 2.0;
+p3 = 100;//static pressure at rotor exit in kPa
+zetaN = 0.06;//nozzle enthalpy loss coefficient
+U2 = 538.1;//in m/s
+p01 = 3.109*10^5;//in Pa
+
+//results of Example 8.4 and Example 8.5
+r3av_r3s = 0.5*(1+nu);
+r3av_r2 = r3av_r3s*r3s_r2;
+alpha2 = (180/%pi)*acos(sqrt(1/Z));
+beta2 = 2*(90-alpha2);
+beta3_av = (180/%pi)*atan(r3av_r2/cm3_U2);
+beta3s = (180/%pi)*atan(r3s_r2/cm3_U2);
+w3s_w2 = 2*cos(beta3_av*%pi/180)/cos(beta3s*%pi/180);
+S = delW/(Cp*T01);
+T03 = T01*(1-S);
+T3 = T03 - (cm3_U2^2)*(U2^2)/(2*Cp*1000);
+r2 = sqrt(mdot/((p3*1000/(R*T3))*(cm3_U2)*U2*%pi*(r3s_r2^2)*(1-nu^2)));
+D2 = 2*r2;
+omega = U2/r2;
+N = omega*30/%pi;
+ctheta2 = S*Cp*1000*T01/U2;
+alpha2 = (180/%pi)*acos(sqrt(1/Z));
+cm2 = ctheta2/tan(alpha2*%pi/180);
+c2 = ctheta2/sin(alpha2*%pi/180);
+T2 = T01 - (c2^2)/(2*Cp*1000);
+p2 = p01*(1-(((c2^2)*(1+zetaN))/(2*Cp*1000*T01)))^(gamma/(gamma-1));
+b2_D2 = (0.25/%pi)*(R*T2/p2)*(mdot/(cm2*r2^2));
+
+//Calculations
+c3 = cm3_U2*U2;
+cm3 = c3;
+w3_av = 2*cm3/(cos(beta2*%pi/180));
+w2 = w3_av/2;
+c0 = sqrt(2*delW*1000/eff_ts);
+zetaR = (c0^2 *(1-eff_ts)- (c3^2)- zetaN*(c2^2))/(w3_av^2);
+i = beta2;
+n = 1.75;
+eff_ts_new = 1-((c3^2)+zetaN*(c2^2)+zetaR*(w3_av^2)+(1-(cos(i*%pi/180))^n)*(w2^2))/(c0^2);
+
+//Results
+printf('(a)The rotor enthalpy loss coefficient = %.4f',zetaR);
+printf('\n(b) The total-to-static efficiency of the turbine = %.3f',eff_ts_new);
+
+
+//there are some errors in the answers given in textbook
|