summaryrefslogtreecommitdiff
path: root/317/CH12
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /317/CH12
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '317/CH12')
-rwxr-xr-x317/CH12/EX12.1/example1.sce35
-rwxr-xr-x317/CH12/EX12.1/example1.txt3
-rwxr-xr-x317/CH12/EX12.10/example10.sce32
-rwxr-xr-x317/CH12/EX12.10/example10.txt2
-rwxr-xr-x317/CH12/EX12.12/example12.sce25
-rwxr-xr-x317/CH12/EX12.12/example12.txt1
-rwxr-xr-x317/CH12/EX12.13/example13.sce26
-rwxr-xr-x317/CH12/EX12.13/example13.txt1
-rwxr-xr-x317/CH12/EX12.14/example14.sce23
-rwxr-xr-x317/CH12/EX12.14/example14.txt1
-rwxr-xr-x317/CH12/EX12.2/example2.sce37
-rwxr-xr-x317/CH12/EX12.2/example2.txt3
-rwxr-xr-x317/CH12/EX12.3/example3.sce29
-rwxr-xr-x317/CH12/EX12.3/example3.txt1
-rwxr-xr-x317/CH12/EX12.4/example4.sce39
-rwxr-xr-x317/CH12/EX12.4/example4.txt2
-rwxr-xr-x317/CH12/EX12.6/example6.sce28
-rwxr-xr-x317/CH12/EX12.6/example6.txt1
-rwxr-xr-x317/CH12/EX12.7/example7.sce35
-rwxr-xr-x317/CH12/EX12.7/example7.txt5
-rwxr-xr-x317/CH12/EX12.8/example8.sce27
-rwxr-xr-x317/CH12/EX12.8/example8.txt3
-rwxr-xr-x317/CH12/EX12.9/example9.sce29
-rwxr-xr-x317/CH12/EX12.9/example9.txt1
24 files changed, 389 insertions, 0 deletions
diff --git a/317/CH12/EX12.1/example1.sce b/317/CH12/EX12.1/example1.sce
new file mode 100755
index 000000000..2e00cd4c3
--- /dev/null
+++ b/317/CH12/EX12.1/example1.sce
@@ -0,0 +1,35 @@
+// calculate dc collector current,dc collector-emitter voltage,ac resistance seen by collector
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 12-1, page 384
+
+clear;clc; close;
+
+// Given data
+R1=490;// in ohms
+R2=68;// in ohms
+Rc=120;// in ohms
+Re=20;// in ohms
+Vcc=30;// in volts
+Rl=180;// in ohms
+Vc=12;// in volts
+
+// Calculations
+Vb=R2*Vcc/(R2+R1);// in volts
+Ve=Vb-0.7;
+Ie=Ve/Re;// in amperes
+Icq=Ie;// dc collector current in amperes
+Vceq=Vc-Ve;// dc collector-emitter voltage in volts
+rc=Rc*Rl/(Rc+Rl);// rc=Rc||Rl
+disp("Amperes",Icq,"dc collector current=")
+disp("Volts",Vceq,"dc collector-emitter voltage=")
+disp("ohms",rc,"ac resistance =")
+
+// Results
+// dc collector current is 147 mAmperes
+// dc collector-emitter voltage is 9 volts
+// ac resistance seen by collector is 72 ohms
+
+
diff --git a/317/CH12/EX12.1/example1.txt b/317/CH12/EX12.1/example1.txt
new file mode 100755
index 000000000..6ab625383
--- /dev/null
+++ b/317/CH12/EX12.1/example1.txt
@@ -0,0 +1,3 @@
+dc collector current is 147 mAmperes
+dc collector-emitter voltage is 9 volts
+ac resistance seen by collector is 72 ohms
diff --git a/317/CH12/EX12.10/example10.sce b/317/CH12/EX12.10/example10.sce
new file mode 100755
index 000000000..198e16bf8
--- /dev/null
+++ b/317/CH12/EX12.10/example10.sce
@@ -0,0 +1,32 @@
+// calculate efficiency
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 12-10, page 400
+
+clear;clc; close;
+// Given data
+R=3.9*10^3;// resistance in ohms
+R1=3.9*10^3;// in ohms
+Vcc=20;// in volts
+Rl=10;// in ohms
+Vceq=10;// in volts
+Vbe=0.7;// in volts
+
+// Calculations
+Ibias=(Vcc-(2*Vbe))/(2*R);// dc current through biasing resistors
+Iq=Ibias;// quiescent collector current assuming compensating diodes match the emitter diodes
+Icsat=Vceq/Rl;// saturation current in amperes
+Iav=Icsat/%pi;// collector current in the conducting transistor
+Idc=Ibias+Iav;// total current drain in amperes
+Pdc=Vcc*Idc;// dc input power in watts
+MPP=Vcc;// in volts
+Poutmax=(MPP^2)/(8*Rl);// maximum output power in watts
+E=(Poutmax/Pdc)*100;// efficiency in percentage
+disp("%",E,"efficiency=")
+disp("Amperes",Iq,"quiescent collector current=")
+
+// Result
+// efficiency is 78%
+// quiescent collector current is 2.38 mAmperes
diff --git a/317/CH12/EX12.10/example10.txt b/317/CH12/EX12.10/example10.txt
new file mode 100755
index 000000000..7624ba49e
--- /dev/null
+++ b/317/CH12/EX12.10/example10.txt
@@ -0,0 +1,2 @@
+efficiency is 78%
+quiescent collector current is 2.38 mAmperes
diff --git a/317/CH12/EX12.12/example12.sce b/317/CH12/EX12.12/example12.sce
new file mode 100755
index 000000000..b341ea53f
--- /dev/null
+++ b/317/CH12/EX12.12/example12.sce
@@ -0,0 +1,25 @@
+// calculate bandwidth of amplifier
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 12-12, page 410
+
+clear;clc; close;
+// Given data
+c=470*10^-12;// capacitance in faraday
+l=2*10^-6;// inductance in henry
+Rl=1*10^3;// load resistance in ohms
+Ql=100;
+
+// Calculations
+fr=1/(2*%pi*sqrt(l*c));// resonant frequency in hertz
+Xl=2*%pi*fr*l;// in ohms
+Rp=Ql*Xl;// equivalent parallel resistance of coil in ohms
+rc=(Rp*Rl)/(Rp+Rl);// ac collector resistance in ohms
+Q=rc/Xl;// Q of the overall circuit
+BW=fr/Q;// band width in hertz
+disp("Hertz",BW,"bandwidth=")
+
+// Result
+// bandwidth is 390 KHertz
diff --git a/317/CH12/EX12.12/example12.txt b/317/CH12/EX12.12/example12.txt
new file mode 100755
index 000000000..738de97c2
--- /dev/null
+++ b/317/CH12/EX12.12/example12.txt
@@ -0,0 +1 @@
+bandwidth is 390 KHertz
diff --git a/317/CH12/EX12.13/example13.sce b/317/CH12/EX12.13/example13.sce
new file mode 100755
index 000000000..ab9abffdc
--- /dev/null
+++ b/317/CH12/EX12.13/example13.sce
@@ -0,0 +1,26 @@
+// calculate worst-case power dissipation
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 12-13, page 411
+
+clear;clc; close;
+// Given data
+c=470*10^-12;// capacitance in faraday
+l=2*10^-6;// inductance in henry
+Rl=1*10^3;// load resistance in ohms
+Ql=100;
+Vcc=15;// in volts
+
+// Calculations
+MPP=2*Vcc;// maximum peak-to-peak output in volts
+fr=1/(2*%pi*sqrt(l*c));// resonant frequency in hertz
+Xl=2*%pi*fr*l;// in ohms
+Rp=Ql*Xl;// equivalent parallel resistance of coil in ohms
+rc=(Rp*Rl)/(Rp+Rl);// ac collector resistance in ohms
+Pd=MPP^2/(40*rc);// worst-case power dissipation of the transistor in watts
+disp("Watts",Pd,"worst-case power dissipation=")
+
+// Result
+// worst-case power dissipation is 26 mWatts
diff --git a/317/CH12/EX12.13/example13.txt b/317/CH12/EX12.13/example13.txt
new file mode 100755
index 000000000..202a28b96
--- /dev/null
+++ b/317/CH12/EX12.13/example13.txt
@@ -0,0 +1 @@
+worst-case power dissipation is 26 mWatts
diff --git a/317/CH12/EX12.14/example14.sce b/317/CH12/EX12.14/example14.sce
new file mode 100755
index 000000000..369a27c13
--- /dev/null
+++ b/317/CH12/EX12.14/example14.sce
@@ -0,0 +1,23 @@
+// calculate maximum power rating
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 12-14, page 414
+
+clear;clc; close;
+// Given data
+// 2N3904
+Pd=625*10^-3;// power rating at 25 degree celcius ambient
+D=5*10^-3;// derating factor in watts per degree celcius
+T2=50;// highest range in celcius
+T1=25;// ambient temperature in degree celcius
+
+// Calculations
+dT=T2-T1;// in degree celcius
+dP=D*dT;// change in power
+Pdmax=Pd-dP;// in watts
+disp("Watts",Pdmax,"maximum power rating=")
+
+// Result
+// maximum power rating is 500 mWatts.
diff --git a/317/CH12/EX12.14/example14.txt b/317/CH12/EX12.14/example14.txt
new file mode 100755
index 000000000..398380707
--- /dev/null
+++ b/317/CH12/EX12.14/example14.txt
@@ -0,0 +1 @@
+maximum power rating is 500 mWatts.
diff --git a/317/CH12/EX12.2/example2.sce b/317/CH12/EX12.2/example2.sce
new file mode 100755
index 000000000..dbc05683e
--- /dev/null
+++ b/317/CH12/EX12.2/example2.sce
@@ -0,0 +1,37 @@
+// calculate ac load line saturation, cutoff points, maximum peak-to-peak output voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 12-2, page 384
+
+clear;clc; close;
+
+// Given data
+R1=490;// in ohms
+R2=68;// in ohms
+Rc=120;// in ohms
+Re=20;// in ohms
+Vcc=30;// in volts
+Rl=180;// in ohms
+Vc=12;// in volts
+
+// Calculations
+Vb=R2*Vcc/(R2+R1);// in volts
+Ve=Vb-0.7;
+Ie=Ve/Re;// in amperes
+Icq=Ie;// dc collector current in amperes
+Vceq=Vc-Ve; // dc collector-emitter voltage in volts
+rc=Rc*Rl/(Rc+Rl);// rc=Rc||Rl
+Icsat=Icq+Vceq/rc;// ac saturation current in amperes
+Vcecutoff=Vceq+(Icq*rc);// in volts
+// as supply voltage is 30 volts MPP<30
+MPP=2*Vceq ; // as (Icq*rc)>Vceq
+disp("Amperes",Icsat,"ac load line saturation")
+disp("Volts",Vcecutoff,"ac cutoff voltage")
+disp("Volts",MPP,"maximum peak-to-peak output voltage=")
+
+// Results
+// ac load line saturation is 273 mAmperes
+// ac voltage at cutoff point is 19.7 volts
+// maximum peak-to-peak output voltage is 18 volts
diff --git a/317/CH12/EX12.2/example2.txt b/317/CH12/EX12.2/example2.txt
new file mode 100755
index 000000000..7db6be4b7
--- /dev/null
+++ b/317/CH12/EX12.2/example2.txt
@@ -0,0 +1,3 @@
+ac load line saturation is 273 mAmperes
+ac voltage at cutoff point is 19.7 volts
+maximum peak-to-peak output voltage is 18 volts
diff --git a/317/CH12/EX12.3/example3.sce b/317/CH12/EX12.3/example3.sce
new file mode 100755
index 000000000..970eaafc3
--- /dev/null
+++ b/317/CH12/EX12.3/example3.sce
@@ -0,0 +1,29 @@
+// calculate power output gain
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 12-3, page 387
+
+clear;clc; close;
+
+// Given data
+R1=490;// in ohms
+R2=68;// in ohms
+Rc=120;// in ohms
+Re=20;// in ohms
+Vcc=30;// in volts
+Rl=180;// in ohms
+Ri=100;// input independence in ohms
+PP=18;// peak-to-peak voltage in volts
+Vin=200*10^-3;// in volts
+
+// Calculations
+zinstage=490*68*100/((490*68)+(490*100)+(68*100));// in ohms
+Pin=(Vin)^2/(8*zinstage);// ac input power in watts
+Pout=(PP)^2/(8*Rl);// ac output power in watts
+Ap=Pout/Pin;// power gain
+disp(Ap,"Power gain=")
+
+// Result
+// power gain is 1682
diff --git a/317/CH12/EX12.3/example3.txt b/317/CH12/EX12.3/example3.txt
new file mode 100755
index 000000000..4d6282a29
--- /dev/null
+++ b/317/CH12/EX12.3/example3.txt
@@ -0,0 +1 @@
+power gain is 1682
diff --git a/317/CH12/EX12.4/example4.sce b/317/CH12/EX12.4/example4.sce
new file mode 100755
index 000000000..dcb2c0567
--- /dev/null
+++ b/317/CH12/EX12.4/example4.sce
@@ -0,0 +1,39 @@
+// calculate transistor power dissipation and efficiency
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 12-4, page 387
+
+clear;clc; close;
+// Given data
+R1=490;// in ohms
+R2=68;// in ohms
+Rc=120;// in ohms
+Re=20;// in ohms
+Vcc=30;// in volts
+Rl=180;// in ohms
+Ri=100;// input independence in ohms
+PP=18;// peak-to-peak voltage in volts
+Vin=200*10^-3;// in volts
+Vc=12;// in volts
+
+// Calculations
+Vb=R2*Vcc/(R2+R1);// in volts
+Ve=Vb-0.7;
+Ie=Ve/Re;// in amperes
+Icq=Ie;// dc collector current in amperes
+Vceq=Vc-Ve;// dc collector-emitter voltage in volts
+Pdq=Vceq*Icq;// transistor power dissipation
+// to find stage efficiency
+Ibias=Vcc/(R1+R2);// in amperes
+Idc=Ibias+Icq;// in amperes
+Pdc=Idc*Vcc;// dc input power in watts
+Pout=(PP)^2/(8*Rl);// ac output power in watts
+n=(Pout/Pdc)*100;// efficiency
+disp("Watts",Pdq,"transistor power dissipation=")
+disp("%",n,"efficiency=")
+
+// Results
+// transistor power dissipation is 1.34 watts
+// efficiency of stage is 3.72%
diff --git a/317/CH12/EX12.4/example4.txt b/317/CH12/EX12.4/example4.txt
new file mode 100755
index 000000000..30c81644b
--- /dev/null
+++ b/317/CH12/EX12.4/example4.txt
@@ -0,0 +1,2 @@
+transistor power dissipation is 1.34 watts
+efficiency of stage is 3.72%
diff --git a/317/CH12/EX12.6/example6.sce b/317/CH12/EX12.6/example6.sce
new file mode 100755
index 000000000..f932083b2
--- /dev/null
+++ b/317/CH12/EX12.6/example6.sce
@@ -0,0 +1,28 @@
+// calculate dc collector current,dc collector-emitter voltage,ac resistance seen by collector
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 12-6, page 391
+
+clear;clc; close;
+// Given data
+R1=50;// in ohms
+R2=100;// in ohms
+Re=16;// in ohms
+Vcc=12;// in volts
+Rl=16;// in ohms
+
+// Calculations
+Vb=R2*Vcc/(R2+R1);// in volts
+Ve=Vb-0.7;
+Ie=Ve/Re;// in amperes
+Icq=Ie;// dc collector current in amperes
+Vceq=Vcc-Ve;// dc collector-emitter voltage in volts
+re=Re/2;// in ohms,re=Re||Rl
+disp("Amperes",Icq,"dc collector current=")
+disp("Volts",Vceq,"dc collector-emitter voltage=")
+disp("ohms",re,"ac resistance =")
+
+// Results
+// Icq=456 mAmperes,Vceq=4.7 ohms,re=8 ohms
diff --git a/317/CH12/EX12.6/example6.txt b/317/CH12/EX12.6/example6.txt
new file mode 100755
index 000000000..6f2fe62ab
--- /dev/null
+++ b/317/CH12/EX12.6/example6.txt
@@ -0,0 +1 @@
+Icq=456 mAmperes,Vceq=4.7 ohms,re=8 ohms
diff --git a/317/CH12/EX12.7/example7.sce b/317/CH12/EX12.7/example7.sce
new file mode 100755
index 000000000..66b2314da
--- /dev/null
+++ b/317/CH12/EX12.7/example7.sce
@@ -0,0 +1,35 @@
+// calculate ac load line saturation, cutoff points, maximum peak-to-peak output voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 12-7, page 392
+
+clear;clc; close;
+// Given data
+R1=50;// in ohms
+R2=100;// in ohms
+Re=16;// in ohms
+Vcc=12;// in volts
+Rl=16;// in ohms
+
+// Calculations
+Vb=R2*Vcc/(R2+R1);// in volts
+Ve=Vb-0.7;
+Ie=Ve/Re;// in amperes
+Icq=Ie;// dc collector current in amperes
+Vceq=Vcc-Ve;// dc collector-emitter voltage in volts
+re=Re/2;// in ohms,re=Re||Rl
+icsat=Icq+(Vceq/re);// ac load line saturation in amperes
+Vcecutoff=Vceq+(Icq*re);// cutoff point in volts
+MPP=2*Icq*re;// MPP output voltage in Vpp
+disp("Amperes",icsat,"ac load line saturation")
+disp("Volts",Vcecutoff,"ac cutoff voltage")
+disp("Volts",MPP,"maximum peak-to-peak output voltage=")
+
+// Result
+// ac load line saturation is 1.04 amperes
+// cutoff voltage is 8.35 volts
+// MPP output voltage is 7.3 Vpp.
+
+
diff --git a/317/CH12/EX12.7/example7.txt b/317/CH12/EX12.7/example7.txt
new file mode 100755
index 000000000..5f6581c01
--- /dev/null
+++ b/317/CH12/EX12.7/example7.txt
@@ -0,0 +1,5 @@
+ac load line saturation is 1.04 amperes
+cutoff voltage is 8.35 volts
+MPP output voltage is 7.3 Vpp.
+
+
diff --git a/317/CH12/EX12.8/example8.sce b/317/CH12/EX12.8/example8.sce
new file mode 100755
index 000000000..e5fe598e6
--- /dev/null
+++ b/317/CH12/EX12.8/example8.sce
@@ -0,0 +1,27 @@
+// calculate transistor power dissipation and maximum output power
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 12-8, page 397
+
+clear;clc; close;
+// Given data
+R1=100;// in ohms
+R2=100;// in ohms
+Vcc=20;// in volts
+Rl=8;// in ohms
+
+// Calculations
+MPP=Vcc;// in volts
+Pdmax=(MPP^2)/(40*Rl);// maximum transistor power dissipation in watts
+Poutmax=(MPP^2)/(8*Rl);// maximum output power in watts
+disp("Watts",Pdmax,"maximum power dissipation=")
+disp("Watts",Poutmax,"maximum output power=")
+
+
+// Result
+// maximum power dissipation is 1.25 watts
+// maximum output power is 6.25 watts
+
+
diff --git a/317/CH12/EX12.8/example8.txt b/317/CH12/EX12.8/example8.txt
new file mode 100755
index 000000000..dcf212783
--- /dev/null
+++ b/317/CH12/EX12.8/example8.txt
@@ -0,0 +1,3 @@
+maximum power dissipation is 1.25 watts
+maximum output power is 6.25 watts
+
diff --git a/317/CH12/EX12.9/example9.sce b/317/CH12/EX12.9/example9.sce
new file mode 100755
index 000000000..0c57a9329
--- /dev/null
+++ b/317/CH12/EX12.9/example9.sce
@@ -0,0 +1,29 @@
+// calculate efficiency
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 12-9, page 398
+
+clear;clc; close;
+// Given data
+R=15;// adjustable resistance in ohms
+R1=100;// in ohms
+R2=100;// in ohms
+Vcc=20;// in volts
+Rl=8;// in ohms
+Vceq=10;// in volts
+
+// Calculations
+Ibias=Vcc/(R1+R2+R);// dc current through biasing resistors
+Icsat=Vceq/Rl;// saturation current in amperes
+Iav=Icsat/%pi;// collector current in the conducting transistor
+Idc=Ibias+Iav;// total current drain in amperes
+Pdc=Vcc*Idc;// dc input power in watts
+MPP=Vcc;// in volts
+Poutmax=(MPP^2)/(8*Rl);// maximum output power in watts
+E=(Poutmax/Pdc)*100;// efficiency in percentage
+disp("%",E,"efficiency=")
+
+// Result
+// efficiency is 63.6%
diff --git a/317/CH12/EX12.9/example9.txt b/317/CH12/EX12.9/example9.txt
new file mode 100755
index 000000000..c39876376
--- /dev/null
+++ b/317/CH12/EX12.9/example9.txt
@@ -0,0 +1 @@
+efficiency is 63.6%