diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /317/CH12 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '317/CH12')
-rwxr-xr-x | 317/CH12/EX12.1/example1.sce | 35 | ||||
-rwxr-xr-x | 317/CH12/EX12.1/example1.txt | 3 | ||||
-rwxr-xr-x | 317/CH12/EX12.10/example10.sce | 32 | ||||
-rwxr-xr-x | 317/CH12/EX12.10/example10.txt | 2 | ||||
-rwxr-xr-x | 317/CH12/EX12.12/example12.sce | 25 | ||||
-rwxr-xr-x | 317/CH12/EX12.12/example12.txt | 1 | ||||
-rwxr-xr-x | 317/CH12/EX12.13/example13.sce | 26 | ||||
-rwxr-xr-x | 317/CH12/EX12.13/example13.txt | 1 | ||||
-rwxr-xr-x | 317/CH12/EX12.14/example14.sce | 23 | ||||
-rwxr-xr-x | 317/CH12/EX12.14/example14.txt | 1 | ||||
-rwxr-xr-x | 317/CH12/EX12.2/example2.sce | 37 | ||||
-rwxr-xr-x | 317/CH12/EX12.2/example2.txt | 3 | ||||
-rwxr-xr-x | 317/CH12/EX12.3/example3.sce | 29 | ||||
-rwxr-xr-x | 317/CH12/EX12.3/example3.txt | 1 | ||||
-rwxr-xr-x | 317/CH12/EX12.4/example4.sce | 39 | ||||
-rwxr-xr-x | 317/CH12/EX12.4/example4.txt | 2 | ||||
-rwxr-xr-x | 317/CH12/EX12.6/example6.sce | 28 | ||||
-rwxr-xr-x | 317/CH12/EX12.6/example6.txt | 1 | ||||
-rwxr-xr-x | 317/CH12/EX12.7/example7.sce | 35 | ||||
-rwxr-xr-x | 317/CH12/EX12.7/example7.txt | 5 | ||||
-rwxr-xr-x | 317/CH12/EX12.8/example8.sce | 27 | ||||
-rwxr-xr-x | 317/CH12/EX12.8/example8.txt | 3 | ||||
-rwxr-xr-x | 317/CH12/EX12.9/example9.sce | 29 | ||||
-rwxr-xr-x | 317/CH12/EX12.9/example9.txt | 1 |
24 files changed, 389 insertions, 0 deletions
diff --git a/317/CH12/EX12.1/example1.sce b/317/CH12/EX12.1/example1.sce new file mode 100755 index 000000000..2e00cd4c3 --- /dev/null +++ b/317/CH12/EX12.1/example1.sce @@ -0,0 +1,35 @@ +// calculate dc collector current,dc collector-emitter voltage,ac resistance seen by collector +// Electronic Principles +// By Albert Malvino , David Bates +// Seventh Edition +// The McGraw-Hill Companies +// Example 12-1, page 384 + +clear;clc; close; + +// Given data +R1=490;// in ohms +R2=68;// in ohms +Rc=120;// in ohms +Re=20;// in ohms +Vcc=30;// in volts +Rl=180;// in ohms +Vc=12;// in volts + +// Calculations +Vb=R2*Vcc/(R2+R1);// in volts +Ve=Vb-0.7; +Ie=Ve/Re;// in amperes +Icq=Ie;// dc collector current in amperes +Vceq=Vc-Ve;// dc collector-emitter voltage in volts +rc=Rc*Rl/(Rc+Rl);// rc=Rc||Rl +disp("Amperes",Icq,"dc collector current=") +disp("Volts",Vceq,"dc collector-emitter voltage=") +disp("ohms",rc,"ac resistance =") + +// Results +// dc collector current is 147 mAmperes +// dc collector-emitter voltage is 9 volts +// ac resistance seen by collector is 72 ohms + + diff --git a/317/CH12/EX12.1/example1.txt b/317/CH12/EX12.1/example1.txt new file mode 100755 index 000000000..6ab625383 --- /dev/null +++ b/317/CH12/EX12.1/example1.txt @@ -0,0 +1,3 @@ +dc collector current is 147 mAmperes +dc collector-emitter voltage is 9 volts +ac resistance seen by collector is 72 ohms diff --git a/317/CH12/EX12.10/example10.sce b/317/CH12/EX12.10/example10.sce new file mode 100755 index 000000000..198e16bf8 --- /dev/null +++ b/317/CH12/EX12.10/example10.sce @@ -0,0 +1,32 @@ +// calculate efficiency +// Electronic Principles +// By Albert Malvino , David Bates +// Seventh Edition +// The McGraw-Hill Companies +// Example 12-10, page 400 + +clear;clc; close; +// Given data +R=3.9*10^3;// resistance in ohms +R1=3.9*10^3;// in ohms +Vcc=20;// in volts +Rl=10;// in ohms +Vceq=10;// in volts +Vbe=0.7;// in volts + +// Calculations +Ibias=(Vcc-(2*Vbe))/(2*R);// dc current through biasing resistors +Iq=Ibias;// quiescent collector current assuming compensating diodes match the emitter diodes +Icsat=Vceq/Rl;// saturation current in amperes +Iav=Icsat/%pi;// collector current in the conducting transistor +Idc=Ibias+Iav;// total current drain in amperes +Pdc=Vcc*Idc;// dc input power in watts +MPP=Vcc;// in volts +Poutmax=(MPP^2)/(8*Rl);// maximum output power in watts +E=(Poutmax/Pdc)*100;// efficiency in percentage +disp("%",E,"efficiency=") +disp("Amperes",Iq,"quiescent collector current=") + +// Result +// efficiency is 78% +// quiescent collector current is 2.38 mAmperes diff --git a/317/CH12/EX12.10/example10.txt b/317/CH12/EX12.10/example10.txt new file mode 100755 index 000000000..7624ba49e --- /dev/null +++ b/317/CH12/EX12.10/example10.txt @@ -0,0 +1,2 @@ +efficiency is 78% +quiescent collector current is 2.38 mAmperes diff --git a/317/CH12/EX12.12/example12.sce b/317/CH12/EX12.12/example12.sce new file mode 100755 index 000000000..b341ea53f --- /dev/null +++ b/317/CH12/EX12.12/example12.sce @@ -0,0 +1,25 @@ +// calculate bandwidth of amplifier +// Electronic Principles +// By Albert Malvino , David Bates +// Seventh Edition +// The McGraw-Hill Companies +// Example 12-12, page 410 + +clear;clc; close; +// Given data +c=470*10^-12;// capacitance in faraday +l=2*10^-6;// inductance in henry +Rl=1*10^3;// load resistance in ohms +Ql=100; + +// Calculations +fr=1/(2*%pi*sqrt(l*c));// resonant frequency in hertz +Xl=2*%pi*fr*l;// in ohms +Rp=Ql*Xl;// equivalent parallel resistance of coil in ohms +rc=(Rp*Rl)/(Rp+Rl);// ac collector resistance in ohms +Q=rc/Xl;// Q of the overall circuit +BW=fr/Q;// band width in hertz +disp("Hertz",BW,"bandwidth=") + +// Result +// bandwidth is 390 KHertz diff --git a/317/CH12/EX12.12/example12.txt b/317/CH12/EX12.12/example12.txt new file mode 100755 index 000000000..738de97c2 --- /dev/null +++ b/317/CH12/EX12.12/example12.txt @@ -0,0 +1 @@ +bandwidth is 390 KHertz diff --git a/317/CH12/EX12.13/example13.sce b/317/CH12/EX12.13/example13.sce new file mode 100755 index 000000000..ab9abffdc --- /dev/null +++ b/317/CH12/EX12.13/example13.sce @@ -0,0 +1,26 @@ +// calculate worst-case power dissipation +// Electronic Principles +// By Albert Malvino , David Bates +// Seventh Edition +// The McGraw-Hill Companies +// Example 12-13, page 411 + +clear;clc; close; +// Given data +c=470*10^-12;// capacitance in faraday +l=2*10^-6;// inductance in henry +Rl=1*10^3;// load resistance in ohms +Ql=100; +Vcc=15;// in volts + +// Calculations +MPP=2*Vcc;// maximum peak-to-peak output in volts +fr=1/(2*%pi*sqrt(l*c));// resonant frequency in hertz +Xl=2*%pi*fr*l;// in ohms +Rp=Ql*Xl;// equivalent parallel resistance of coil in ohms +rc=(Rp*Rl)/(Rp+Rl);// ac collector resistance in ohms +Pd=MPP^2/(40*rc);// worst-case power dissipation of the transistor in watts +disp("Watts",Pd,"worst-case power dissipation=") + +// Result +// worst-case power dissipation is 26 mWatts diff --git a/317/CH12/EX12.13/example13.txt b/317/CH12/EX12.13/example13.txt new file mode 100755 index 000000000..202a28b96 --- /dev/null +++ b/317/CH12/EX12.13/example13.txt @@ -0,0 +1 @@ +worst-case power dissipation is 26 mWatts diff --git a/317/CH12/EX12.14/example14.sce b/317/CH12/EX12.14/example14.sce new file mode 100755 index 000000000..369a27c13 --- /dev/null +++ b/317/CH12/EX12.14/example14.sce @@ -0,0 +1,23 @@ +// calculate maximum power rating +// Electronic Principles +// By Albert Malvino , David Bates +// Seventh Edition +// The McGraw-Hill Companies +// Example 12-14, page 414 + +clear;clc; close; +// Given data +// 2N3904 +Pd=625*10^-3;// power rating at 25 degree celcius ambient +D=5*10^-3;// derating factor in watts per degree celcius +T2=50;// highest range in celcius +T1=25;// ambient temperature in degree celcius + +// Calculations +dT=T2-T1;// in degree celcius +dP=D*dT;// change in power +Pdmax=Pd-dP;// in watts +disp("Watts",Pdmax,"maximum power rating=") + +// Result +// maximum power rating is 500 mWatts. diff --git a/317/CH12/EX12.14/example14.txt b/317/CH12/EX12.14/example14.txt new file mode 100755 index 000000000..398380707 --- /dev/null +++ b/317/CH12/EX12.14/example14.txt @@ -0,0 +1 @@ +maximum power rating is 500 mWatts. diff --git a/317/CH12/EX12.2/example2.sce b/317/CH12/EX12.2/example2.sce new file mode 100755 index 000000000..dbc05683e --- /dev/null +++ b/317/CH12/EX12.2/example2.sce @@ -0,0 +1,37 @@ +// calculate ac load line saturation, cutoff points, maximum peak-to-peak output voltage +// Electronic Principles +// By Albert Malvino , David Bates +// Seventh Edition +// The McGraw-Hill Companies +// Example 12-2, page 384 + +clear;clc; close; + +// Given data +R1=490;// in ohms +R2=68;// in ohms +Rc=120;// in ohms +Re=20;// in ohms +Vcc=30;// in volts +Rl=180;// in ohms +Vc=12;// in volts + +// Calculations +Vb=R2*Vcc/(R2+R1);// in volts +Ve=Vb-0.7; +Ie=Ve/Re;// in amperes +Icq=Ie;// dc collector current in amperes +Vceq=Vc-Ve; // dc collector-emitter voltage in volts +rc=Rc*Rl/(Rc+Rl);// rc=Rc||Rl +Icsat=Icq+Vceq/rc;// ac saturation current in amperes +Vcecutoff=Vceq+(Icq*rc);// in volts +// as supply voltage is 30 volts MPP<30 +MPP=2*Vceq ; // as (Icq*rc)>Vceq +disp("Amperes",Icsat,"ac load line saturation") +disp("Volts",Vcecutoff,"ac cutoff voltage") +disp("Volts",MPP,"maximum peak-to-peak output voltage=") + +// Results +// ac load line saturation is 273 mAmperes +// ac voltage at cutoff point is 19.7 volts +// maximum peak-to-peak output voltage is 18 volts diff --git a/317/CH12/EX12.2/example2.txt b/317/CH12/EX12.2/example2.txt new file mode 100755 index 000000000..7db6be4b7 --- /dev/null +++ b/317/CH12/EX12.2/example2.txt @@ -0,0 +1,3 @@ +ac load line saturation is 273 mAmperes +ac voltage at cutoff point is 19.7 volts +maximum peak-to-peak output voltage is 18 volts diff --git a/317/CH12/EX12.3/example3.sce b/317/CH12/EX12.3/example3.sce new file mode 100755 index 000000000..970eaafc3 --- /dev/null +++ b/317/CH12/EX12.3/example3.sce @@ -0,0 +1,29 @@ +// calculate power output gain +// Electronic Principles +// By Albert Malvino , David Bates +// Seventh Edition +// The McGraw-Hill Companies +// Example 12-3, page 387 + +clear;clc; close; + +// Given data +R1=490;// in ohms +R2=68;// in ohms +Rc=120;// in ohms +Re=20;// in ohms +Vcc=30;// in volts +Rl=180;// in ohms +Ri=100;// input independence in ohms +PP=18;// peak-to-peak voltage in volts +Vin=200*10^-3;// in volts + +// Calculations +zinstage=490*68*100/((490*68)+(490*100)+(68*100));// in ohms +Pin=(Vin)^2/(8*zinstage);// ac input power in watts +Pout=(PP)^2/(8*Rl);// ac output power in watts +Ap=Pout/Pin;// power gain +disp(Ap,"Power gain=") + +// Result +// power gain is 1682 diff --git a/317/CH12/EX12.3/example3.txt b/317/CH12/EX12.3/example3.txt new file mode 100755 index 000000000..4d6282a29 --- /dev/null +++ b/317/CH12/EX12.3/example3.txt @@ -0,0 +1 @@ +power gain is 1682 diff --git a/317/CH12/EX12.4/example4.sce b/317/CH12/EX12.4/example4.sce new file mode 100755 index 000000000..dcb2c0567 --- /dev/null +++ b/317/CH12/EX12.4/example4.sce @@ -0,0 +1,39 @@ +// calculate transistor power dissipation and efficiency +// Electronic Principles +// By Albert Malvino , David Bates +// Seventh Edition +// The McGraw-Hill Companies +// Example 12-4, page 387 + +clear;clc; close; +// Given data +R1=490;// in ohms +R2=68;// in ohms +Rc=120;// in ohms +Re=20;// in ohms +Vcc=30;// in volts +Rl=180;// in ohms +Ri=100;// input independence in ohms +PP=18;// peak-to-peak voltage in volts +Vin=200*10^-3;// in volts +Vc=12;// in volts + +// Calculations +Vb=R2*Vcc/(R2+R1);// in volts +Ve=Vb-0.7; +Ie=Ve/Re;// in amperes +Icq=Ie;// dc collector current in amperes +Vceq=Vc-Ve;// dc collector-emitter voltage in volts +Pdq=Vceq*Icq;// transistor power dissipation +// to find stage efficiency +Ibias=Vcc/(R1+R2);// in amperes +Idc=Ibias+Icq;// in amperes +Pdc=Idc*Vcc;// dc input power in watts +Pout=(PP)^2/(8*Rl);// ac output power in watts +n=(Pout/Pdc)*100;// efficiency +disp("Watts",Pdq,"transistor power dissipation=") +disp("%",n,"efficiency=") + +// Results +// transistor power dissipation is 1.34 watts +// efficiency of stage is 3.72% diff --git a/317/CH12/EX12.4/example4.txt b/317/CH12/EX12.4/example4.txt new file mode 100755 index 000000000..30c81644b --- /dev/null +++ b/317/CH12/EX12.4/example4.txt @@ -0,0 +1,2 @@ +transistor power dissipation is 1.34 watts +efficiency of stage is 3.72% diff --git a/317/CH12/EX12.6/example6.sce b/317/CH12/EX12.6/example6.sce new file mode 100755 index 000000000..f932083b2 --- /dev/null +++ b/317/CH12/EX12.6/example6.sce @@ -0,0 +1,28 @@ +// calculate dc collector current,dc collector-emitter voltage,ac resistance seen by collector +// Electronic Principles +// By Albert Malvino , David Bates +// Seventh Edition +// The McGraw-Hill Companies +// Example 12-6, page 391 + +clear;clc; close; +// Given data +R1=50;// in ohms +R2=100;// in ohms +Re=16;// in ohms +Vcc=12;// in volts +Rl=16;// in ohms + +// Calculations +Vb=R2*Vcc/(R2+R1);// in volts +Ve=Vb-0.7; +Ie=Ve/Re;// in amperes +Icq=Ie;// dc collector current in amperes +Vceq=Vcc-Ve;// dc collector-emitter voltage in volts +re=Re/2;// in ohms,re=Re||Rl +disp("Amperes",Icq,"dc collector current=") +disp("Volts",Vceq,"dc collector-emitter voltage=") +disp("ohms",re,"ac resistance =") + +// Results +// Icq=456 mAmperes,Vceq=4.7 ohms,re=8 ohms diff --git a/317/CH12/EX12.6/example6.txt b/317/CH12/EX12.6/example6.txt new file mode 100755 index 000000000..6f2fe62ab --- /dev/null +++ b/317/CH12/EX12.6/example6.txt @@ -0,0 +1 @@ +Icq=456 mAmperes,Vceq=4.7 ohms,re=8 ohms diff --git a/317/CH12/EX12.7/example7.sce b/317/CH12/EX12.7/example7.sce new file mode 100755 index 000000000..66b2314da --- /dev/null +++ b/317/CH12/EX12.7/example7.sce @@ -0,0 +1,35 @@ +// calculate ac load line saturation, cutoff points, maximum peak-to-peak output voltage +// Electronic Principles +// By Albert Malvino , David Bates +// Seventh Edition +// The McGraw-Hill Companies +// Example 12-7, page 392 + +clear;clc; close; +// Given data +R1=50;// in ohms +R2=100;// in ohms +Re=16;// in ohms +Vcc=12;// in volts +Rl=16;// in ohms + +// Calculations +Vb=R2*Vcc/(R2+R1);// in volts +Ve=Vb-0.7; +Ie=Ve/Re;// in amperes +Icq=Ie;// dc collector current in amperes +Vceq=Vcc-Ve;// dc collector-emitter voltage in volts +re=Re/2;// in ohms,re=Re||Rl +icsat=Icq+(Vceq/re);// ac load line saturation in amperes +Vcecutoff=Vceq+(Icq*re);// cutoff point in volts +MPP=2*Icq*re;// MPP output voltage in Vpp +disp("Amperes",icsat,"ac load line saturation") +disp("Volts",Vcecutoff,"ac cutoff voltage") +disp("Volts",MPP,"maximum peak-to-peak output voltage=") + +// Result +// ac load line saturation is 1.04 amperes +// cutoff voltage is 8.35 volts +// MPP output voltage is 7.3 Vpp. + + diff --git a/317/CH12/EX12.7/example7.txt b/317/CH12/EX12.7/example7.txt new file mode 100755 index 000000000..5f6581c01 --- /dev/null +++ b/317/CH12/EX12.7/example7.txt @@ -0,0 +1,5 @@ +ac load line saturation is 1.04 amperes +cutoff voltage is 8.35 volts +MPP output voltage is 7.3 Vpp. + + diff --git a/317/CH12/EX12.8/example8.sce b/317/CH12/EX12.8/example8.sce new file mode 100755 index 000000000..e5fe598e6 --- /dev/null +++ b/317/CH12/EX12.8/example8.sce @@ -0,0 +1,27 @@ +// calculate transistor power dissipation and maximum output power +// Electronic Principles +// By Albert Malvino , David Bates +// Seventh Edition +// The McGraw-Hill Companies +// Example 12-8, page 397 + +clear;clc; close; +// Given data +R1=100;// in ohms +R2=100;// in ohms +Vcc=20;// in volts +Rl=8;// in ohms + +// Calculations +MPP=Vcc;// in volts +Pdmax=(MPP^2)/(40*Rl);// maximum transistor power dissipation in watts +Poutmax=(MPP^2)/(8*Rl);// maximum output power in watts +disp("Watts",Pdmax,"maximum power dissipation=") +disp("Watts",Poutmax,"maximum output power=") + + +// Result +// maximum power dissipation is 1.25 watts +// maximum output power is 6.25 watts + + diff --git a/317/CH12/EX12.8/example8.txt b/317/CH12/EX12.8/example8.txt new file mode 100755 index 000000000..dcf212783 --- /dev/null +++ b/317/CH12/EX12.8/example8.txt @@ -0,0 +1,3 @@ +maximum power dissipation is 1.25 watts +maximum output power is 6.25 watts + diff --git a/317/CH12/EX12.9/example9.sce b/317/CH12/EX12.9/example9.sce new file mode 100755 index 000000000..0c57a9329 --- /dev/null +++ b/317/CH12/EX12.9/example9.sce @@ -0,0 +1,29 @@ +// calculate efficiency +// Electronic Principles +// By Albert Malvino , David Bates +// Seventh Edition +// The McGraw-Hill Companies +// Example 12-9, page 398 + +clear;clc; close; +// Given data +R=15;// adjustable resistance in ohms +R1=100;// in ohms +R2=100;// in ohms +Vcc=20;// in volts +Rl=8;// in ohms +Vceq=10;// in volts + +// Calculations +Ibias=Vcc/(R1+R2+R);// dc current through biasing resistors +Icsat=Vceq/Rl;// saturation current in amperes +Iav=Icsat/%pi;// collector current in the conducting transistor +Idc=Ibias+Iav;// total current drain in amperes +Pdc=Vcc*Idc;// dc input power in watts +MPP=Vcc;// in volts +Poutmax=(MPP^2)/(8*Rl);// maximum output power in watts +E=(Poutmax/Pdc)*100;// efficiency in percentage +disp("%",E,"efficiency=") + +// Result +// efficiency is 63.6% diff --git a/317/CH12/EX12.9/example9.txt b/317/CH12/EX12.9/example9.txt new file mode 100755 index 000000000..c39876376 --- /dev/null +++ b/317/CH12/EX12.9/example9.txt @@ -0,0 +1 @@ +efficiency is 63.6% |