summaryrefslogtreecommitdiff
path: root/317
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /317
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '317')
-rwxr-xr-x317/CH1/EX1.1/example1.sce13
-rwxr-xr-x317/CH1/EX1.1/example1.txt1
-rwxr-xr-x317/CH1/EX1.2/example2.sce16
-rwxr-xr-x317/CH1/EX1.2/example2.txt1
-rwxr-xr-x317/CH1/EX1.4/example4.sce24
-rwxr-xr-x317/CH1/EX1.4/example4.txt2
-rwxr-xr-x317/CH1/EX1.6/example6.sce13
-rwxr-xr-x317/CH1/EX1.6/example6.txt1
-rwxr-xr-x317/CH10/EX10.1/example1.sce28
-rwxr-xr-x317/CH10/EX10.1/example1.txt2
-rwxr-xr-x317/CH10/EX10.2/example2.sce28
-rwxr-xr-x317/CH10/EX10.2/example2.txt1
-rwxr-xr-x317/CH10/EX10.3/example3.sce33
-rwxr-xr-x317/CH10/EX10.3/example3.txt1
-rwxr-xr-x317/CH10/EX10.4/example4.sce33
-rwxr-xr-x317/CH10/EX10.4/example4.txt1
-rwxr-xr-x317/CH10/EX10.5/example5.sce38
-rwxr-xr-x317/CH10/EX10.5/example5.txt2
-rwxr-xr-x317/CH10/EX10.6/example6.sce31
-rwxr-xr-x317/CH10/EX10.6/example6.txt1
-rwxr-xr-x317/CH10/EX10.7/example7.sce32
-rwxr-xr-x317/CH10/EX10.7/example7.txt1
-rwxr-xr-x317/CH10/EX10.8/example8.sce34
-rwxr-xr-x317/CH10/EX10.8/example8.txt1
-rwxr-xr-x317/CH10/EX10.9/example9.sce25
-rwxr-xr-x317/CH10/EX10.9/example9.txt2
-rwxr-xr-x317/CH12/EX12.1/example1.sce35
-rwxr-xr-x317/CH12/EX12.1/example1.txt3
-rwxr-xr-x317/CH12/EX12.10/example10.sce32
-rwxr-xr-x317/CH12/EX12.10/example10.txt2
-rwxr-xr-x317/CH12/EX12.12/example12.sce25
-rwxr-xr-x317/CH12/EX12.12/example12.txt1
-rwxr-xr-x317/CH12/EX12.13/example13.sce26
-rwxr-xr-x317/CH12/EX12.13/example13.txt1
-rwxr-xr-x317/CH12/EX12.14/example14.sce23
-rwxr-xr-x317/CH12/EX12.14/example14.txt1
-rwxr-xr-x317/CH12/EX12.2/example2.sce37
-rwxr-xr-x317/CH12/EX12.2/example2.txt3
-rwxr-xr-x317/CH12/EX12.3/example3.sce29
-rwxr-xr-x317/CH12/EX12.3/example3.txt1
-rwxr-xr-x317/CH12/EX12.4/example4.sce39
-rwxr-xr-x317/CH12/EX12.4/example4.txt2
-rwxr-xr-x317/CH12/EX12.6/example6.sce28
-rwxr-xr-x317/CH12/EX12.6/example6.txt1
-rwxr-xr-x317/CH12/EX12.7/example7.sce35
-rwxr-xr-x317/CH12/EX12.7/example7.txt5
-rwxr-xr-x317/CH12/EX12.8/example8.sce27
-rwxr-xr-x317/CH12/EX12.8/example8.txt3
-rwxr-xr-x317/CH12/EX12.9/example9.sce29
-rwxr-xr-x317/CH12/EX12.9/example9.txt1
-rwxr-xr-x317/CH13/EX13.1/example1.sce20
-rwxr-xr-x317/CH13/EX13.1/example1.txt1
-rwxr-xr-x317/CH13/EX13.10/example10.sce26
-rwxr-xr-x317/CH13/EX13.10/example10.txt2
-rwxr-xr-x317/CH13/EX13.11/example11.sce24
-rwxr-xr-x317/CH13/EX13.11/example11.txt2
-rwxr-xr-x317/CH13/EX13.12/example12.sce23
-rwxr-xr-x317/CH13/EX13.12/example12.txt2
-rwxr-xr-x317/CH13/EX13.13/example13.sce23
-rwxr-xr-x317/CH13/EX13.13/example13.txt1
-rwxr-xr-x317/CH13/EX13.14/example14.sce23
-rwxr-xr-x317/CH13/EX13.14/example14.txt1
-rwxr-xr-x317/CH13/EX13.15/example15.sce24
-rwxr-xr-x317/CH13/EX13.15/example15.txt1
-rwxr-xr-x317/CH13/EX13.16/example16.sce27
-rwxr-xr-x317/CH13/EX13.16/example16.txt2
-rwxr-xr-x317/CH13/EX13.2/example2.sce23
-rwxr-xr-x317/CH13/EX13.2/example2.txt2
-rwxr-xr-x317/CH13/EX13.3/example3.sce24
-rwxr-xr-x317/CH13/EX13.3/example3.txt2
-rwxr-xr-x317/CH13/EX13.4/example4.sce20
-rwxr-xr-x317/CH13/EX13.4/example4.txt1
-rwxr-xr-x317/CH13/EX13.6/example6.sce26
-rwxr-xr-x317/CH13/EX13.6/example6.txt2
-rwxr-xr-x317/CH13/EX13.8/example8.sce26
-rwxr-xr-x317/CH13/EX13.8/example8.txt1
-rwxr-xr-x317/CH14/EX14.1/example1.sce33
-rwxr-xr-x317/CH14/EX14.1/example1.txt1
-rwxr-xr-x317/CH14/EX14.12/example12.sce28
-rwxr-xr-x317/CH14/EX14.12/example12.txt2
-rwxr-xr-x317/CH14/EX14.13/example13.sce29
-rwxr-xr-x317/CH14/EX14.13/example13.txt3
-rwxr-xr-x317/CH14/EX14.14/example14.sce20
-rwxr-xr-x317/CH14/EX14.14/example14.txt1
-rwxr-xr-x317/CH14/EX14.15/example15.sce38
-rwxr-xr-x317/CH14/EX14.15/example15.txt4
-rwxr-xr-x317/CH14/EX14.2/example2.sce29
-rwxr-xr-x317/CH14/EX14.2/example2.txt1
-rwxr-xr-x317/CH14/EX14.6/example6.sce23
-rwxr-xr-x317/CH14/EX14.6/example6.txt2
-rwxr-xr-x317/CH14/EX14.7/example7.sce23
-rwxr-xr-x317/CH14/EX14.7/example7.txt2
-rwxr-xr-x317/CH14/EX14.9/example9.sce25
-rwxr-xr-x317/CH14/EX14.9/example9.txt1
-rwxr-xr-x317/CH15/EX15.1/example1.sce23
-rwxr-xr-x317/CH15/EX15.1/example1.txt1
-rwxr-xr-x317/CH15/EX15.4/example4.sce25
-rwxr-xr-x317/CH15/EX15.4/example4.txt2
-rwxr-xr-x317/CH15/EX15.5/example5.sce30
-rwxr-xr-x317/CH15/EX15.5/example5.txt2
-rwxr-xr-x317/CH15/EX15.6/example6.sce19
-rwxr-xr-x317/CH15/EX15.6/example6.txt1
-rwxr-xr-x317/CH15/EX15.8/example8.sce21
-rwxr-xr-x317/CH15/EX15.8/example8.txt1
-rwxr-xr-x317/CH16/EX16.1/example1.sce25
-rwxr-xr-x317/CH16/EX16.1/example1.txt2
-rwxr-xr-x317/CH16/EX16.3/example3.sce36
-rwxr-xr-x317/CH16/EX16.3/example3.txt5
-rwxr-xr-x317/CH16/EX16.4/example4.sce30
-rwxr-xr-x317/CH16/EX16.4/example4.txt4
-rwxr-xr-x317/CH16/EX16.5/example5.sce31
-rwxr-xr-x317/CH16/EX16.5/example5.txt4
-rwxr-xr-x317/CH16/EX16.6/example6.sce31
-rwxr-xr-x317/CH16/EX16.6/example6.txt4
-rwxr-xr-x317/CH16/EX16.7/example7.sce30
-rwxr-xr-x317/CH16/EX16.7/example7.txt4
-rwxr-xr-x317/CH17/EX17.1/example1.sce28
-rwxr-xr-x317/CH17/EX17.1/example1.txt3
-rwxr-xr-x317/CH17/EX17.10/example10.sce21
-rwxr-xr-x317/CH17/EX17.10/example10.txt1
-rwxr-xr-x317/CH17/EX17.11/example11.txt1
-rwxr-xr-x317/CH17/EX17.12/example12.sce24
-rwxr-xr-x317/CH17/EX17.12/example12.txt1
-rwxr-xr-x317/CH17/EX17.13/example13.sce29
-rwxr-xr-x317/CH17/EX17.13/example13.txt1
-rwxr-xr-x317/CH17/EX17.2/example2.sce31
-rwxr-xr-x317/CH17/EX17.2/example2.txt4
-rwxr-xr-x317/CH17/EX17.3/example3.sce32
-rwxr-xr-x317/CH17/EX17.3/example3.txt4
-rwxr-xr-x317/CH17/EX17.4/example4.sce30
-rwxr-xr-x317/CH17/EX17.4/example4.txt2
-rwxr-xr-x317/CH17/EX17.5/example5.sce30
-rwxr-xr-x317/CH17/EX17.5/example5.txt2
-rwxr-xr-x317/CH17/EX17.8/example8.sce26
-rwxr-xr-x317/CH17/EX17.8/example8.txt1
-rwxr-xr-x317/CH17/EX17.9/example9.sce26
-rwxr-xr-x317/CH17/EX17.9/example9.txt1
-rwxr-xr-x317/CH18/EX18.10/example10.sce29
-rwxr-xr-x317/CH18/EX18.10/example10.txt3
-rwxr-xr-x317/CH18/EX18.11/example11.sce28
-rwxr-xr-x317/CH18/EX18.11/example11.txt1
-rwxr-xr-x317/CH18/EX18.12/example12.sce27
-rwxr-xr-x317/CH18/EX18.12/example12.txt1
-rwxr-xr-x317/CH18/EX18.13/example13.sce25
-rwxr-xr-x317/CH18/EX18.13/example13.txt2
-rwxr-xr-x317/CH18/EX18.4/example4.sce19
-rwxr-xr-x317/CH18/EX18.4/example4.txt1
-rwxr-xr-x317/CH18/EX18.5/example5.sce19
-rwxr-xr-x317/CH18/EX18.5/example5.txt1
-rwxr-xr-x317/CH18/EX18.6/example6.sce27
-rwxr-xr-x317/CH18/EX18.6/example6.txt3
-rwxr-xr-x317/CH18/EX18.7/example7.sce32
-rwxr-xr-x317/CH18/EX18.7/example7.txt4
-rwxr-xr-x317/CH18/EX18.8/example8.sce30
-rwxr-xr-x317/CH18/EX18.8/example8.txt1
-rwxr-xr-x317/CH18/EX18.9/example9.sce30
-rwxr-xr-x317/CH18/EX18.9/example9.txt1
-rwxr-xr-x317/CH19/EX19.1/example1.sce29
-rwxr-xr-x317/CH19/EX19.1/example1.txt4
-rwxr-xr-x317/CH19/EX19.10/example10.sce21
-rwxr-xr-x317/CH19/EX19.10/example10.txt1
-rwxr-xr-x317/CH19/EX19.11/example11.sce20
-rwxr-xr-x317/CH19/EX19.11/example11.txt1
-rwxr-xr-x317/CH19/EX19.12/example12.sce20
-rwxr-xr-x317/CH19/EX19.12/example12.txt1
-rwxr-xr-x317/CH19/EX19.13/example13.sce24
-rwxr-xr-x317/CH19/EX19.13/example13.txt2
-rwxr-xr-x317/CH19/EX19.2/example2.sce25
-rwxr-xr-x317/CH19/EX19.2/example2.txt1
-rwxr-xr-x317/CH19/EX19.3/example3.sce23
-rwxr-xr-x317/CH19/EX19.3/example3.txt1
-rwxr-xr-x317/CH19/EX19.4/example4.sce22
-rwxr-xr-x317/CH19/EX19.4/example4.txt1
-rwxr-xr-x317/CH19/EX19.6/example6.sce23
-rwxr-xr-x317/CH19/EX19.6/example6.txt2
-rwxr-xr-x317/CH19/EX19.9/example9.sce20
-rwxr-xr-x317/CH19/EX19.9/example9.txt1
-rwxr-xr-x317/CH2/EX2.5/example5.sce21
-rwxr-xr-x317/CH2/EX2.5/example5.txt3
-rwxr-xr-x317/CH2/EX2.6/example6.sce17
-rwxr-xr-x317/CH2/EX2.6/example6.txt1
-rwxr-xr-x317/CH2/EX2.7/example7.sce16
-rwxr-xr-x317/CH2/EX2.7/example7.txt1
-rwxr-xr-x317/CH20/EX20.10/example10.sce25
-rwxr-xr-x317/CH20/EX20.10/example10.txt2
-rwxr-xr-x317/CH20/EX20.2/example2.sce22
-rwxr-xr-x317/CH20/EX20.2/example2.txt2
-rwxr-xr-x317/CH20/EX20.3/example3.sce23
-rwxr-xr-x317/CH20/EX20.3/example3.txt2
-rwxr-xr-x317/CH20/EX20.5/example5.sce35
-rwxr-xr-x317/CH20/EX20.5/example5.txt4
-rwxr-xr-x317/CH20/EX20.6/example6.sce25
-rwxr-xr-x317/CH20/EX20.6/example6.txt2
-rwxr-xr-x317/CH20/EX20.7/example7.sce30
-rwxr-xr-x317/CH20/EX20.7/example7.txt3
-rwxr-xr-x317/CH20/EX20.8/example8.sce23
-rwxr-xr-x317/CH20/EX20.8/example8.txt2
-rwxr-xr-x317/CH20/EX20.9/example9.sce23
-rwxr-xr-x317/CH20/EX20.9/example9.txt2
-rwxr-xr-x317/CH21/EX21.1/example1.sce24
-rwxr-xr-x317/CH21/EX21.1/example1.txt2
-rwxr-xr-x317/CH21/EX21.10/example10.sce37
-rwxr-xr-x317/CH21/EX21.10/example10.txt5
-rwxr-xr-x317/CH21/EX21.12/example12.sce27
-rwxr-xr-x317/CH21/EX21.12/example12.txt3
-rwxr-xr-x317/CH21/EX21.13/example13.sce21
-rwxr-xr-x317/CH21/EX21.13/example13.txt1
-rwxr-xr-x317/CH21/EX21.2/example2.sce23
-rwxr-xr-x317/CH21/EX21.2/example2.txt2
-rwxr-xr-x317/CH21/EX21.3/example3.sce26
-rwxr-xr-x317/CH21/EX21.3/example3.txt3
-rwxr-xr-x317/CH21/EX21.4/example4.sce27
-rwxr-xr-x317/CH21/EX21.4/example4.txt3
-rwxr-xr-x317/CH21/EX21.5/example5.sce33
-rwxr-xr-x317/CH21/EX21.5/example5.txt4
-rwxr-xr-x317/CH21/EX21.6/example6.sce28
-rwxr-xr-x317/CH21/EX21.6/example6.txt3
-rwxr-xr-x317/CH21/EX21.7/example7.sce29
-rwxr-xr-x317/CH21/EX21.7/example7.txt3
-rwxr-xr-x317/CH21/EX21.9/example9.sce26
-rwxr-xr-x317/CH21/EX21.9/example9.txt3
-rwxr-xr-x317/CH22/EX22.10/example10.sce23
-rwxr-xr-x317/CH22/EX22.10/example10.txt1
-rwxr-xr-x317/CH22/EX22.12/example12.sce28
-rwxr-xr-x317/CH22/EX22.12/example12.txt2
-rwxr-xr-x317/CH22/EX22.4/example4.sce25
-rwxr-xr-x317/CH22/EX22.4/example4.txt2
-rwxr-xr-x317/CH22/EX22.5/example5.sce28
-rwxr-xr-x317/CH22/EX22.5/example5.txt1
-rwxr-xr-x317/CH22/EX22.6/example6.sce26
-rwxr-xr-x317/CH22/EX22.6/example6.txt2
-rwxr-xr-x317/CH22/EX22.7/example7.sce25
-rwxr-xr-x317/CH22/EX22.7/example7.txt2
-rwxr-xr-x317/CH22/EX22.8/example8.sce21
-rwxr-xr-x317/CH22/EX22.8/example8.txt1
-rwxr-xr-x317/CH23/EX23.1/example1.sce23
-rwxr-xr-x317/CH23/EX23.1/example1.txt2
-rwxr-xr-x317/CH23/EX23.10/example10.sce38
-rwxr-xr-x317/CH23/EX23.10/example10.txt6
-rwxr-xr-x317/CH23/EX23.12/example12.sce27
-rwxr-xr-x317/CH23/EX23.12/example12.txt3
-rwxr-xr-x317/CH23/EX23.2/example2.sce21
-rwxr-xr-x317/CH23/EX23.2/example2.txt1
-rwxr-xr-x317/CH23/EX23.4/example4.sce22
-rwxr-xr-x317/CH23/EX23.4/example4.txt1
-rwxr-xr-x317/CH23/EX23.5/example5.sce25
-rwxr-xr-x317/CH23/EX23.5/example5.txt2
-rwxr-xr-x317/CH23/EX23.6/example6.sce26
-rwxr-xr-x317/CH23/EX23.6/example6.txt3
-rwxr-xr-x317/CH23/EX23.7/example7.sce19
-rwxr-xr-x317/CH23/EX23.7/example7.txt1
-rwxr-xr-x317/CH23/EX23.8/example8.sce23
-rwxr-xr-x317/CH23/EX23.8/example8.txt2
-rwxr-xr-x317/CH24/EX24.1/example1.sce29
-rwxr-xr-x317/CH24/EX24.1/example1.txt3
-rwxr-xr-x317/CH24/EX24.10/example10.sce24
-rwxr-xr-x317/CH24/EX24.10/example10.txt2
-rwxr-xr-x317/CH24/EX24.13/example13.sce19
-rwxr-xr-x317/CH24/EX24.13/example13.txt1
-rwxr-xr-x317/CH24/EX24.15/example15.sce20
-rwxr-xr-x317/CH24/EX24.15/example15.txt1
-rwxr-xr-x317/CH24/EX24.16/example16.sce20
-rwxr-xr-x317/CH24/EX24.16/example16.txt1
-rwxr-xr-x317/CH24/EX24.2/example2.sce31
-rwxr-xr-x317/CH24/EX24.2/example2.txt3
-rwxr-xr-x317/CH24/EX24.3/example3.sce34
-rwxr-xr-x317/CH24/EX24.3/example3.txt2
-rwxr-xr-x317/CH24/EX24.4/example4.sce33
-rwxr-xr-x317/CH24/EX24.4/example4.txt4
-rwxr-xr-x317/CH24/EX24.6/example6.sce24
-rwxr-xr-x317/CH24/EX24.6/example6.txt2
-rwxr-xr-x317/CH24/EX24.7/example7.sce27
-rwxr-xr-x317/CH24/EX24.7/example7.txt2
-rwxr-xr-x317/CH24/EX24.8/example8.sce28
-rwxr-xr-x317/CH24/EX24.8/example8.txt1
-rwxr-xr-x317/CH3/EX3.2/example2.sce16
-rwxr-xr-x317/CH3/EX3.2/example2.txt1
-rwxr-xr-x317/CH3/EX3.3/example3.sce17
-rwxr-xr-x317/CH3/EX3.3/example3.txt2
-rwxr-xr-x317/CH3/EX3.4/example4.sce22
-rwxr-xr-x317/CH3/EX3.4/example4.txt3
-rwxr-xr-x317/CH3/EX3.5/example5.sce22
-rwxr-xr-x317/CH3/EX3.5/example5.txt3
-rwxr-xr-x317/CH3/EX3.6/example6.sce22
-rwxr-xr-x317/CH3/EX3.6/example6.txt3
-rwxr-xr-x317/CH3/EX3.7/example7.sce21
-rwxr-xr-x317/CH3/EX3.7/example7.txt4
-rwxr-xr-x317/CH3/EX3.8/example8.sce22
-rwxr-xr-x317/CH3/EX3.8/example8.txt3
-rwxr-xr-x317/CH4/EX4.1/example1.sce1
-rwxr-xr-x317/CH4/EX4.1/example1.txt7
-rwxr-xr-x317/CH4/EX4.10/example10.sce18
-rwxr-xr-x317/CH4/EX4.10/example10.txt1
-rwxr-xr-x317/CH4/EX4.2/example2.sce29
-rwxr-xr-x317/CH4/EX4.2/example2.txt7
-rwxr-xr-x317/CH4/EX4.3/example3.sce25
-rwxr-xr-x317/CH4/EX4.3/example3.txt3
-rwxr-xr-x317/CH4/EX4.5/example5.sce1
-rwxr-xr-x317/CH4/EX4.5/example5.txt4
-rwxr-xr-x317/CH4/EX4.6/example6.sce1
-rwxr-xr-x317/CH4/EX4.6/example6.txt2
-rwxr-xr-x317/CH4/EX4.7/example7.sce1
-rwxr-xr-x317/CH4/EX4.7/example7.txt2
-rwxr-xr-x317/CH4/EX4.8/example8.sce28
-rwxr-xr-x317/CH4/EX4.8/example8.txt2
-rwxr-xr-x317/CH4/EX4.9/example9.sce28
-rwxr-xr-x317/CH4/EX4.9/example9.txt2
-rwxr-xr-x317/CH5/EX5.1/example1.sce25
-rwxr-xr-x317/CH5/EX5.1/example1.txt2
-rwxr-xr-x317/CH5/EX5.10/example10.sce20
-rwxr-xr-x317/CH5/EX5.10/example10.txt1
-rwxr-xr-x317/CH5/EX5.11/example11.sce20
-rwxr-xr-x317/CH5/EX5.11/example11.txt1
-rwxr-xr-x317/CH5/EX5.12/example12.sce20
-rwxr-xr-x317/CH5/EX5.12/example12.txt1
-rwxr-xr-x317/CH5/EX5.13/example13.sce21
-rwxr-xr-x317/CH5/EX5.13/example13.txt1
-rwxr-xr-x317/CH5/EX5.14/example14.sce24
-rwxr-xr-x317/CH5/EX5.14/example14.txt2
-rwxr-xr-x317/CH5/EX5.15/example15.sce23
-rwxr-xr-x317/CH5/EX5.15/example15.txt1
-rwxr-xr-x317/CH5/EX5.2/example2.sce22
-rwxr-xr-x317/CH5/EX5.2/example2.txt1
-rwxr-xr-x317/CH5/EX5.3/example3.sce24
-rwxr-xr-x317/CH5/EX5.3/example3.txt1
-rwxr-xr-x317/CH5/EX5.7/example7.sce21
-rwxr-xr-x317/CH5/EX5.7/example7.txt1
-rwxr-xr-x317/CH5/EX5.8/example8.sce21
-rwxr-xr-x317/CH5/EX5.8/example8.txt1
-rwxr-xr-x317/CH6/EX6.1/example1.sce20
-rwxr-xr-x317/CH6/EX6.1/example1.txt1
-rwxr-xr-x317/CH6/EX6.11/example11.sce21
-rwxr-xr-x317/CH6/EX6.11/example11.txt1
-rwxr-xr-x317/CH6/EX6.12/example12.sce23
-rwxr-xr-x317/CH6/EX6.12/example12.txt1
-rwxr-xr-x317/CH6/EX6.2/example2.sce19
-rwxr-xr-x317/CH6/EX6.2/example2.txt1
-rwxr-xr-x317/CH6/EX6.3/example3.sce20
-rwxr-xr-x317/CH6/EX6.3/example3.txt1
-rwxr-xr-x317/CH6/EX6.4/example4.sce22
-rwxr-xr-x317/CH6/EX6.4/example4.txt1
-rwxr-xr-x317/CH6/EX6.5/example5.sce29
-rwxr-xr-x317/CH6/EX6.5/example5.txt1
-rwxr-xr-x317/CH6/EX6.6/example6.sce25
-rwxr-xr-x317/CH6/EX6.6/example6.txt1
-rwxr-xr-x317/CH6/EX6.7/example7.sce25
-rwxr-xr-x317/CH6/EX6.7/example7.txt1
-rwxr-xr-x317/CH6/EX6.8/example8.sce25
-rwxr-xr-x317/CH6/EX6.8/example8.txt1
-rwxr-xr-x317/CH6/EX6.9/example9.sce25
-rwxr-xr-x317/CH6/EX6.9/example9.txt1
-rwxr-xr-x317/CH7/EX7.1/example1.sce22
-rwxr-xr-x317/CH7/EX7.1/example1.txt2
-rwxr-xr-x317/CH7/EX7.2/example2.sce23
-rwxr-xr-x317/CH7/EX7.2/example2.txt2
-rwxr-xr-x317/CH7/EX7.3/example3.sce24
-rwxr-xr-x317/CH7/EX7.3/example3.txt2
-rwxr-xr-x317/CH7/EX7.4/example4.sce22
-rwxr-xr-x317/CH7/EX7.4/example4.txt2
-rwxr-xr-x317/CH7/EX7.5/example5.sce25
-rwxr-xr-x317/CH7/EX7.5/example5.txt1
-rwxr-xr-x317/CH7/EX7.6/example6.sce24
-rwxr-xr-x317/CH7/EX7.6/example7.txt1
-rwxr-xr-x317/CH7/EX7.7/example7.sce26
-rwxr-xr-x317/CH7/EX7.7/example7.txt1
-rwxr-xr-x317/CH7/EX7.8/example8.sce25
-rwxr-xr-x317/CH7/EX7.8/example8.txt1
-rwxr-xr-x317/CH7/EX7.9/example9.sce27
-rwxr-xr-x317/CH7/EX7.9/example9.txt1
-rwxr-xr-x317/CH8/EX8.1/example1.sce29
-rwxr-xr-x317/CH8/EX8.1/example1.txt1
-rwxr-xr-x317/CH8/EX8.3/example3.sce27
-rwxr-xr-x317/CH8/EX8.3/example3.txt1
-rwxr-xr-x317/CH8/EX8.4/example4.sce31
-rwxr-xr-x317/CH8/EX8.4/example4.txt1
-rwxr-xr-x317/CH8/EX8.5/example5.sce24
-rwxr-xr-x317/CH8/EX8.5/example5.txt1
-rwxr-xr-x317/CH8/EX8.6/example6.sce23
-rwxr-xr-x317/CH8/EX8.6/example6.txt1
-rwxr-xr-x317/CH8/EX8.7/example7.sce33
-rwxr-xr-x317/CH8/EX8.7/example7.txt3
-rwxr-xr-x317/CH9/EX9.1/example1.sce21
-rwxr-xr-x317/CH9/EX9.1/example1.txt1
-rwxr-xr-x317/CH9/EX9.2/example2.sce22
-rwxr-xr-x317/CH9/EX9.2/example2.txt1
-rwxr-xr-x317/CH9/EX9.3/example3.sce21
-rwxr-xr-x317/CH9/EX9.3/example3.txt1
-rwxr-xr-x317/CH9/EX9.4/example4.sce18
-rwxr-xr-x317/CH9/EX9.4/example4.txt1
-rwxr-xr-x317/CH9/EX9.5/example5.sce18
-rwxr-xr-x317/CH9/EX9.5/example5.txt1
-rwxr-xr-x317/CH9/EX9.6/example6.sce18
-rwxr-xr-x317/CH9/EX9.6/example6.txt1
393 files changed, 5235 insertions, 0 deletions
diff --git a/317/CH1/EX1.1/example1.sce b/317/CH1/EX1.1/example1.sce
new file mode 100755
index 000000000..3c66fa727
--- /dev/null
+++ b/317/CH1/EX1.1/example1.sce
@@ -0,0 +1,13 @@
+
+// Example 1-1, page 9
+
+clear;clc; close;
+
+// Given data
+R(1)=50; //source resistance of ac voltage in ohms
+
+// Calculations
+R(2)=R(1)*100;// minimum load resistance
+disp("ohms", R(2),"Load resistance =")
+
+
diff --git a/317/CH1/EX1.1/example1.txt b/317/CH1/EX1.1/example1.txt
new file mode 100755
index 000000000..36e7ac331
--- /dev/null
+++ b/317/CH1/EX1.1/example1.txt
@@ -0,0 +1 @@
+ As long as the load resistance is greater than 5000 ohms , the ac voltage source is stiff and we can ignore the internal resistance of the source.
diff --git a/317/CH1/EX1.2/example2.sce b/317/CH1/EX1.2/example2.sce
new file mode 100755
index 000000000..b7bb488ad
--- /dev/null
+++ b/317/CH1/EX1.2/example2.sce
@@ -0,0 +1,16 @@
+
+// Example 1-2, page 12
+
+clear;clc; close;
+
+// Given data
+i=2; // current source, in milli amperes
+R=10*10^6; //internal source resistance , in ohms
+
+// Calculations
+Rlmin=0;// minimum load resistance in ohms
+Rlmax=0.01*R; // maximum load resistance
+disp("ohms", Rlmin,"Minimum Load resistance =")
+disp("ohms", Rlmax,"Maximum Load resistance =")
+
+
diff --git a/317/CH1/EX1.2/example2.txt b/317/CH1/EX1.2/example2.txt
new file mode 100755
index 000000000..f30d8ae90
--- /dev/null
+++ b/317/CH1/EX1.2/example2.txt
@@ -0,0 +1 @@
+The stiff range for the current source is a load resistance from 0 to 100 killo ohms.
diff --git a/317/CH1/EX1.4/example4.sce b/317/CH1/EX1.4/example4.sce
new file mode 100755
index 000000000..2e4039916
--- /dev/null
+++ b/317/CH1/EX1.4/example4.sce
@@ -0,0 +1,24 @@
+// find thevenin voltage and resistance
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 1-4, page 14
+
+clear;clc; close;
+
+// Given data
+Vs=72;// source voltage in volts
+
+// Calculations
+// open load resistor to get thevenin voltage
+Vth=24; // in volts as 8 mA flows through 6Kohms in series with 3Kohms,no current through 4Kohms
+// reduce source to zero to get thevenin resistance
+Rth=4+((3*6)/(3+6));// in Kohms
+
+disp("Volts", Vth,"Thevenin Voltage =")
+disp("ohms",Rth,"Thevenin Resistance =")
+
+// Result
+// Thevenin voltage is 24 volts
+// Thevenin resistance is 6 Kohms
diff --git a/317/CH1/EX1.4/example4.txt b/317/CH1/EX1.4/example4.txt
new file mode 100755
index 000000000..48e30faa2
--- /dev/null
+++ b/317/CH1/EX1.4/example4.txt
@@ -0,0 +1,2 @@
+Thevenin voltage is 24 volts
+Thevenin resistance is 6 Kohms
diff --git a/317/CH1/EX1.6/example6.sce b/317/CH1/EX1.6/example6.sce
new file mode 100755
index 000000000..c76985ca0
--- /dev/null
+++ b/317/CH1/EX1.6/example6.sce
@@ -0,0 +1,13 @@
+
+
+
+
+
+// Given data
+Vth=10;// Thevenin voltage in volts
+Rth=2000;// Thevenin resistance in ohms
+
+// Calculations
+In=Vth/Rth;// Norton current in amperes
+disp("Amperes",In,"Norton Current=")
+
diff --git a/317/CH1/EX1.6/example6.txt b/317/CH1/EX1.6/example6.txt
new file mode 100755
index 000000000..cf779d089
--- /dev/null
+++ b/317/CH1/EX1.6/example6.txt
@@ -0,0 +1 @@
+Norton current is 5 milliAmperes \ No newline at end of file
diff --git a/317/CH10/EX10.1/example1.sce b/317/CH10/EX10.1/example1.sce
new file mode 100755
index 000000000..038aa010a
--- /dev/null
+++ b/317/CH10/EX10.1/example1.sce
@@ -0,0 +1,28 @@
+// find voltage gain and voltage across load resistor
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 10-1, page 322
+
+clear;clc; close;
+
+// Given data
+R1=10*10^3;// in ohms
+R2=2.2*10^3;// in ohms
+Re=1*10^3;// in ohms
+Rl=10*10^3;// in ohms
+Rc=3.6*10^3;// in ohms
+Vin=2.2*10^-3;// in volts
+Vcc=10;// in volts
+
+// Calculations
+rc=(Rc*Rl)/(Rc+Rl);// ac collector resistance in ohms,Rc||Rl
+re_=22.7;// ac resistance in ohms
+Av=rc/re_;// voltage gain
+vout=Av*Vin;// output voltage in volts
+disp("Volts",vout,"Output voltage")
+
+// Results
+// output voltage is 256 mVolts
+
diff --git a/317/CH10/EX10.1/example1.txt b/317/CH10/EX10.1/example1.txt
new file mode 100755
index 000000000..8ca0e8fd6
--- /dev/null
+++ b/317/CH10/EX10.1/example1.txt
@@ -0,0 +1,2 @@
+output voltage is 256 mVolts
+
diff --git a/317/CH10/EX10.2/example2.sce b/317/CH10/EX10.2/example2.sce
new file mode 100755
index 000000000..e376190a4
--- /dev/null
+++ b/317/CH10/EX10.2/example2.sce
@@ -0,0 +1,28 @@
+// find voltage gain and output voltage across load resistor
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 10-2, page 323
+
+clear;clc; close;
+
+// Given data
+R1=10*10^3;// in ohms
+R2=2.2*10^3;// in ohms
+Re=10*10^3;// in ohms
+Vin=5*10^-3;// in volts
+Vcc=9;// in volts
+Rc=3.6*10^3;// in ohms
+Rl=2.2*10^3;// in ohms
+
+// Calculations
+rc=(Rc*Rl)/(Rc+Rl);// ac collector resistance in ohms,Rc||Rl
+Ie=(Vcc-0.7)/Re;// dc emitter current in amperes
+re_=(25*10^-3)/Ie;// ac resistance of the emitter diode
+Av=rc/re_;// voltage gain
+vout=Av*Vin;// output voltage in volts
+disp("Volts",vout,"Output voltage")
+
+// Results
+// Output voltage is 228 mVolts.
diff --git a/317/CH10/EX10.2/example2.txt b/317/CH10/EX10.2/example2.txt
new file mode 100755
index 000000000..4170e1581
--- /dev/null
+++ b/317/CH10/EX10.2/example2.txt
@@ -0,0 +1 @@
+Output voltage is 228 mVolts.
diff --git a/317/CH10/EX10.3/example3.sce b/317/CH10/EX10.3/example3.sce
new file mode 100755
index 000000000..9c18dc2c9
--- /dev/null
+++ b/317/CH10/EX10.3/example3.sce
@@ -0,0 +1,33 @@
+// find output voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 10-3, page 325
+
+clear;clc; close;
+
+// Given data
+B=300;
+R1=10*10^3;// in ohms
+R2=2.2*10^3;// in ohms
+Re=1*10^3;// in ohms
+Rl=10*10^3;// in ohms
+Rc=3.6*10^3;// in ohms
+Rg=600;// internal resistance of ac generator in ohms
+vg=2*10^-3;// in volts
+Vcc=10;// in volts
+
+// Calculations
+rc=(Rc*Rl)/(Rc+Rl);// ac collector resistance in ohms,Rc||Rl
+re_=22.7;// ac resistance in ohms
+Av=rc/re_;// voltage gain
+zinbase=B*re_;// input impedance of base in ohms
+zinstage_=(1/R1)+(1/R2)+(1/zinbase);// input impedance of base in ohms
+zinstage=zinstage_^-1
+vin=(zinstage/(Rg+zinstage))*vg;// input voltage in volts
+vout=Av*vin;// output voltage in volts
+disp("Volts",vout,"Output voltage")
+
+// Results
+// Output voltage is 165 mVolts.
diff --git a/317/CH10/EX10.3/example3.txt b/317/CH10/EX10.3/example3.txt
new file mode 100755
index 000000000..c5a1181d6
--- /dev/null
+++ b/317/CH10/EX10.3/example3.txt
@@ -0,0 +1 @@
+Output voltage is 165 mVolts.
diff --git a/317/CH10/EX10.4/example4.sce b/317/CH10/EX10.4/example4.sce
new file mode 100755
index 000000000..be89dab42
--- /dev/null
+++ b/317/CH10/EX10.4/example4.sce
@@ -0,0 +1,33 @@
+// find output voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 10-4, page 325
+
+clear;clc; close;
+
+// Given data
+B=50;
+R1=10*10^3;// in ohms
+R2=2.2*10^3;// in ohms
+Re=1*10^3;// in ohms
+Rl=10*10^3;// in ohms
+Rc=3.6*10^3;// in ohms
+Rg=600;// internal resistance of ac generator in ohms
+vg=2*10^-3;// in volts
+Vcc=10;// in volts
+
+// Calculations
+rc=(Rc*Rl)/(Rc+Rl);// ac collector resistance in ohms,Rc||Rl
+re_=22.7;// ac resistance in ohms
+Av=rc/re_;// voltage gain
+zinbase=B*re_;// input impedance of base in ohms
+zinstage_=(1/R1)+(1/R2)+(1/zinbase);// input impedance of base in ohms
+zinstage=zinstage_^-1
+vin=(zinstage/(Rg+zinstage))*vg;// input voltage in volts
+vout=Av*vin;// output voltage in volts
+disp("Volts",vout,"Output voltage")
+
+// Results
+// Output voltage is 126 mVolts.
diff --git a/317/CH10/EX10.4/example4.txt b/317/CH10/EX10.4/example4.txt
new file mode 100755
index 000000000..40925feef
--- /dev/null
+++ b/317/CH10/EX10.4/example4.txt
@@ -0,0 +1 @@
+Output voltage is 126 mVolts.
diff --git a/317/CH10/EX10.5/example5.sce b/317/CH10/EX10.5/example5.sce
new file mode 100755
index 000000000..4846d6579
--- /dev/null
+++ b/317/CH10/EX10.5/example5.sce
@@ -0,0 +1,38 @@
+// calculate ac collector voltage,ac output voltage across load resistor
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 10-5, page 327
+
+clear;clc; close;
+
+// Given data
+B=100;
+R1=10*10^3;// in ohms
+R2=2.2*10^3;// in ohms
+Re=1*10^3;// in ohms
+Rl=10*10^3;// in ohms
+Rc=3.6*10^3;// in ohms
+Rg=600;// internal resistance of ac generator in ohms
+Vg=1*10^-3;// in volts
+Vcc=10;// in volts
+
+// Calculations
+re_=22.7;// ac resistance in ohms
+zinbase=B*re_;// input impedance of first base in ohms
+zinstage_=(1/R1)+(1/R2)+(1/zinbase);// input impedance of base in ohms
+zinstage=zinstage_^-1
+vin=(zinstage/(Rg+zinstage))*Vg;// input voltage in volts
+rc1=Rc*zinstage/(Rc+zinstage);// rc=Rc||zinstage in ohms in first stage
+Av1=rc1/zinbase;// voltage gain
+vc1=Av1*vin;// collector voltage in volts in first stage
+rc2=Rc*Rl/(Rc+Rl);// rc2=Rc||Rl in ohms in second stage
+Av2=rc2/zinbase;// voltage gain
+vc2=Av2*vc1;// output voltage across load resistot in volts
+disp("Volts",vc1,"ac collector voltage in first stage=")
+disp("Volts",vc2,"ac output voltage across the load resistor")
+
+// Results
+// ac collector voltage in first stage is 216 *10^-6 Volts
+// ac output voltage across the load resistor is 252 *10^-6 Volts
diff --git a/317/CH10/EX10.5/example5.txt b/317/CH10/EX10.5/example5.txt
new file mode 100755
index 000000000..368387fe1
--- /dev/null
+++ b/317/CH10/EX10.5/example5.txt
@@ -0,0 +1,2 @@
+ac collector voltage in first stage is 216*10^-6 Volts
+ac output voltage across the load resistor is 252*10^-6 Volts
diff --git a/317/CH10/EX10.6/example6.sce b/317/CH10/EX10.6/example6.sce
new file mode 100755
index 000000000..b5cd70169
--- /dev/null
+++ b/317/CH10/EX10.6/example6.sce
@@ -0,0 +1,31 @@
+// calculate output across load resistor
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 10-6, page 331
+
+clear;clc; close;
+
+// Given data
+B=200;
+re=180;// in ohms
+R1=10*10^3;// in ohms
+R2=2.2*10^3;// in ohms
+Rc=3.6*10^3;// in ohms
+Vg=50*10^-3;// in volts
+Vcc=10;// in volts
+Rg=600;// internal resistance in ohms
+
+// Calculations
+rc=2.65*10^3;// in ohms
+zinbase=B*re;// input impedance of base in ohms
+zinstage_=(1/R1)+(1/R2)+(1/zinbase);// input impedance of base in ohms
+zinstage=zinstage_^-1
+vin=(zinstage/(Rg+zinstage))*Vg;// input voltage in volts
+Av=rc/re;// voltage gain
+vout=Av*vin;// output voltage across load resistor in volts
+disp("Volts",vout,"Output voltage")
+
+// Results
+// output voltage across load resistor is 544 mVolts
diff --git a/317/CH10/EX10.6/example6.txt b/317/CH10/EX10.6/example6.txt
new file mode 100755
index 000000000..2564360b8
--- /dev/null
+++ b/317/CH10/EX10.6/example6.txt
@@ -0,0 +1 @@
+output voltage across load resistor is 544 mVolts
diff --git a/317/CH10/EX10.7/example7.sce b/317/CH10/EX10.7/example7.sce
new file mode 100755
index 000000000..1f9642933
--- /dev/null
+++ b/317/CH10/EX10.7/example7.sce
@@ -0,0 +1,32 @@
+// calculate output across load resistor
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 10-7, page 332
+
+clear;clc; close;
+
+// Given data
+B=200;
+re_=22.7;// in ohms
+re=180;// in ohms
+R1=10*10^3;// in ohms
+R2=2.2*10^3;// in ohms
+Rc=3.6*10^3;// in ohms
+Vg=50*10^-3;// in volts
+Vcc=10;// in volts
+Rg=600;// internal resistance in ohms
+
+// Calculations
+rc=2.65*10^3;// in ohms
+zinbase=B*(re+re_);// input impedance of base in ohms
+zinstage_=(1/R1)+(1/R2)+(1/zinbase);// input impedance of base in ohms
+zinstage=zinstage_^-1
+vin=(zinstage/(Rg+zinstage))*Vg;// input voltage in volts
+Av=rc/(re+re_);// voltage gain
+vout=Av*vin;// output voltage across load resistor in volts
+disp("Volts",vout,"Output voltage")
+
+// Results
+// output voltage across load resistor is 485 mVolts
diff --git a/317/CH10/EX10.7/example7.txt b/317/CH10/EX10.7/example7.txt
new file mode 100755
index 000000000..fa28af0c1
--- /dev/null
+++ b/317/CH10/EX10.7/example7.txt
@@ -0,0 +1 @@
+output voltage across load resistor is 485 mVolts
diff --git a/317/CH10/EX10.8/example8.sce b/317/CH10/EX10.8/example8.sce
new file mode 100755
index 000000000..a98d2ea22
--- /dev/null
+++ b/317/CH10/EX10.8/example8.sce
@@ -0,0 +1,34 @@
+// calculate output across load resistor
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 10-8, page 333
+
+clear;clc; close;
+
+// Given data
+B=200;
+re=180;// in ohms
+R1=10*10^3;// in ohms
+R2=2.2*10^3;// in ohms
+Rc=3.6*10^3;// in ohms
+Vg=1*10^-3;// in volts
+Vcc=10;// in volts
+Rg=600;// internal resistance in ohms
+
+// Calculations
+zinbase=B*re;// input impedance of base in ohms
+zinstage_=(1/R1)+(1/R2)+(1/zinbase);// input impedance of base in ohms
+zinstage=zinstage_^-1;
+vin=(zinstage/(Rg+zinstage))*Vg;// input voltage in volts
+rc1=Rc*zinstage/(Rc+zinstage);//in ohms
+Av1=rc1/re;// voltage gain
+vc=Av1*vin;// output voltage across load resistor in volts
+rc2=2.65*10^3;// in ohms
+Av2=rc2/re;// voltage gain
+vout=Av2*vc;// outout voltage in volts
+disp("Volts",vout,"Output voltage")
+
+// Results
+// output voltage across load resistor is 70 mVolts
diff --git a/317/CH10/EX10.8/example8.txt b/317/CH10/EX10.8/example8.txt
new file mode 100755
index 000000000..0963e9d18
--- /dev/null
+++ b/317/CH10/EX10.8/example8.txt
@@ -0,0 +1 @@
+output voltage across load resistor is 70 mVolts
diff --git a/317/CH10/EX10.9/example9.sce b/317/CH10/EX10.9/example9.sce
new file mode 100755
index 000000000..78ec6a1c1
--- /dev/null
+++ b/317/CH10/EX10.9/example9.sce
@@ -0,0 +1,25 @@
+// calculate minimum and maximum voltage gai of 2 stage amplifier
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 10-9, page 335
+
+clear;clc; close;
+
+// Given data
+rmin=0;// minimum adjustable resistance in ohms
+rmax=10*10^3;// maximum adjustable resistance in ohms
+re=100;// in ohms
+
+// Calculations
+rfmin=rmin+1*10^3;// minimum feedback resistance in ohms
+rfmax=rmax+1*10^3;// maximum feedback resistance in ohms
+Avmin=rfmin/re;// minimum voltage gain
+Avmax=rfmax/re;// maximum voltage gain
+disp(Avmin,"Minimum Voltage gain=")
+disp(Avmax,"Maximum Voltage gain=")
+
+// Results
+// minimum voltage gain is 10
+// maximum voltage gain is 110
diff --git a/317/CH10/EX10.9/example9.txt b/317/CH10/EX10.9/example9.txt
new file mode 100755
index 000000000..fb0d1beaa
--- /dev/null
+++ b/317/CH10/EX10.9/example9.txt
@@ -0,0 +1,2 @@
+minimum voltage gain is 10
+maximum voltage gain is 110
diff --git a/317/CH12/EX12.1/example1.sce b/317/CH12/EX12.1/example1.sce
new file mode 100755
index 000000000..2e00cd4c3
--- /dev/null
+++ b/317/CH12/EX12.1/example1.sce
@@ -0,0 +1,35 @@
+// calculate dc collector current,dc collector-emitter voltage,ac resistance seen by collector
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 12-1, page 384
+
+clear;clc; close;
+
+// Given data
+R1=490;// in ohms
+R2=68;// in ohms
+Rc=120;// in ohms
+Re=20;// in ohms
+Vcc=30;// in volts
+Rl=180;// in ohms
+Vc=12;// in volts
+
+// Calculations
+Vb=R2*Vcc/(R2+R1);// in volts
+Ve=Vb-0.7;
+Ie=Ve/Re;// in amperes
+Icq=Ie;// dc collector current in amperes
+Vceq=Vc-Ve;// dc collector-emitter voltage in volts
+rc=Rc*Rl/(Rc+Rl);// rc=Rc||Rl
+disp("Amperes",Icq,"dc collector current=")
+disp("Volts",Vceq,"dc collector-emitter voltage=")
+disp("ohms",rc,"ac resistance =")
+
+// Results
+// dc collector current is 147 mAmperes
+// dc collector-emitter voltage is 9 volts
+// ac resistance seen by collector is 72 ohms
+
+
diff --git a/317/CH12/EX12.1/example1.txt b/317/CH12/EX12.1/example1.txt
new file mode 100755
index 000000000..6ab625383
--- /dev/null
+++ b/317/CH12/EX12.1/example1.txt
@@ -0,0 +1,3 @@
+dc collector current is 147 mAmperes
+dc collector-emitter voltage is 9 volts
+ac resistance seen by collector is 72 ohms
diff --git a/317/CH12/EX12.10/example10.sce b/317/CH12/EX12.10/example10.sce
new file mode 100755
index 000000000..198e16bf8
--- /dev/null
+++ b/317/CH12/EX12.10/example10.sce
@@ -0,0 +1,32 @@
+// calculate efficiency
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 12-10, page 400
+
+clear;clc; close;
+// Given data
+R=3.9*10^3;// resistance in ohms
+R1=3.9*10^3;// in ohms
+Vcc=20;// in volts
+Rl=10;// in ohms
+Vceq=10;// in volts
+Vbe=0.7;// in volts
+
+// Calculations
+Ibias=(Vcc-(2*Vbe))/(2*R);// dc current through biasing resistors
+Iq=Ibias;// quiescent collector current assuming compensating diodes match the emitter diodes
+Icsat=Vceq/Rl;// saturation current in amperes
+Iav=Icsat/%pi;// collector current in the conducting transistor
+Idc=Ibias+Iav;// total current drain in amperes
+Pdc=Vcc*Idc;// dc input power in watts
+MPP=Vcc;// in volts
+Poutmax=(MPP^2)/(8*Rl);// maximum output power in watts
+E=(Poutmax/Pdc)*100;// efficiency in percentage
+disp("%",E,"efficiency=")
+disp("Amperes",Iq,"quiescent collector current=")
+
+// Result
+// efficiency is 78%
+// quiescent collector current is 2.38 mAmperes
diff --git a/317/CH12/EX12.10/example10.txt b/317/CH12/EX12.10/example10.txt
new file mode 100755
index 000000000..7624ba49e
--- /dev/null
+++ b/317/CH12/EX12.10/example10.txt
@@ -0,0 +1,2 @@
+efficiency is 78%
+quiescent collector current is 2.38 mAmperes
diff --git a/317/CH12/EX12.12/example12.sce b/317/CH12/EX12.12/example12.sce
new file mode 100755
index 000000000..b341ea53f
--- /dev/null
+++ b/317/CH12/EX12.12/example12.sce
@@ -0,0 +1,25 @@
+// calculate bandwidth of amplifier
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 12-12, page 410
+
+clear;clc; close;
+// Given data
+c=470*10^-12;// capacitance in faraday
+l=2*10^-6;// inductance in henry
+Rl=1*10^3;// load resistance in ohms
+Ql=100;
+
+// Calculations
+fr=1/(2*%pi*sqrt(l*c));// resonant frequency in hertz
+Xl=2*%pi*fr*l;// in ohms
+Rp=Ql*Xl;// equivalent parallel resistance of coil in ohms
+rc=(Rp*Rl)/(Rp+Rl);// ac collector resistance in ohms
+Q=rc/Xl;// Q of the overall circuit
+BW=fr/Q;// band width in hertz
+disp("Hertz",BW,"bandwidth=")
+
+// Result
+// bandwidth is 390 KHertz
diff --git a/317/CH12/EX12.12/example12.txt b/317/CH12/EX12.12/example12.txt
new file mode 100755
index 000000000..738de97c2
--- /dev/null
+++ b/317/CH12/EX12.12/example12.txt
@@ -0,0 +1 @@
+bandwidth is 390 KHertz
diff --git a/317/CH12/EX12.13/example13.sce b/317/CH12/EX12.13/example13.sce
new file mode 100755
index 000000000..ab9abffdc
--- /dev/null
+++ b/317/CH12/EX12.13/example13.sce
@@ -0,0 +1,26 @@
+// calculate worst-case power dissipation
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 12-13, page 411
+
+clear;clc; close;
+// Given data
+c=470*10^-12;// capacitance in faraday
+l=2*10^-6;// inductance in henry
+Rl=1*10^3;// load resistance in ohms
+Ql=100;
+Vcc=15;// in volts
+
+// Calculations
+MPP=2*Vcc;// maximum peak-to-peak output in volts
+fr=1/(2*%pi*sqrt(l*c));// resonant frequency in hertz
+Xl=2*%pi*fr*l;// in ohms
+Rp=Ql*Xl;// equivalent parallel resistance of coil in ohms
+rc=(Rp*Rl)/(Rp+Rl);// ac collector resistance in ohms
+Pd=MPP^2/(40*rc);// worst-case power dissipation of the transistor in watts
+disp("Watts",Pd,"worst-case power dissipation=")
+
+// Result
+// worst-case power dissipation is 26 mWatts
diff --git a/317/CH12/EX12.13/example13.txt b/317/CH12/EX12.13/example13.txt
new file mode 100755
index 000000000..202a28b96
--- /dev/null
+++ b/317/CH12/EX12.13/example13.txt
@@ -0,0 +1 @@
+worst-case power dissipation is 26 mWatts
diff --git a/317/CH12/EX12.14/example14.sce b/317/CH12/EX12.14/example14.sce
new file mode 100755
index 000000000..369a27c13
--- /dev/null
+++ b/317/CH12/EX12.14/example14.sce
@@ -0,0 +1,23 @@
+// calculate maximum power rating
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 12-14, page 414
+
+clear;clc; close;
+// Given data
+// 2N3904
+Pd=625*10^-3;// power rating at 25 degree celcius ambient
+D=5*10^-3;// derating factor in watts per degree celcius
+T2=50;// highest range in celcius
+T1=25;// ambient temperature in degree celcius
+
+// Calculations
+dT=T2-T1;// in degree celcius
+dP=D*dT;// change in power
+Pdmax=Pd-dP;// in watts
+disp("Watts",Pdmax,"maximum power rating=")
+
+// Result
+// maximum power rating is 500 mWatts.
diff --git a/317/CH12/EX12.14/example14.txt b/317/CH12/EX12.14/example14.txt
new file mode 100755
index 000000000..398380707
--- /dev/null
+++ b/317/CH12/EX12.14/example14.txt
@@ -0,0 +1 @@
+maximum power rating is 500 mWatts.
diff --git a/317/CH12/EX12.2/example2.sce b/317/CH12/EX12.2/example2.sce
new file mode 100755
index 000000000..dbc05683e
--- /dev/null
+++ b/317/CH12/EX12.2/example2.sce
@@ -0,0 +1,37 @@
+// calculate ac load line saturation, cutoff points, maximum peak-to-peak output voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 12-2, page 384
+
+clear;clc; close;
+
+// Given data
+R1=490;// in ohms
+R2=68;// in ohms
+Rc=120;// in ohms
+Re=20;// in ohms
+Vcc=30;// in volts
+Rl=180;// in ohms
+Vc=12;// in volts
+
+// Calculations
+Vb=R2*Vcc/(R2+R1);// in volts
+Ve=Vb-0.7;
+Ie=Ve/Re;// in amperes
+Icq=Ie;// dc collector current in amperes
+Vceq=Vc-Ve; // dc collector-emitter voltage in volts
+rc=Rc*Rl/(Rc+Rl);// rc=Rc||Rl
+Icsat=Icq+Vceq/rc;// ac saturation current in amperes
+Vcecutoff=Vceq+(Icq*rc);// in volts
+// as supply voltage is 30 volts MPP<30
+MPP=2*Vceq ; // as (Icq*rc)>Vceq
+disp("Amperes",Icsat,"ac load line saturation")
+disp("Volts",Vcecutoff,"ac cutoff voltage")
+disp("Volts",MPP,"maximum peak-to-peak output voltage=")
+
+// Results
+// ac load line saturation is 273 mAmperes
+// ac voltage at cutoff point is 19.7 volts
+// maximum peak-to-peak output voltage is 18 volts
diff --git a/317/CH12/EX12.2/example2.txt b/317/CH12/EX12.2/example2.txt
new file mode 100755
index 000000000..7db6be4b7
--- /dev/null
+++ b/317/CH12/EX12.2/example2.txt
@@ -0,0 +1,3 @@
+ac load line saturation is 273 mAmperes
+ac voltage at cutoff point is 19.7 volts
+maximum peak-to-peak output voltage is 18 volts
diff --git a/317/CH12/EX12.3/example3.sce b/317/CH12/EX12.3/example3.sce
new file mode 100755
index 000000000..970eaafc3
--- /dev/null
+++ b/317/CH12/EX12.3/example3.sce
@@ -0,0 +1,29 @@
+// calculate power output gain
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 12-3, page 387
+
+clear;clc; close;
+
+// Given data
+R1=490;// in ohms
+R2=68;// in ohms
+Rc=120;// in ohms
+Re=20;// in ohms
+Vcc=30;// in volts
+Rl=180;// in ohms
+Ri=100;// input independence in ohms
+PP=18;// peak-to-peak voltage in volts
+Vin=200*10^-3;// in volts
+
+// Calculations
+zinstage=490*68*100/((490*68)+(490*100)+(68*100));// in ohms
+Pin=(Vin)^2/(8*zinstage);// ac input power in watts
+Pout=(PP)^2/(8*Rl);// ac output power in watts
+Ap=Pout/Pin;// power gain
+disp(Ap,"Power gain=")
+
+// Result
+// power gain is 1682
diff --git a/317/CH12/EX12.3/example3.txt b/317/CH12/EX12.3/example3.txt
new file mode 100755
index 000000000..4d6282a29
--- /dev/null
+++ b/317/CH12/EX12.3/example3.txt
@@ -0,0 +1 @@
+power gain is 1682
diff --git a/317/CH12/EX12.4/example4.sce b/317/CH12/EX12.4/example4.sce
new file mode 100755
index 000000000..dcb2c0567
--- /dev/null
+++ b/317/CH12/EX12.4/example4.sce
@@ -0,0 +1,39 @@
+// calculate transistor power dissipation and efficiency
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 12-4, page 387
+
+clear;clc; close;
+// Given data
+R1=490;// in ohms
+R2=68;// in ohms
+Rc=120;// in ohms
+Re=20;// in ohms
+Vcc=30;// in volts
+Rl=180;// in ohms
+Ri=100;// input independence in ohms
+PP=18;// peak-to-peak voltage in volts
+Vin=200*10^-3;// in volts
+Vc=12;// in volts
+
+// Calculations
+Vb=R2*Vcc/(R2+R1);// in volts
+Ve=Vb-0.7;
+Ie=Ve/Re;// in amperes
+Icq=Ie;// dc collector current in amperes
+Vceq=Vc-Ve;// dc collector-emitter voltage in volts
+Pdq=Vceq*Icq;// transistor power dissipation
+// to find stage efficiency
+Ibias=Vcc/(R1+R2);// in amperes
+Idc=Ibias+Icq;// in amperes
+Pdc=Idc*Vcc;// dc input power in watts
+Pout=(PP)^2/(8*Rl);// ac output power in watts
+n=(Pout/Pdc)*100;// efficiency
+disp("Watts",Pdq,"transistor power dissipation=")
+disp("%",n,"efficiency=")
+
+// Results
+// transistor power dissipation is 1.34 watts
+// efficiency of stage is 3.72%
diff --git a/317/CH12/EX12.4/example4.txt b/317/CH12/EX12.4/example4.txt
new file mode 100755
index 000000000..30c81644b
--- /dev/null
+++ b/317/CH12/EX12.4/example4.txt
@@ -0,0 +1,2 @@
+transistor power dissipation is 1.34 watts
+efficiency of stage is 3.72%
diff --git a/317/CH12/EX12.6/example6.sce b/317/CH12/EX12.6/example6.sce
new file mode 100755
index 000000000..f932083b2
--- /dev/null
+++ b/317/CH12/EX12.6/example6.sce
@@ -0,0 +1,28 @@
+// calculate dc collector current,dc collector-emitter voltage,ac resistance seen by collector
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 12-6, page 391
+
+clear;clc; close;
+// Given data
+R1=50;// in ohms
+R2=100;// in ohms
+Re=16;// in ohms
+Vcc=12;// in volts
+Rl=16;// in ohms
+
+// Calculations
+Vb=R2*Vcc/(R2+R1);// in volts
+Ve=Vb-0.7;
+Ie=Ve/Re;// in amperes
+Icq=Ie;// dc collector current in amperes
+Vceq=Vcc-Ve;// dc collector-emitter voltage in volts
+re=Re/2;// in ohms,re=Re||Rl
+disp("Amperes",Icq,"dc collector current=")
+disp("Volts",Vceq,"dc collector-emitter voltage=")
+disp("ohms",re,"ac resistance =")
+
+// Results
+// Icq=456 mAmperes,Vceq=4.7 ohms,re=8 ohms
diff --git a/317/CH12/EX12.6/example6.txt b/317/CH12/EX12.6/example6.txt
new file mode 100755
index 000000000..6f2fe62ab
--- /dev/null
+++ b/317/CH12/EX12.6/example6.txt
@@ -0,0 +1 @@
+Icq=456 mAmperes,Vceq=4.7 ohms,re=8 ohms
diff --git a/317/CH12/EX12.7/example7.sce b/317/CH12/EX12.7/example7.sce
new file mode 100755
index 000000000..66b2314da
--- /dev/null
+++ b/317/CH12/EX12.7/example7.sce
@@ -0,0 +1,35 @@
+// calculate ac load line saturation, cutoff points, maximum peak-to-peak output voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 12-7, page 392
+
+clear;clc; close;
+// Given data
+R1=50;// in ohms
+R2=100;// in ohms
+Re=16;// in ohms
+Vcc=12;// in volts
+Rl=16;// in ohms
+
+// Calculations
+Vb=R2*Vcc/(R2+R1);// in volts
+Ve=Vb-0.7;
+Ie=Ve/Re;// in amperes
+Icq=Ie;// dc collector current in amperes
+Vceq=Vcc-Ve;// dc collector-emitter voltage in volts
+re=Re/2;// in ohms,re=Re||Rl
+icsat=Icq+(Vceq/re);// ac load line saturation in amperes
+Vcecutoff=Vceq+(Icq*re);// cutoff point in volts
+MPP=2*Icq*re;// MPP output voltage in Vpp
+disp("Amperes",icsat,"ac load line saturation")
+disp("Volts",Vcecutoff,"ac cutoff voltage")
+disp("Volts",MPP,"maximum peak-to-peak output voltage=")
+
+// Result
+// ac load line saturation is 1.04 amperes
+// cutoff voltage is 8.35 volts
+// MPP output voltage is 7.3 Vpp.
+
+
diff --git a/317/CH12/EX12.7/example7.txt b/317/CH12/EX12.7/example7.txt
new file mode 100755
index 000000000..5f6581c01
--- /dev/null
+++ b/317/CH12/EX12.7/example7.txt
@@ -0,0 +1,5 @@
+ac load line saturation is 1.04 amperes
+cutoff voltage is 8.35 volts
+MPP output voltage is 7.3 Vpp.
+
+
diff --git a/317/CH12/EX12.8/example8.sce b/317/CH12/EX12.8/example8.sce
new file mode 100755
index 000000000..e5fe598e6
--- /dev/null
+++ b/317/CH12/EX12.8/example8.sce
@@ -0,0 +1,27 @@
+// calculate transistor power dissipation and maximum output power
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 12-8, page 397
+
+clear;clc; close;
+// Given data
+R1=100;// in ohms
+R2=100;// in ohms
+Vcc=20;// in volts
+Rl=8;// in ohms
+
+// Calculations
+MPP=Vcc;// in volts
+Pdmax=(MPP^2)/(40*Rl);// maximum transistor power dissipation in watts
+Poutmax=(MPP^2)/(8*Rl);// maximum output power in watts
+disp("Watts",Pdmax,"maximum power dissipation=")
+disp("Watts",Poutmax,"maximum output power=")
+
+
+// Result
+// maximum power dissipation is 1.25 watts
+// maximum output power is 6.25 watts
+
+
diff --git a/317/CH12/EX12.8/example8.txt b/317/CH12/EX12.8/example8.txt
new file mode 100755
index 000000000..dcf212783
--- /dev/null
+++ b/317/CH12/EX12.8/example8.txt
@@ -0,0 +1,3 @@
+maximum power dissipation is 1.25 watts
+maximum output power is 6.25 watts
+
diff --git a/317/CH12/EX12.9/example9.sce b/317/CH12/EX12.9/example9.sce
new file mode 100755
index 000000000..0c57a9329
--- /dev/null
+++ b/317/CH12/EX12.9/example9.sce
@@ -0,0 +1,29 @@
+// calculate efficiency
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 12-9, page 398
+
+clear;clc; close;
+// Given data
+R=15;// adjustable resistance in ohms
+R1=100;// in ohms
+R2=100;// in ohms
+Vcc=20;// in volts
+Rl=8;// in ohms
+Vceq=10;// in volts
+
+// Calculations
+Ibias=Vcc/(R1+R2+R);// dc current through biasing resistors
+Icsat=Vceq/Rl;// saturation current in amperes
+Iav=Icsat/%pi;// collector current in the conducting transistor
+Idc=Ibias+Iav;// total current drain in amperes
+Pdc=Vcc*Idc;// dc input power in watts
+MPP=Vcc;// in volts
+Poutmax=(MPP^2)/(8*Rl);// maximum output power in watts
+E=(Poutmax/Pdc)*100;// efficiency in percentage
+disp("%",E,"efficiency=")
+
+// Result
+// efficiency is 63.6%
diff --git a/317/CH12/EX12.9/example9.txt b/317/CH12/EX12.9/example9.txt
new file mode 100755
index 000000000..c39876376
--- /dev/null
+++ b/317/CH12/EX12.9/example9.txt
@@ -0,0 +1 @@
+efficiency is 63.6%
diff --git a/317/CH13/EX13.1/example1.sce b/317/CH13/EX13.1/example1.sce
new file mode 100755
index 000000000..d2aca41cf
--- /dev/null
+++ b/317/CH13/EX13.1/example1.sce
@@ -0,0 +1,20 @@
+// calculate input resistance of JFET
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 13-1, page 428
+
+clear;clc; close;
+
+// Given data
+// 2N5486 JFET
+Vgs=20;// reverse gate voltage in volts
+Ig=1*10^-9 ;// gate current in amperes
+
+// Calculations
+Rin=Vgs/Ig;// in ohms
+disp("ohms",Rin,"input resistance=")
+
+// Result
+// input resistance is 20,000 Mohms \ No newline at end of file
diff --git a/317/CH13/EX13.1/example1.txt b/317/CH13/EX13.1/example1.txt
new file mode 100755
index 000000000..ed64e6267
--- /dev/null
+++ b/317/CH13/EX13.1/example1.txt
@@ -0,0 +1 @@
+input resistance is 20,000 Mohms \ No newline at end of file
diff --git a/317/CH13/EX13.10/example10.sce b/317/CH13/EX13.10/example10.sce
new file mode 100755
index 000000000..4a51f58d5
--- /dev/null
+++ b/317/CH13/EX13.10/example10.sce
@@ -0,0 +1,26 @@
+// find drain current,voltage between drain and ground
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 13-10, page 443
+
+clear; clc; close;
+
+// Given data
+Vdd=15;// in volts
+Rd=1*10^3;// drain resistance in ohms
+Rs=3*10^3;// source resistance in ohms
+
+// Calculations
+// 15 Volts occur across source resistor
+Vs=15;// voltage across source resistor in volts
+Id=Vs/Rs;// drain current in amperes
+Vd=Vdd-(Id*Rd);// drain voltage in volts
+disp("Amperes",Id,"Drain current=")
+disp("Volts",Vd,"Drain Voltage=")
+
+
+// Result
+// Drain current is 5 mAmperes
+// Voltage between drain and ground is 10 Volts \ No newline at end of file
diff --git a/317/CH13/EX13.10/example10.txt b/317/CH13/EX13.10/example10.txt
new file mode 100755
index 000000000..3d4abeee9
--- /dev/null
+++ b/317/CH13/EX13.10/example10.txt
@@ -0,0 +1,2 @@
+Drain current is 5 mAmperes
+Voltage between drain and ground is 10 Volts \ No newline at end of file
diff --git a/317/CH13/EX13.11/example11.sce b/317/CH13/EX13.11/example11.sce
new file mode 100755
index 000000000..0f049125d
--- /dev/null
+++ b/317/CH13/EX13.11/example11.sce
@@ -0,0 +1,24 @@
+// find drain current,drain voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 13-11, page 444
+
+clear; clc; close;
+
+// Given data
+Vdd=10;// in volts
+Vee=5;// in volts
+Rd=1*10^3;// drain resistance in ohms
+Re=2*10^3;// source resistance in ohms
+
+// Calculations
+Id=(Vee-0.7)/Re;// drain current set up by bipolar junction transistor in amperes
+Vd=Vdd-(Id*Rd);// drain voltage in volts
+disp("Amperes",Id,"Drain current=")
+disp("Volts",Vd,"Drain Voltage=")
+
+// Result
+// Drain current is 2.15 mAmperes
+// Drain voltage is 7.85 Volts \ No newline at end of file
diff --git a/317/CH13/EX13.11/example11.txt b/317/CH13/EX13.11/example11.txt
new file mode 100755
index 000000000..1e1233656
--- /dev/null
+++ b/317/CH13/EX13.11/example11.txt
@@ -0,0 +1,2 @@
+Drain current is 2.15 mAmperes
+Drain voltage is 7.85 Volts \ No newline at end of file
diff --git a/317/CH13/EX13.12/example12.sce b/317/CH13/EX13.12/example12.sce
new file mode 100755
index 000000000..bb195603f
--- /dev/null
+++ b/317/CH13/EX13.12/example12.sce
@@ -0,0 +1,23 @@
+// find gate-source cutoff voltage and transconductance
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 13-12, page 447
+
+clear; clc; close;
+
+// Given data
+Idss=5*10^-3;// maximum drain current in amperes
+gmo=5000*10^-6;// maximum transconductance in Seimen
+Vgs=-1;// Gate-source voltage in volts
+
+// Calculations
+Vgsoff=-2*Idss/gmo;// gate-source cutoff voltage in volts
+gm=gmo*(1-(Vgs/Vgsoff));// Transconductance at given Vgs
+disp("Volts",Vgsoff,"Gate source cutoff voltage=")
+disp("Seimen",gm,"transconductance=")
+
+// Result
+// Gate source cutoff voltage is -2 Volts
+// Transconductance is 2500 MicroSeimens \ No newline at end of file
diff --git a/317/CH13/EX13.12/example12.txt b/317/CH13/EX13.12/example12.txt
new file mode 100755
index 000000000..329628c27
--- /dev/null
+++ b/317/CH13/EX13.12/example12.txt
@@ -0,0 +1,2 @@
+Gate source cutoff voltage is -2 Volts
+Transconductance is 2500 MicroSeimens \ No newline at end of file
diff --git a/317/CH13/EX13.13/example13.sce b/317/CH13/EX13.13/example13.sce
new file mode 100755
index 000000000..6e236d1d6
--- /dev/null
+++ b/317/CH13/EX13.13/example13.sce
@@ -0,0 +1,23 @@
+// calculate output voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 13-13, page 449
+
+clear; clc; close;
+
+// Given data
+Rd=3.6*10^3;// in ohms
+Rl=10*10^3;// in ohms
+gm=5000*10^-6;// transconductance in Seimen
+Vin=10^-3;// input voltage in Vpp
+
+// Calculations
+rd=Rd*Rl/(Rd+Rl);// ac drain resistance in ohms
+Av=gm*rd;// voltage gain
+Vout=Vin*Av;// output voltage in volts
+disp("Volts",Vout,"Output voltage=")
+
+// Result
+// Output voltage is 13.3 mVpp \ No newline at end of file
diff --git a/317/CH13/EX13.13/example13.txt b/317/CH13/EX13.13/example13.txt
new file mode 100755
index 000000000..56098fdb9
--- /dev/null
+++ b/317/CH13/EX13.13/example13.txt
@@ -0,0 +1 @@
+Output voltage is 13.3 mVpp \ No newline at end of file
diff --git a/317/CH13/EX13.14/example14.sce b/317/CH13/EX13.14/example14.sce
new file mode 100755
index 000000000..f48541196
--- /dev/null
+++ b/317/CH13/EX13.14/example14.sce
@@ -0,0 +1,23 @@
+// calculate output voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 13-14, page 450
+
+clear; clc; close;
+
+// Given data
+Rs=10^3;// in ohms
+Rl=10^3;// in ohms
+gm=2500*10^-6;// transconductance in Seimen
+Vin=10^-3;// input voltage in Vpp
+
+// Calculations
+rs=Rs*Rl/(Rs+Rl);// ac drain resistance in ohms
+Av=gm*rs/(1+(gm*rs));// voltage gain
+Vout=Vin*Av;// output voltage in volts
+disp("Volts",Vout,"Output voltage=")
+
+// Result
+// Output voltage is 0.556 mVpp \ No newline at end of file
diff --git a/317/CH13/EX13.14/example14.txt b/317/CH13/EX13.14/example14.txt
new file mode 100755
index 000000000..5fe574173
--- /dev/null
+++ b/317/CH13/EX13.14/example14.txt
@@ -0,0 +1 @@
+Output voltage is 0.556 mVpp \ No newline at end of file
diff --git a/317/CH13/EX13.15/example15.sce b/317/CH13/EX13.15/example15.sce
new file mode 100755
index 000000000..634798a24
--- /dev/null
+++ b/317/CH13/EX13.15/example15.sce
@@ -0,0 +1,24 @@
+// calculate voltage gain
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 13-15, page 450
+
+clear; clc; close;
+
+// Given data
+Rs1=220;// in ohms
+Rs2=780;// in ohms
+Rl=3*10^3;// in ohms
+gm=2000*10^-6;// transconductance in Seimen
+
+
+// Calculations
+Rs=Rs1+Rs2;// total dc source resistance in ohms
+rs=Rs*Rl/(Rs+Rl);// ac drain resistance in ohms
+Av=gm*rs/(1+(gm*rs));// voltage gain
+disp(Av,"Votage gain=")
+
+// Result
+// voltage gain is 0.6 \ No newline at end of file
diff --git a/317/CH13/EX13.15/example15.txt b/317/CH13/EX13.15/example15.txt
new file mode 100755
index 000000000..c7141c253
--- /dev/null
+++ b/317/CH13/EX13.15/example15.txt
@@ -0,0 +1 @@
+voltage gain is 0.6 \ No newline at end of file
diff --git a/317/CH13/EX13.16/example16.sce b/317/CH13/EX13.16/example16.sce
new file mode 100755
index 000000000..65c7f0290
--- /dev/null
+++ b/317/CH13/EX13.16/example16.sce
@@ -0,0 +1,27 @@
+// calculate drain current,voltage gain
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 13-16, page 451
+
+clear; clc; close;
+
+// Given data
+Vdd=30;// in voltage
+Rs=2.2*10^3;// in ohms
+Rl=3.3*10^3;// in ohms
+gm=3500*10^-6;// transconductance in Seimen
+
+// Calculations
+// 3:1 voltage divider produces a gate voltage of 10 Volts
+Vs=10;// voltage across source resistor in volts
+Id=Vs/Rs;// drain current in amperes
+rs=Rs*Rl/(Rs+Rl);// ac drain resistance in ohms
+Av=gm*rs/(1+(gm*rs));// voltage gain
+disp("Amperes",Id,"Drain Current=")
+disp(Av,"Votage gain=")
+
+// Results
+// Drain current is 4.55 mAmperes
+// Voltage gain is 0.822 \ No newline at end of file
diff --git a/317/CH13/EX13.16/example16.txt b/317/CH13/EX13.16/example16.txt
new file mode 100755
index 000000000..9d736a390
--- /dev/null
+++ b/317/CH13/EX13.16/example16.txt
@@ -0,0 +1,2 @@
+Drain current is 4.55 mAmperes
+Voltage gain is 0.822 \ No newline at end of file
diff --git a/317/CH13/EX13.2/example2.sce b/317/CH13/EX13.2/example2.sce
new file mode 100755
index 000000000..996bf2294
--- /dev/null
+++ b/317/CH13/EX13.2/example2.sce
@@ -0,0 +1,23 @@
+// calculate ohmic resistance , gate-source cutoff voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 13-2, page 430
+
+clear; clc; close;
+
+// Given data
+// MPF4857
+Vp=6;// pinchoff voltage in volts
+Idss=100*10^-3 ;// maximum drain current in amperes
+
+// Calculations
+Rds=Vp/Idss;// ohmic resistance in ohms
+Vgsoff=-Vp;// gate source cutoff voltge is negative of pinchoff voltage
+disp("ohms",Rds,"input resistance=")
+disp("Volts",Vgsoff,"gate-source cutoff voltage=")
+
+// Result
+// input resistance is 60 ohms
+// gate-source cutoff voltage is -6 Volts \ No newline at end of file
diff --git a/317/CH13/EX13.2/example2.txt b/317/CH13/EX13.2/example2.txt
new file mode 100755
index 000000000..21911dd06
--- /dev/null
+++ b/317/CH13/EX13.2/example2.txt
@@ -0,0 +1,2 @@
+Input resistance is 60 ohms
+Gate-source cutoff voltage is -6 Volts \ No newline at end of file
diff --git a/317/CH13/EX13.3/example3.sce b/317/CH13/EX13.3/example3.sce
new file mode 100755
index 000000000..9f9f7aad8
--- /dev/null
+++ b/317/CH13/EX13.3/example3.sce
@@ -0,0 +1,24 @@
+// calculate gate voltage and drain current at half cutoff point
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 13-3, page 431
+
+clear; clc; close;
+
+// Given data
+// 2N5668
+Vgsoff=-4;// gate-source cutoff voltage in volts
+Idss=5*10^-3 ;// maximum drain current in amperes
+
+// Calculations
+Vgs=-Vgsoff/2 ;// gate voltage at half cutoff point in volts
+Id=Idss/4 ;// drain current at half cutoff point in amperes
+disp("Amperes",Id,"Drain current=")
+disp("Volts",Vgs,"gate Voltage=")
+
+
+// Result
+// Gate voltage at half cutoff point is -2 Volts
+// Drain current is 1.25 mAmperes \ No newline at end of file
diff --git a/317/CH13/EX13.3/example3.txt b/317/CH13/EX13.3/example3.txt
new file mode 100755
index 000000000..d5c696f2c
--- /dev/null
+++ b/317/CH13/EX13.3/example3.txt
@@ -0,0 +1,2 @@
+Gate voltage at half cutoff point is -2 Volts
+Drain current is 1.25 mAmperes \ No newline at end of file
diff --git a/317/CH13/EX13.4/example4.sce b/317/CH13/EX13.4/example4.sce
new file mode 100755
index 000000000..f2b9eba81
--- /dev/null
+++ b/317/CH13/EX13.4/example4.sce
@@ -0,0 +1,20 @@
+// calculate drain current at half cutoff point
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 13-4, page 432
+
+clear; clc; close;
+
+// Given data
+// 2N5459
+Vgsoff=-8;// gate-source cutoff voltage in volts
+Idss=16*10^-3 ;// maximum drain current in amperes
+
+// Calculations
+Id=Idss/4 ;// drain current at half cutoff point in amperes
+disp("Amperes",Id,"Drain current=")
+
+// Result
+// Drain current is 4 mAmperes \ No newline at end of file
diff --git a/317/CH13/EX13.4/example4.txt b/317/CH13/EX13.4/example4.txt
new file mode 100755
index 000000000..90df70370
--- /dev/null
+++ b/317/CH13/EX13.4/example4.txt
@@ -0,0 +1 @@
+Drain current is 4 mAmperes \ No newline at end of file
diff --git a/317/CH13/EX13.6/example6.sce b/317/CH13/EX13.6/example6.sce
new file mode 100755
index 000000000..35d627fb3
--- /dev/null
+++ b/317/CH13/EX13.6/example6.sce
@@ -0,0 +1,26 @@
+// calculate medium source resistance, drain voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 13-6, page 436
+
+clear; clc; close;
+
+// Given data
+Vp=4 ;// pinchoff voltage in volts
+Idss=10*10^-3 ;// maximum drain current in amperes
+Vdd=30;// in volts
+Rd=2*10^3;// drain resistance in ohms
+
+// Calculations
+Rds=Vp/Idss;// medium source resistance in ohms
+Id=Idss/4 ;// drain current in amperes
+Vd=Vdd-(Id*Rd);// drain voltage in volts
+disp("ohms",Rds,"medium source resistance=")
+disp("Volts",Vd,"Drain Voltage=")
+
+
+// Result
+// medium source resistance is 400 ohms
+// drain voltage is 25 volts \ No newline at end of file
diff --git a/317/CH13/EX13.6/example6.txt b/317/CH13/EX13.6/example6.txt
new file mode 100755
index 000000000..a0794689d
--- /dev/null
+++ b/317/CH13/EX13.6/example6.txt
@@ -0,0 +1,2 @@
+medium source resistance is 400 ohms
+drain voltage is 25 volts \ No newline at end of file
diff --git a/317/CH13/EX13.8/example8.sce b/317/CH13/EX13.8/example8.sce
new file mode 100755
index 000000000..44e51d3e9
--- /dev/null
+++ b/317/CH13/EX13.8/example8.sce
@@ -0,0 +1,26 @@
+// find Q point
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 13-8, page 440
+
+clear; clc; close;
+
+// Given data
+Vdd=30;// in volts
+Rd=1*10^3;// drain resistance in ohms
+Rs=2*10^3;// source resistance in ohms
+
+// Calculations
+// 3:1 voltage divider produces a gate voltage of 10 Volts
+Vs=10;// voltage across source resistor in volts
+Id=Vs/Rs;// drain current in amperes
+Vd=Vdd-(Id*Rd);// drain voltage in volts
+Vds=Vd-Vs;// drain-source voltage in volts
+disp("Amperes",Id,"Drain current=")
+disp("Volts",Vds,"Drain-source Voltage=")
+
+
+// Result
+// Q point is (15,5*10^-3) \ No newline at end of file
diff --git a/317/CH13/EX13.8/example8.txt b/317/CH13/EX13.8/example8.txt
new file mode 100755
index 000000000..f74aaf78e
--- /dev/null
+++ b/317/CH13/EX13.8/example8.txt
@@ -0,0 +1 @@
+Q point is (15,5*10^-3) \ No newline at end of file
diff --git a/317/CH14/EX14.1/example1.sce b/317/CH14/EX14.1/example1.sce
new file mode 100755
index 000000000..0a79a7fce
--- /dev/null
+++ b/317/CH14/EX14.1/example1.sce
@@ -0,0 +1,33 @@
+// calculate drain current at given gate-source voltages
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 14-1, page 482
+
+clear; clc; close;
+
+// Given data
+// D-MOSFET
+Vgsoff=-3;// gate-source cutoff voltage in volts
+Idss=6*10^-3 ;// maximum drain current in amperes
+Vgs1=-1 ;// gate source voltage in volts
+Vgs2=-2 ;// gate source voltage in volts
+Vgs3=0 ;// gate source voltage in volts
+Vgs4=1 ;// gate source voltage in volts
+Vgs5=2 ;// gate source voltage in volts
+
+// Calculations
+Id1=Idss*(1-(Vgs1/Vgsoff))^2 ;// drain current in amperes
+Id2=Idss*(1-(Vgs2/Vgsoff))^2 ;// drain current in amperes
+Id3=Idss*(1-(Vgs3/Vgsoff))^2 ;// drain current in amperes
+Id4=Idss*(1-(Vgs4/Vgsoff))^2 ;// drain current in amperes
+Id5=Idss*(1-(Vgs5/Vgsoff))^2 ;// drain current in amperes
+disp("amperes",Id1,"drain current 1=")
+disp("amperes",Id2,"drain current 2=")
+disp("amperes",Id3,"drain current 3=")
+disp("amperes",Id4,"drain current 4=")
+disp("amperes",Id5,"drain current 5=")
+
+// Result
+// Values of Drain current is 2.67, 0.667, 6, 10.7, 16.7 mAmperes respectively. \ No newline at end of file
diff --git a/317/CH14/EX14.1/example1.txt b/317/CH14/EX14.1/example1.txt
new file mode 100755
index 000000000..c03baae63
--- /dev/null
+++ b/317/CH14/EX14.1/example1.txt
@@ -0,0 +1 @@
+Values of Drain current is 2.67, 0.667, 6, 10.7, 16.7 mAmperes respectively. \ No newline at end of file
diff --git a/317/CH14/EX14.12/example12.sce b/317/CH14/EX14.12/example12.sce
new file mode 100755
index 000000000..dcc77f5b0
--- /dev/null
+++ b/317/CH14/EX14.12/example12.sce
@@ -0,0 +1,28 @@
+// calculate the RC time constant and lamp power at full brightness
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 14-12, page 504
+
+clear; clc; close;
+
+// Given data
+R1=2*10^6;// resistance in ohms
+R2=1*10^6;// resistance in ohms
+R=10;// resistance of the lamp in ohms
+Rdson=1.07;// static drain-source on-resistance in ohms
+Vdd=30;// drain cutoff voltage in volts
+C=10*10^-6;// capacitance in faraday
+
+// Calculations
+Rth=R1*R2/(R1+R2);// thevenin resistance in ohms
+RC=Rth*C;// time constant in seconds
+Id=Vdd/(R+Rdson) ;// lamp current in amperes
+P=Id*Id*R;// lamp power in watts at full brightness
+disp("seconds",RC,"time constant=")
+disp("watts",P,"lamp power =")
+
+// Result
+// RC time constant is 6.67 seconds
+// Lamp power is 73.4 Watts \ No newline at end of file
diff --git a/317/CH14/EX14.12/example12.txt b/317/CH14/EX14.12/example12.txt
new file mode 100755
index 000000000..9f603f2f4
--- /dev/null
+++ b/317/CH14/EX14.12/example12.txt
@@ -0,0 +1,2 @@
+RC time constant is 6.67 seconds
+Lamp power is 73.4 Watts \ No newline at end of file
diff --git a/317/CH14/EX14.13/example13.sce b/317/CH14/EX14.13/example13.sce
new file mode 100755
index 000000000..d598ddd6d
--- /dev/null
+++ b/317/CH14/EX14.13/example13.sce
@@ -0,0 +1,29 @@
+// find the constant k value and drain current of E-MOSFET
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 14-13, page 506
+
+clear; clc; close;
+
+// Given data
+// 2N7000
+Idon=600*10^-3 ;// in amperes
+Vgson=4.5;// from data sheet in volts
+Vgsth=2.1;// from data sheet in volts
+Vgs1=3 ;// gate source voltage in volts
+Vgs2=4.5 ;// gate source voltage in volts
+
+// Calculations
+k=Idon/([Vgson-Vgsth]^2)
+Id1=k*([Vgs1-Vgsth]^2)
+Id2=k*([Vgs2-Vgsth]^2)
+disp(k,"constant=")
+disp("amperes",Id1,"drain current 1=")
+disp("amperes",Id2,"drain current 2=")
+
+// Result
+// Constant k is 104 mAmperes/Volts^2
+// Drain current when Vgs is 3 Volts is 84.4 mAmperes
+// Drain current when Vgs is 4.5 Volts is 600 mAmperes \ No newline at end of file
diff --git a/317/CH14/EX14.13/example13.txt b/317/CH14/EX14.13/example13.txt
new file mode 100755
index 000000000..35e0ba33c
--- /dev/null
+++ b/317/CH14/EX14.13/example13.txt
@@ -0,0 +1,3 @@
+Constant k is 104 mAmperes/Volts^2
+Drain current when Vgs is 3 Volts is 84.4 mAmperes
+Drain current when Vgs is 4.5 Volts is 600 mAmperes \ No newline at end of file
diff --git a/317/CH14/EX14.14/example14.sce b/317/CH14/EX14.14/example14.sce
new file mode 100755
index 000000000..cc8394f80
--- /dev/null
+++ b/317/CH14/EX14.14/example14.sce
@@ -0,0 +1,20 @@
+// find value of Rd for the MOSFET
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 14-14, page 507
+
+clear; clc; close;
+
+// Given data
+Idon=3*10^-3;// from the data sheet of the E-MOSFET in amperes
+Vdson=10;// from data sheet of the E-MOSFET in volts
+Vdd=25 ;// drain cutoff voltage in volts
+
+// Calculations
+Rd=(Vdd-Vdson)/Idon ;// Rd in ohms
+disp("ohms",Rd,"resistance=")
+
+// Result
+// A resistance of 5kohms will allow the MOSFET to operate at a specified Q point. \ No newline at end of file
diff --git a/317/CH14/EX14.14/example14.txt b/317/CH14/EX14.14/example14.txt
new file mode 100755
index 000000000..fb10fce08
--- /dev/null
+++ b/317/CH14/EX14.14/example14.txt
@@ -0,0 +1 @@
+A resistance of 5kohms will allow the MOSFET to operate at a specified Q point \ No newline at end of file
diff --git a/317/CH14/EX14.15/example15.sce b/317/CH14/EX14.15/example15.sce
new file mode 100755
index 000000000..b0a523a95
--- /dev/null
+++ b/317/CH14/EX14.15/example15.sce
@@ -0,0 +1,38 @@
+// find Vgs,Id,gm,Vout
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 14-15, page 508
+
+clear; clc; close;
+
+// Given data
+k=104*10^-3 ;// constant k of the E-MOSFET
+Idon=600*10^-3 ;// in amperes
+Vgsth=2.1;// in volts
+R1=10^6;// in ohms from the given figure
+R2=350*10^3;// in ohms from the given figure
+Vin=100*10^-3;// in volts from the given figure
+Rd=68;// in ohms from the given figure
+Rl=10^3;// in ohms from the given figure
+Vdd=12;// drain cutoff voltage in volts from the given figure
+
+// Calculations
+Vg=(R2/(R1+R2))*Vdd ;// ground voltage in volts
+Vgs=Vg;// Vgs = ground voltage
+Id=k*([Vgs-Vgsth]^2)
+gm=2*k*(Vgs-Vgsth);//transconductance in Seimens
+rd=Rd*Rl/(Rd+Rl) ;// rd=Rd||Rl in ohms
+Av=gm*rd;// voltage gain
+Vout=Av*Vin;// output voltage in volts
+disp("Volts",Vgs,"gate-source voltage=")
+disp("Amperes",Id,"drain current=")
+disp("Seimen",gm,"transconductane=")
+disp("Volts",Vout,"output voltage=")
+
+// Result
+// Vgs is 3.11 Volts
+// Drain current is 106 mAmperes
+// Transconductance is 210 mSeimens
+// Output voltage is 1.34 mVolts \ No newline at end of file
diff --git a/317/CH14/EX14.15/example15.txt b/317/CH14/EX14.15/example15.txt
new file mode 100755
index 000000000..7165ea128
--- /dev/null
+++ b/317/CH14/EX14.15/example15.txt
@@ -0,0 +1,4 @@
+Vgs is 3.11 Volts
+Drain current is 106 mAmperes
+Transconductance is 210 mSeimens
+Output voltage is 1.34 mVolts \ No newline at end of file
diff --git a/317/CH14/EX14.2/example2.sce b/317/CH14/EX14.2/example2.sce
new file mode 100755
index 000000000..27ea206d0
--- /dev/null
+++ b/317/CH14/EX14.2/example2.sce
@@ -0,0 +1,29 @@
+// calculate the circuit's output voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 14-2, page 482
+
+clear; clc; close;
+
+// Given data
+// D-MOSFET amplifier
+Vgsoff=-2 ;// gate-source cutoff voltage in volts
+Idss=4*10^-3 ;// maximum drain current in amperes
+gmo=2000*10^-6 ;// in seimens
+Vdd=15; // in volts from the figure
+Rd=2*10^3;// in ohms from the figure
+Rl=10*10^3;// in ohms from the figure
+Vin=20*10^-3 ;// input voltage in volts
+
+// Calculations
+Vds=Vdd-(Idss*Rd) ;// drain source voltage in volts
+rd=(Rd*Rl)/(Rd+Rl) ;// ac drain resistance in ohms
+gm=gmo ; // as Vgs=0
+Av=gm*rd ;// amplifier's voltage gain
+Vout=Av*Vin; // in volts
+disp("Volts ",Vout,"output voltage=")
+
+// Result
+// Output voltage is 66.8 mVolts \ No newline at end of file
diff --git a/317/CH14/EX14.2/example2.txt b/317/CH14/EX14.2/example2.txt
new file mode 100755
index 000000000..b5bbcb9c4
--- /dev/null
+++ b/317/CH14/EX14.2/example2.txt
@@ -0,0 +1 @@
+Output voltage is 66.8 mVolts \ No newline at end of file
diff --git a/317/CH14/EX14.6/example6.sce b/317/CH14/EX14.6/example6.sce
new file mode 100755
index 000000000..2966be772
--- /dev/null
+++ b/317/CH14/EX14.6/example6.sce
@@ -0,0 +1,23 @@
+// calculate output voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 14-6, page 496
+
+clear; clc; close;
+
+// Given data
+Vdd=20;// supply voltage in volts
+Rd=10*10^3;// resistance in ohms
+Rdson=50;// static drain-source on-resistance in ohms
+
+// Calculations
+Voutlow=Vdd; // when input voltage is low, the lower MOSFET is open and the output voltage= supply voltage
+Vouthigh=Vdd*(Rdson/(Rdson+Rd)) ;// when input voltage is high, the lower MOSFET has a resistance of Rd and the output voltage= ground voltage
+disp("Volts ",Vouthigh,"output voltage at high input voltage=")
+disp("Volts ",Voutlow,"output voltage at low input voltage=")
+
+// Result
+// Output voltage is 20 Volts when input voltage is low
+// Output voltage is 100 mVolts when input voltage is high \ No newline at end of file
diff --git a/317/CH14/EX14.6/example6.txt b/317/CH14/EX14.6/example6.txt
new file mode 100755
index 000000000..e363e3130
--- /dev/null
+++ b/317/CH14/EX14.6/example6.txt
@@ -0,0 +1,2 @@
+Output voltage is 20 Volts when input voltage is low
+Output voltage is 100 mVolts when input voltage is high \ No newline at end of file
diff --git a/317/CH14/EX14.7/example7.sce b/317/CH14/EX14.7/example7.sce
new file mode 100755
index 000000000..5c797bfef
--- /dev/null
+++ b/317/CH14/EX14.7/example7.sce
@@ -0,0 +1,23 @@
+// calculate output voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 14-7, page 496
+
+clear; clc; close;
+
+// Given data
+Vdd=10;// supply voltage in volts
+Rd=2*10^3;// resistance in ohms
+Rdson=500;// static drain-source on-resistance in ohms
+
+// Calculations
+Voutlow=Vdd; // when input voltage is low, the lower MOSFET is open and the output voltage= supply voltage
+Vouthigh=Vdd*(Rdson/(Rdson+Rd)) ;// when input voltage is high, the lower MOSFET has a resistance of Rd and the output voltage= ground voltage
+disp("Volts ",Vouthigh,"output voltage at high input voltage=")
+disp("Volts ",Voutlow,"output voltage at low input voltage=")
+
+// Result
+// Output voltage is 10 Volts when input voltage is low
+// Output voltage is 2 Volts when input voltage is high \ No newline at end of file
diff --git a/317/CH14/EX14.7/example7.txt b/317/CH14/EX14.7/example7.txt
new file mode 100755
index 000000000..cc8fdf46c
--- /dev/null
+++ b/317/CH14/EX14.7/example7.txt
@@ -0,0 +1,2 @@
+Output voltage is 10 Volts when input voltage is low
+Output voltage is 2 Volts when input voltage is high \ No newline at end of file
diff --git a/317/CH14/EX14.9/example9.sce b/317/CH14/EX14.9/example9.sce
new file mode 100755
index 000000000..0e678ff0c
--- /dev/null
+++ b/317/CH14/EX14.9/example9.sce
@@ -0,0 +1,25 @@
+// calculate current through the motor winding
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 14-9, page 502
+
+clear; clc; close;
+
+// Given data
+// MTP4N80E
+Vgson=10 ;// gate-source on-voltage in volts
+Idon=2; // on-state drain current in amperes
+Rdson=1.95; // static drain-source on resistance in ohms
+Vdd=30;// drain cutoff voltage in volts
+Rd=30;// drain cutoff voltage in ohms
+
+// Calculations
+Idsat=Vdd/Rd;// drain saturation current in amperes
+// as Idsat<Idon the power FET is equivalent to a resistance of Rdson so Rdson will have to be included to find the actual current
+Id=Vdd/(Rd+Rdson) ;// current in amperes
+disp("Amperes",Id,"Current through the motor windings=")
+
+// Result
+// Current through the motor windings is 0.939 Amperes \ No newline at end of file
diff --git a/317/CH14/EX14.9/example9.txt b/317/CH14/EX14.9/example9.txt
new file mode 100755
index 000000000..3d63de4aa
--- /dev/null
+++ b/317/CH14/EX14.9/example9.txt
@@ -0,0 +1 @@
+Current through the motor windings is 0.939 Amperes \ No newline at end of file
diff --git a/317/CH15/EX15.1/example1.sce b/317/CH15/EX15.1/example1.sce
new file mode 100755
index 000000000..6370430fe
--- /dev/null
+++ b/317/CH15/EX15.1/example1.sce
@@ -0,0 +1,23 @@
+// find diode current
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 15-1, page 524
+
+clear; clc; close;
+
+// Given data
+Vb=10;// breakover voltage of the diode
+V=15;// input voltage in volts
+Ih=4*10^-3;// holding current in amperes
+Vd=0.7 ;// voltage across diode in volts
+R=100;// resistance in ohms
+
+// Calculations
+// as V>Vb ,the diode breaks over .Taking into consideration the voltage across the diode
+I=(V-Vd)/R;// diode current in amperes
+disp("Amperes",I,"diode current=")
+
+// Result
+// Diode current is 143 mAmperes \ No newline at end of file
diff --git a/317/CH15/EX15.1/example1.txt b/317/CH15/EX15.1/example1.txt
new file mode 100755
index 000000000..c3ccc00be
--- /dev/null
+++ b/317/CH15/EX15.1/example1.txt
@@ -0,0 +1 @@
+Diode current is 143 mAmperes \ No newline at end of file
diff --git a/317/CH15/EX15.4/example4.sce b/317/CH15/EX15.4/example4.sce
new file mode 100755
index 000000000..9edb648e4
--- /dev/null
+++ b/317/CH15/EX15.4/example4.sce
@@ -0,0 +1,25 @@
+// find input and supply voltage for the SCR
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 15-4, page 531
+
+clear; clc; close;
+
+// Given data
+Vgt=0.75 ;// gate trigger voltage in volts
+Igt=7*10^-3;// gate trigger current in amperes
+Rg=10^3;// in ohms
+Rl=100;// in ohms
+Ih=6*10^-3;// holding current in amperes
+
+// Calculations
+Vin=Vgt + (Igt*Rg);// input voltage in volts
+Vcc=0.7 + (Ih*Rl);// supply voltage in volts
+disp("Volts",Vin,"Input voltage=")
+disp("Volts",Vcc,"Supply voltage=")
+
+// Result
+// Minimum input voltage needed to trigger the SCR is 7.75 Volts
+// Supply voltage that turns off the SCR is 1.3 Volts \ No newline at end of file
diff --git a/317/CH15/EX15.4/example4.txt b/317/CH15/EX15.4/example4.txt
new file mode 100755
index 000000000..fd801b0e8
--- /dev/null
+++ b/317/CH15/EX15.4/example4.txt
@@ -0,0 +1,2 @@
+Minimum input voltage needed to trigger the SCR is 7.75 Volts
+Supply voltage that turns off the SCR is 1.3 Volts \ No newline at end of file
diff --git a/317/CH15/EX15.5/example5.sce b/317/CH15/EX15.5/example5.sce
new file mode 100755
index 000000000..a93f212b2
--- /dev/null
+++ b/317/CH15/EX15.5/example5.sce
@@ -0,0 +1,30 @@
+// find peak output voltage and frequency
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 15-5, page 532
+
+clear; clc; close;
+
+// Given data
+R1=900;// from the figure in ohms
+R2=100;// from the figure in ohms
+Vgt=1 ;// gate trigger voltage in volts
+Igt=200*10^-6;// gate trigger current in amperes
+C=0.2*10^-6;// capacitance in faraday
+R=50;// thevenin resistance facing the capacitance when the SCR is off
+
+// Calculations
+Rth=R1*R2/(R1+R2);// thevenin resistance
+Rg=Rth;// in ohms
+Vin=Vgt + (Igt*Rg);// input voltage in volts
+Vpeak=10*Vin;// because of 10:1 voltage divider, the output voltage is 10(Vin)
+T=0.2*R*C ;// period of sawtooth is 20% of time constant in seconds
+f=1/T;// frequency in Hertz
+disp("Volts",Vpeak,"Peak output voltage=")
+disp("hertz",f,"frequency=")
+
+// Results
+// Peak output voltage is 10.1 Volts
+// Frequency is 50 KHertz \ No newline at end of file
diff --git a/317/CH15/EX15.5/example5.txt b/317/CH15/EX15.5/example5.txt
new file mode 100755
index 000000000..65596981b
--- /dev/null
+++ b/317/CH15/EX15.5/example5.txt
@@ -0,0 +1,2 @@
+Peak output voltage is 10.1 Volts
+Frequency is 50 KHertz \ No newline at end of file
diff --git a/317/CH15/EX15.6/example6.sce b/317/CH15/EX15.6/example6.sce
new file mode 100755
index 000000000..88034723d
--- /dev/null
+++ b/317/CH15/EX15.6/example6.sce
@@ -0,0 +1,19 @@
+// find supply voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 15-6, page 536
+
+clear; clc; close;
+
+// Given dataVz=5.6;// breakdown voltage in volts
+Vgt=0.75;// gate trigger voltage in volts
+Vz=5.6;// breakdown voltage in volts
+
+// Calculations
+Vcc=Vz+Vgt;// overvoltage firing the SCR in volts
+disp("Volts",Vcc,"Supply voltage=")
+
+// Results
+// Supply voltage that turns the crowbar is 6.35 volts \ No newline at end of file
diff --git a/317/CH15/EX15.6/example6.txt b/317/CH15/EX15.6/example6.txt
new file mode 100755
index 000000000..7f8630211
--- /dev/null
+++ b/317/CH15/EX15.6/example6.txt
@@ -0,0 +1 @@
+Supply voltage that turns the crowbar is 6.35 volts \ No newline at end of file
diff --git a/317/CH15/EX15.8/example8.sce b/317/CH15/EX15.8/example8.sce
new file mode 100755
index 000000000..aa2eb9703
--- /dev/null
+++ b/317/CH15/EX15.8/example8.sce
@@ -0,0 +1,21 @@
+// find current through the resistor
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 15-8, page 546
+
+clear; clc; close;
+
+// Given data
+R1=82;// givenin ohms
+R2=22;// given in ohms
+Vgt=75;// in volts
+
+// Calculations
+// Ideally the triac has 0 voltas across it when conducting
+I=Vgt/R2;// current through 22 ohm resistor in amperes
+disp("Amperes",I,"current through 22 ohm resistor=")
+
+// Results
+// Current through the 22 ohm resistor is 3.41 Amperes \ No newline at end of file
diff --git a/317/CH15/EX15.8/example8.txt b/317/CH15/EX15.8/example8.txt
new file mode 100755
index 000000000..582ab2207
--- /dev/null
+++ b/317/CH15/EX15.8/example8.txt
@@ -0,0 +1 @@
+Current through the 22 ohm resistor is 3.41 Amperes \ No newline at end of file
diff --git a/317/CH16/EX16.1/example1.sce b/317/CH16/EX16.1/example1.sce
new file mode 100755
index 000000000..8e18e66f6
--- /dev/null
+++ b/317/CH16/EX16.1/example1.sce
@@ -0,0 +1,25 @@
+// calculate voltage gain of ac amplifier
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 16-1, page 567
+
+clear; clc; close;
+
+// Given data
+f1=20;// cutoff frequency in hertz
+f2=20*10^3;// cutoff frequency in hertz
+fin1=5;// input frequency in hertz
+fin2=200*10^3;// input frequency in hertz
+Avmid=200;// midband voltage gain
+
+// Calculations
+Av1=Avmid/((1+((f1/fin1)^2))^0.5)// Voltage gain for input frequency below midband
+Av2=Avmid*1/((1+((fin2/f2)^2))^0.5); // Voltage gain for input frequency above midband
+disp(Av1,"Voltage gain for input frequency below midband")
+disp(Av2,"Voltage gain or input frequency above midband")
+
+// Result
+// Voltage gain for an input frequency of 5 Hertz is 48.5
+// Voltage gain for an input frequency of 20 KHertz is 19.9 \ No newline at end of file
diff --git a/317/CH16/EX16.1/example1.txt b/317/CH16/EX16.1/example1.txt
new file mode 100755
index 000000000..12fd3735d
--- /dev/null
+++ b/317/CH16/EX16.1/example1.txt
@@ -0,0 +1,2 @@
+Voltage gain for an input frequency of 5 Hertz is 48.5
+Voltage gain for an input frequency of 20 KHertz is 19.9 \ No newline at end of file
diff --git a/317/CH16/EX16.3/example3.sce b/317/CH16/EX16.3/example3.sce
new file mode 100755
index 000000000..10ddf28be
--- /dev/null
+++ b/317/CH16/EX16.3/example3.sce
@@ -0,0 +1,36 @@
+// calculate voltage gain
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 16-3, page 569
+
+clear; clc; close;
+
+// Given data
+f=10;// cutoff frequency in hertz
+Avmid=100000;// midband voltage gain
+f1=100;// input frequency in hertz
+f2=10^3;// input frequency in hertz
+f3=10^4;// input frequency in hertz
+f4=10^5;// input frequency in hertz
+f5=10^6;// input frequency in hertz
+
+// Calculations
+Av1=Avmid/((1+(f1/f)^2)^0.5)// Voltage gain for input frequency below midband
+Av2=Avmid/((1+(f2/f)^2)^0.5)// Voltage gain for input frequency below midband
+Av3=Avmid/((1+(f3/f)^2)^0.5)// Voltage gain for input frequency below midband
+Av4=Avmid/((1+(f4/f)^2)^0.5)// Voltage gain for input frequency below midband
+Av5=Avmid/((1+(f5/f)^2)^0.5)// Voltage gain for input frequency below midband
+disp(Av1,"Voltage gain 1=")
+disp(Av2,"Voltage gain 2=")
+disp(Av3,"Voltage gain 3=")
+disp(Av4,"Voltage gain 4=")
+disp(Av5,"Voltage gain 5=")
+
+// Result
+// Voltage gain for an input frequency of 100 Hertz is approximately 10000
+// Voltage gain for an input frequency of 1000 Hertz is approximately 1000
+// Voltage gain for an input frequency of 1000 Hertz is approximately 100
+// Voltage gain for an input frequency of 10000Hertz is approximately 10
+// Voltage gain for an input frequency of 100000 Hertz is approximately 1 \ No newline at end of file
diff --git a/317/CH16/EX16.3/example3.txt b/317/CH16/EX16.3/example3.txt
new file mode 100755
index 000000000..87873ee3b
--- /dev/null
+++ b/317/CH16/EX16.3/example3.txt
@@ -0,0 +1,5 @@
+Voltage gain for an input frequency of 100 Hertz is approximately 10000
+Voltage gain for an input frequency of 1000 Hertz is approximately 1000
+Voltage gain for an input frequency of 1000 Hertz is approximately 100
+Voltage gain for an input frequency of 10000Hertz is approximately 10
+Voltage gain for an input frequency of 100000 Hertz is approximately 1 \ No newline at end of file
diff --git a/317/CH16/EX16.4/example4.sce b/317/CH16/EX16.4/example4.sce
new file mode 100755
index 000000000..7804bf526
--- /dev/null
+++ b/317/CH16/EX16.4/example4.sce
@@ -0,0 +1,30 @@
+// calculate decibel power gain
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 16-4, page 571
+
+clear; clc; close;
+
+// Given data
+Ap1=1;// power gain
+Ap2=2;// power gain
+Ap3=4;// power gain
+Ap4=8;// power gain
+
+// Calculations
+Apdb1=10*log10(Ap1)// decibel power gain
+Apdb2=10*log10(Ap2)// decibel power gain
+Apdb3=10*log10(Ap3)// decibel power gain
+Apdb4=10*log10(Ap4)// decibel power gain
+disp("dB",Apdb1,"decibel power gain 1=")
+disp("dB",Apdb2,"decibel power gain 2=")
+disp("dB",Apdb3,"decibel power gain 3=")
+disp("dB",Apdb4,"decibel power gain 4=")
+
+// Result
+// decibal power gain for a voltage gain of 1 is 0 dB
+// decibal power gain for a voltage gain of 2 is 3 dB
+// decibal power gain for a voltage gain of 4 is 6 dB
+// decibal power gain for a voltage gain of 8 is 9 dB \ No newline at end of file
diff --git a/317/CH16/EX16.4/example4.txt b/317/CH16/EX16.4/example4.txt
new file mode 100755
index 000000000..7bf0148a3
--- /dev/null
+++ b/317/CH16/EX16.4/example4.txt
@@ -0,0 +1,4 @@
+decibal power gain for a voltage gain of 1 is 0 dB
+decibal power gain for a voltage gain of 2 is 3 dB
+decibal power gain for a voltage gain of 4 is 6 dB
+decibal power gain for a voltage gain of 8 is 9 dB \ No newline at end of file
diff --git a/317/CH16/EX16.5/example5.sce b/317/CH16/EX16.5/example5.sce
new file mode 100755
index 000000000..f731832d4
--- /dev/null
+++ b/317/CH16/EX16.5/example5.sce
@@ -0,0 +1,31 @@
+// calculate decibel power gain
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 16-5, page 571
+
+clear; clc; close;
+
+// Given data
+Ap1=1;// power gain
+Ap2=0.5;// power gain
+Ap3=0.25;// power gain
+Ap4=0.125;// power gain
+
+// Calculations
+Apdb1=10*log10(Ap1)// decibel power gain
+Apdb2=10*log10(Ap2)// decibel power gain
+Apdb3=10*log10(Ap3)// decibel power gain
+Apdb4=10*log10(Ap4)// decibel power gain
+disp("dB",Apdb1,"decibel power gain 1=")
+disp("dB",Apdb2,"decibel power gain 2=")
+disp("dB",Apdb3,"decibel power gain 3=")
+disp("dB",Apdb4,"decibel power gain 4=")
+
+
+// Result
+// decibal power gain for a voltage gain of 1 is 0 dB
+// decibal power gain for a voltage gain of 0.5 is -3 dB
+// decibal power gain for a voltage gain of 0.25 is -6 dB
+// decibal power gain for a voltage gain of 0.125 is -9 dB \ No newline at end of file
diff --git a/317/CH16/EX16.5/example5.txt b/317/CH16/EX16.5/example5.txt
new file mode 100755
index 000000000..0a5ada0d4
--- /dev/null
+++ b/317/CH16/EX16.5/example5.txt
@@ -0,0 +1,4 @@
+decibal power gain for a voltage gain of 1 is 0 dB
+decibal power gain for a voltage gain of 0.5 is -3 dB
+decibal power gain for a voltage gain of 0.25 is -6 dB
+decibal power gain for a voltage gain of 0.125 is -9 dB \ No newline at end of file
diff --git a/317/CH16/EX16.6/example6.sce b/317/CH16/EX16.6/example6.sce
new file mode 100755
index 000000000..9845b1ad8
--- /dev/null
+++ b/317/CH16/EX16.6/example6.sce
@@ -0,0 +1,31 @@
+// calculate decibel power gain
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 16-6, page 572
+
+clear; clc; close;
+
+// Given data
+Ap1=1;// power gain
+Ap2=10;// power gain
+Ap3=100;// power gain
+Ap4=1000;// power gain
+
+// Calculations
+Apdb1=10*log10(Ap1)// decibel power gain
+Apdb2=10*log10(Ap2)// decibel power gain
+Apdb3=10*log10(Ap3)// decibel power gain
+Apdb4=10*log10(Ap4)// decibel power gain
+disp("dB",Apdb1,"decibel power gain 1=")
+disp("dB",Apdb2,"decibel power gain 2=")
+disp("dB",Apdb3,"decibel power gain 3=")
+disp("dB",Apdb4,"decibel power gain 4=")
+
+
+// Result
+// decibal power gain for a voltage gain of 1 is 0 dB
+// decibal power gain for a voltage gain of 10 is 10 dB
+// decibal power gain for a voltage gain of 100 is 20 dB
+// decibal power gain for a voltage gain of 1000 is 30 dB \ No newline at end of file
diff --git a/317/CH16/EX16.6/example6.txt b/317/CH16/EX16.6/example6.txt
new file mode 100755
index 000000000..510ec466d
--- /dev/null
+++ b/317/CH16/EX16.6/example6.txt
@@ -0,0 +1,4 @@
+decibal power gain for a voltage gain of 1 is 0 dB
+decibal power gain for a voltage gain of 10 is 10 dB
+decibal power gain for a voltage gain of 100 is 20 dB
+decibal power gain for a voltage gain of 1000 is 30 dB \ No newline at end of file
diff --git a/317/CH16/EX16.7/example7.sce b/317/CH16/EX16.7/example7.sce
new file mode 100755
index 000000000..4712091ef
--- /dev/null
+++ b/317/CH16/EX16.7/example7.sce
@@ -0,0 +1,30 @@
+// calculate decibel power gain
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 16-7, page 572
+
+clear; clc; close;
+
+// Given data
+Ap1=1;// power gain
+Ap2=0.1;// power gain
+Ap3=0.01;// power gain
+Ap4=0.001;// power gain
+
+// Calculations
+Apdb1=10*log10(Ap1)// decibel power gain
+Apdb2=10*log10(Ap2)// decibel power gain
+Apdb3=10*log10(Ap3)// decibel power gain
+Apdb4=10*log10(Ap4)// decibel power gain
+disp("dB",Apdb1,"decibal power gain 1=")
+disp("dB",Apdb2,"decibal power gain 2=")
+disp("dB",Apdb3,"decibal power gain 3=")
+disp("dB",Apdb4,"decibal power gain 4=")
+
+// Result
+// decibal power gain for a voltage gain of 1 is 0 dB
+// decibal power gain for a voltage gain of 0.1 is -10 dB
+// decibal power gain for a voltage gain of 0.01 is -20 dB
+// decibal power gain for a voltage gain of 0.001 is -30 dB \ No newline at end of file
diff --git a/317/CH16/EX16.7/example7.txt b/317/CH16/EX16.7/example7.txt
new file mode 100755
index 000000000..0896efb89
--- /dev/null
+++ b/317/CH16/EX16.7/example7.txt
@@ -0,0 +1,4 @@
+decibal power gain for a voltage gain of 1 is 0 dB
+decibal power gain for a voltage gain of 0.1 is -10 dB
+decibal power gain for a voltage gain of 0.01 is -20 dB
+decibal power gain for a voltage gain of 0.001 is -30 dB \ No newline at end of file
diff --git a/317/CH17/EX17.1/example1.sce b/317/CH17/EX17.1/example1.sce
new file mode 100755
index 000000000..f49f44e9b
--- /dev/null
+++ b/317/CH17/EX17.1/example1.sce
@@ -0,0 +1,28 @@
+// find ideal currents and voltages
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 17-1, page 625
+
+clear; clc; close;
+
+// Given data
+Vee=15;// in volts from the figure
+Vcc=15;// in volts from the figure
+Re=7.5*10^3;// emitter resistance in ohms
+Rc=5*10^3;// collector resistance in ohms
+
+// Calculations
+It=Vee/Re;// tail current in amperes
+Ie=It/2;// emitter current in amperes
+Ic=Ie;// collector current is equal to emitter current
+Vc=Vcc-(Ic*Rc);// quiescent voltage in volts
+disp("Amperes",It,"tail current=")
+disp("Amperes",Ie,"emitter current=")
+disp("Volts",Vc,"quiescent collector voltage=")
+
+// Result
+// Tail current is 2 mAmperes
+// Emitter current is 1 mAmperes
+// Collector has a quiescent voltage of 10 Volts \ No newline at end of file
diff --git a/317/CH17/EX17.1/example1.txt b/317/CH17/EX17.1/example1.txt
new file mode 100755
index 000000000..ca919630d
--- /dev/null
+++ b/317/CH17/EX17.1/example1.txt
@@ -0,0 +1,3 @@
+Tail current is 2 mAmperes
+Emitter current is 1 mAmperes
+Collector has a quiescent voltage of 10 Volts \ No newline at end of file
diff --git a/317/CH17/EX17.10/example10.sce b/317/CH17/EX17.10/example10.sce
new file mode 100755
index 000000000..cd811e59f
--- /dev/null
+++ b/317/CH17/EX17.10/example10.sce
@@ -0,0 +1,21 @@
+// calculate common mode voltage gain and output voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 17-10, page 642
+
+clear; clc; close;
+
+// Given data
+Rc=10^6;// collector resistance in ohms
+Re=10^6;// emitter resistance in ohms
+Vin=10^-3;// input voltage in volts
+
+// Calculations
+Avcm=Rc/(2*Re);// swamped voltage gain
+Vout=Vin*Avcm;// output voltage in volts
+disp("Volts",Vout,"output voltage=")
+
+// Result
+// Output voltage is 0.5 mVolts \ No newline at end of file
diff --git a/317/CH17/EX17.10/example10.txt b/317/CH17/EX17.10/example10.txt
new file mode 100755
index 000000000..fb5321786
--- /dev/null
+++ b/317/CH17/EX17.10/example10.txt
@@ -0,0 +1 @@
+Output voltage is 0.5 mVolts \ No newline at end of file
diff --git a/317/CH17/EX17.11/example11.txt b/317/CH17/EX17.11/example11.txt
new file mode 100755
index 000000000..fe26525aa
--- /dev/null
+++ b/317/CH17/EX17.11/example11.txt
@@ -0,0 +1 @@
+Output voltage is 150.5 mVolts \ No newline at end of file
diff --git a/317/CH17/EX17.12/example12.sce b/317/CH17/EX17.12/example12.sce
new file mode 100755
index 000000000..5e238eacd
--- /dev/null
+++ b/317/CH17/EX17.12/example12.sce
@@ -0,0 +1,24 @@
+// calculate output voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 17-12, page 644
+
+clear; clc; close;
+
+// Given data
+Av=200000;// voltage gain
+CMRRdb=90;// common mode rejection ratio in decibals
+Vin=10^-6;// input voltage in volts
+
+// Calculations
+CMRR=10^(CMRRdb/20);// common mode rejection ratio
+Avcm=Av/CMRR;// swamped voltage gain
+Vout1=Vin*Av;// desired output voltage in volts
+Vout2=Vin*Avcm;// common mode output voltage in volts
+Vout=Vout1+Vout2;// total output voltage in volts
+disp("Volts",Vout,"output voltage=")
+
+// Result
+// Output voltage is 6.32 microVolts \ No newline at end of file
diff --git a/317/CH17/EX17.12/example12.txt b/317/CH17/EX17.12/example12.txt
new file mode 100755
index 000000000..c78716fb6
--- /dev/null
+++ b/317/CH17/EX17.12/example12.txt
@@ -0,0 +1 @@
+Output voltage is 6.32 microVolts \ No newline at end of file
diff --git a/317/CH17/EX17.13/example13.sce b/317/CH17/EX17.13/example13.sce
new file mode 100755
index 000000000..fdbe6acda
--- /dev/null
+++ b/317/CH17/EX17.13/example13.sce
@@ -0,0 +1,29 @@
+// calculate load voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 17-13, page 651
+
+clear; clc; close;
+
+// Given data
+Vee=15;// in volts from the figure
+Vcc=15;// in volts from the figure
+Re=7.5*10^3;// emitter resistance in ohms
+Rc=7.5*10^3;// collector resistance in ohms
+Rl=15*10^3;// load resistance in ohms
+Vin=10*10^-3;// input voltage in volts
+
+// Calculations
+It=Vee/Re;// tail current in amperes
+Ie=It/2;// emitter current in amperes
+re=(25*10^-3)/Ie;// ac emitter resistance in ohms
+Av=Rc/re;// unloaded voltage gain
+Vout=Av*Vin;// unloaded output voltage in volts
+Rth=2*Rc;// thevenin resistance in ohms
+Vl=Vout/2;// load voltage in volts as Rl=Rth
+disp("Volts",Vl,"load voltage=")
+
+// Result
+// Load voltage is 1.5 Volts \ No newline at end of file
diff --git a/317/CH17/EX17.13/example13.txt b/317/CH17/EX17.13/example13.txt
new file mode 100755
index 000000000..4e9b18b36
--- /dev/null
+++ b/317/CH17/EX17.13/example13.txt
@@ -0,0 +1 @@
+Load voltage is 1.5 Volts \ No newline at end of file
diff --git a/317/CH17/EX17.2/example2.sce b/317/CH17/EX17.2/example2.sce
new file mode 100755
index 000000000..50080eb1b
--- /dev/null
+++ b/317/CH17/EX17.2/example2.sce
@@ -0,0 +1,31 @@
+// calculate currents and voltages using second approximation
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 17-2, page 626
+
+clear; clc; close;
+
+// Given data
+Vee=15;// in volts from the figure
+Vcc=15;// in volts from the figure
+Re=7.5*10^3;// emitter resistance in ohms
+Rc=5*10^3;// collector resistance in ohms
+Vin=10^-3;// in volts
+B=300;// given
+
+// Calculations
+It=(Vee-0.7)/Re;// tail current in amperes using second approximation
+Ie=It/2;// emitter current in amperes
+Ic=Ie;// collector current is equal to emitter current
+Vc=Vcc-(Ic*Rc);// quiescent voltage in volts
+disp("Amperes",It,"tail current=")
+disp("Amperes",Ie,"emitter current=")
+disp("Volts",Vc,"quiescent collector voltage=")
+
+// Result
+// Tail current is 1.91 mAmperes
+// Emitter current is 0.955 mAmperes
+// Collector has a quiescent voltage of 10.2 Volts
+ \ No newline at end of file
diff --git a/317/CH17/EX17.2/example2.txt b/317/CH17/EX17.2/example2.txt
new file mode 100755
index 000000000..961f83f3c
--- /dev/null
+++ b/317/CH17/EX17.2/example2.txt
@@ -0,0 +1,4 @@
+Tail current is 1.91 mAmperes
+Emitter current is 0.955 mAmperes
+Collector has a quiescent voltage of 10.2 Volts
+ \ No newline at end of file
diff --git a/317/CH17/EX17.3/example3.sce b/317/CH17/EX17.3/example3.sce
new file mode 100755
index 000000000..0e8ed2479
--- /dev/null
+++ b/317/CH17/EX17.3/example3.sce
@@ -0,0 +1,32 @@
+// find currents and voltages
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 17-3, page 626
+
+clear; clc; close;
+
+// Given data
+Vee=12;// in volts from the figure
+Vcc=12;// in volts from the figure
+Re=5*10^3;// emitter resistance in ohms
+Rcright=3*10^3;// collector resistance in ohms
+Rcleft=0;// collector resistance in ohms
+
+// Calculations
+It=Vee/Re;// tail current in amperes
+Ie=It/2;// emitter current in amperes
+Ic=Ie;// collector current is equal to emitter current
+Vcright=Vcc-(Ic*Rcright);// quiescent voltage of right collector in volts
+Vcleft=Vcc-(Ic*Rcleft);// quiescent voltage of left collector in volts
+disp("Amperes",It,"tail current=")
+disp("Amperes",Ie,"emitter current=")
+disp("Volts",Vcright,"right quiescent collector voltage=")
+disp("Volts",Vcleft,"left quiescent collector voltage=")
+
+// Result
+// Tail current is 2.4 mAmperes
+// Emitter current is 1.2 mAmperes
+// Right hand side collector has a quiescent voltage of 8.4 Volts
+// Left hand side collector has a quiescent voltage of 12 Volts \ No newline at end of file
diff --git a/317/CH17/EX17.3/example3.txt b/317/CH17/EX17.3/example3.txt
new file mode 100755
index 000000000..71a06f6cd
--- /dev/null
+++ b/317/CH17/EX17.3/example3.txt
@@ -0,0 +1,4 @@
+Tail current is 2.4 mAmperes
+Emitter current is 1.2 mAmperes
+Right hand side collector has a quiescent voltage of 8.4 Volts
+Left hand side collector has a quiescent voltage of 12 Volts \ No newline at end of file
diff --git a/317/CH17/EX17.4/example4.sce b/317/CH17/EX17.4/example4.sce
new file mode 100755
index 000000000..61978876d
--- /dev/null
+++ b/317/CH17/EX17.4/example4.sce
@@ -0,0 +1,30 @@
+// calculate ac output voltage and input impedance of the diff amp
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 17-4, page 631
+
+clear; clc; close;
+
+// Given data
+Vee=15;// in volts from the figure
+Vcc=15;// in volts from the figure
+Re=7.5*10^3;// emitter resistance in ohms
+Rc=5*10^3;// collector resistance in ohms
+Vin=10^-3;// in volts
+B=300;// given
+
+// Calculations
+It=Vee/Re;// tail current in amperes
+Ie=It/2;// emitter current in amperes
+re=25*10^-3/Ie;// ac emitter resistance in ohms
+Av=Rc/re;// voltage gain
+Vout=Av*Vin;// ac output voltage in volts
+zin=2*B*re;// input impedance of either base in ohms
+disp("Volts",Vout,"output voltage=")
+disp("ohms",zin,"input impedance=")
+
+// Result
+// ac output voltage is 200 mVolts
+// Input impedance of the differential amplifier is 15 Kohms \ No newline at end of file
diff --git a/317/CH17/EX17.4/example4.txt b/317/CH17/EX17.4/example4.txt
new file mode 100755
index 000000000..a666c76f0
--- /dev/null
+++ b/317/CH17/EX17.4/example4.txt
@@ -0,0 +1,2 @@
+Ac output voltage is 200 mVolts
+Input impedance of the differential amplifier is 15 Kohms \ No newline at end of file
diff --git a/317/CH17/EX17.5/example5.sce b/317/CH17/EX17.5/example5.sce
new file mode 100755
index 000000000..7ffe2735a
--- /dev/null
+++ b/317/CH17/EX17.5/example5.sce
@@ -0,0 +1,30 @@
+// calculate ac output voltage and input impedance of the diff amp using second approximation
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 17-5, page 632
+
+clear; clc; close;
+
+// Given data
+Vee=15;// in volts from the figure
+Vcc=15;// in volts from the figure
+Re=7.5*10^3;// emitter resistance in ohms
+Rc=5*10^3;// collector resistance in ohms
+Vin=10^-3;// in volts
+B=300;// given
+
+// Calculations
+It=(Vee-0.7)/Re;// tail current in amperes using second approximation
+Ie=It/2;// emitter current in amperes
+re=25*10^-3/Ie;// ac emitter resistance in ohms
+Av=Rc/re;// voltage gain
+Vout=Av*Vin;// ac output voltage in volts
+zin=2*B*re;// input impedance of either base in ohms
+disp("Volts",Vout,"output voltage=")
+disp("ohms",zin,"input impedance=")
+
+// Result
+// ac output voltage is 191 mVolts
+// Input impedance of the differential amplifier is 15.7 Kohms \ No newline at end of file
diff --git a/317/CH17/EX17.5/example5.txt b/317/CH17/EX17.5/example5.txt
new file mode 100755
index 000000000..925777565
--- /dev/null
+++ b/317/CH17/EX17.5/example5.txt
@@ -0,0 +1,2 @@
+Ac output voltage is 191 mVolts
+Input impedance of the differential amplifier is 15.7 Kohms \ No newline at end of file
diff --git a/317/CH17/EX17.8/example8.sce b/317/CH17/EX17.8/example8.sce
new file mode 100755
index 000000000..1ae829ef8
--- /dev/null
+++ b/317/CH17/EX17.8/example8.sce
@@ -0,0 +1,26 @@
+// calculate error output voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 17-8, page 639
+
+clear; clc; close;
+
+// Given data
+Av=200;// voltage gain
+Inbias=3*10^-6;// input bias current in amperes
+Inoff=0.5*10^-6;// input offset current in amperes
+Vinoff=10^-3;// input offset voltage in volts
+Rb1=10^3;// in ohms
+Rb2=0;// in ohms
+
+// Calculations
+V1err=(Rb1-Rb2)*Inbias;// unwanted dc error input in volts
+V2err=(Rb1+Rb2)*Inoff/2;// unwanted dc error input in volts
+V3err=Vinoff;// unwanted dc error input in volts
+Verror=Av*(V1err+V2err+V3err);// output error voltage in volts
+disp("Volts",Verror,"output error voltage=")
+
+// Result
+// Output error voltage is 850 mVolts \ No newline at end of file
diff --git a/317/CH17/EX17.8/example8.txt b/317/CH17/EX17.8/example8.txt
new file mode 100755
index 000000000..05e2c0a46
--- /dev/null
+++ b/317/CH17/EX17.8/example8.txt
@@ -0,0 +1 @@
+Output error voltage is 850 mVolts \ No newline at end of file
diff --git a/317/CH17/EX17.9/example9.sce b/317/CH17/EX17.9/example9.sce
new file mode 100755
index 000000000..ef9934538
--- /dev/null
+++ b/317/CH17/EX17.9/example9.sce
@@ -0,0 +1,26 @@
+// calculate error output voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 17-9, page 640
+
+clear; clc; close;
+
+// Given data
+Av=300;// voltage gain
+Inbias=80*10^-9;// input bias current in amperes
+Inoff=20*10^-9;// input offset current in amperes
+Vinoff=5*10^-3;// input offset voltage in volts
+Rb1=10^4;// in ohms
+Rb2=10^4;// in ohms
+
+// Calculations
+V1err=(Rb1-Rb2)*Inbias;// unwanted dc error input in volts
+V2err=(Rb1+Rb2)*Inoff/2;// unwanted dc error input in volts
+V3err=Vinoff;// unwanted dc error input in volts
+Verror=Av*(V1err+V2err+V3err);// output error voltage in volts
+disp("Volts",Verror,"output error voltage=")
+
+// Result
+// Output error voltage is 1.56 Volts \ No newline at end of file
diff --git a/317/CH17/EX17.9/example9.txt b/317/CH17/EX17.9/example9.txt
new file mode 100755
index 000000000..4e879f0d0
--- /dev/null
+++ b/317/CH17/EX17.9/example9.txt
@@ -0,0 +1 @@
+Output error voltage is 1.56 Volts \ No newline at end of file
diff --git a/317/CH18/EX18.10/example10.sce b/317/CH18/EX18.10/example10.sce
new file mode 100755
index 000000000..89b907f38
--- /dev/null
+++ b/317/CH18/EX18.10/example10.sce
@@ -0,0 +1,29 @@
+// find closed-loop voltage gain, bandwidth and output voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 18-10, page 683
+
+clear; clc; close;
+
+// Given data
+R1=10^2;// in ohms from the given figure
+Rf=3.9*10^3;// in ohms from the given figure
+Vin=50*10^-3;// input voltage in mVpp
+f=250*10^3;// frequency in hertz
+funity=10^6;// unity gain frequency in hertz
+
+// Calculations
+Avcl=(Rf/R1)+1;// cloased loop voltage gain
+f2cl=funity/Avcl;// closed-loop bandwidth
+// Avcl at 250 Khertz is equilaent to a voltage gain of 4
+Vout=4*Vin;// output voltage at 250*10^3 Hertz
+disp(Avcl,"closed loop voltage gain=")
+disp("Hertz",f2cl,"closed loop bandwidth=")
+disp("Volts",Vout,"output voltage=")
+
+// Result
+// Closed loop voltage gain is 40
+// Closed loop bandwidth is 25 Khertz
+// Output voltage is 200 mVpp at 250 KHertz \ No newline at end of file
diff --git a/317/CH18/EX18.10/example10.txt b/317/CH18/EX18.10/example10.txt
new file mode 100755
index 000000000..b5e493cd8
--- /dev/null
+++ b/317/CH18/EX18.10/example10.txt
@@ -0,0 +1,3 @@
+Closed loop voltage gain is 40
+Closed loop bandwidth is 25 Khertz
+Output voltage is 200 mVpp at 250 KHertz \ No newline at end of file
diff --git a/317/CH18/EX18.11/example11.sce b/317/CH18/EX18.11/example11.sce
new file mode 100755
index 000000000..42a65c9a9
--- /dev/null
+++ b/317/CH18/EX18.11/example11.sce
@@ -0,0 +1,28 @@
+// find output error voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 18-11, page 684
+
+clear; clc; close;
+
+// Given data
+R1=10^2;// in ohms from the given figure
+Rf=3.9*10^3;// in ohms from the given figure
+Inbias=500*10^-9;// input bias current in amperes
+Inoff=200*10^-9;// input offset current in amperes
+Vinoff=6*10^-3;// input offset voltage in volts
+Rb1=0;// in ohms
+
+// Calculations
+Avcl=(Rf/R1)+1;// cloased loop voltage gain
+Rb2=R1*Rf/(R1+Rf);// in ohms
+V1err=(Rb1-Rb2)*Inbias;// unwanted dc error input in volts
+V2err=(Rb1+Rb2)*Inoff/2;// unwanted dc error input in volts
+V3err=Vinoff;// unwanted dc error input in volts
+Verror=Avcl*(V1err+V2err+V3err);// output error voltage in volts;
+disp("Volts",Verror,"output error voltage=")
+
+// Result
+// Output error voltage is 238 mVolts \ No newline at end of file
diff --git a/317/CH18/EX18.11/example11.txt b/317/CH18/EX18.11/example11.txt
new file mode 100755
index 000000000..916adbd54
--- /dev/null
+++ b/317/CH18/EX18.11/example11.txt
@@ -0,0 +1 @@
+Output error voltage is 238 mVolts \ No newline at end of file
diff --git a/317/CH18/EX18.12/example12.sce b/317/CH18/EX18.12/example12.sce
new file mode 100755
index 000000000..f9e3bc585
--- /dev/null
+++ b/317/CH18/EX18.12/example12.sce
@@ -0,0 +1,27 @@
+// find ac output voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 18-12, page 687
+
+clear; clc; close;
+
+// Given data
+Rf=100*10^3;// in ohms from the given figure
+R1=20*10^3;// in ohms from the given figure
+R2=10*10^3;// in ohms from the given figure
+R3=50*10^3;// in ohms from the given figure
+V1=100*10^-3;// voltage in Vpp from the given figure
+V2=200*10^-3;// voltage in Vpp from the given figure
+V3=300*10^-3;// voltage in Vpp from the given figure
+
+// Calculations
+Av1cl=-Rf/R1;// cloased loop voltage gain
+Av2cl=-Rf/R2;// cloased loop voltage gain
+Av3cl=-Rf/R3;// cloased loop voltage gain
+Vout=(Av1cl*V1)+(Av2cl*V2)+(Av3cl*V3);// output voltage in Vpp
+disp("Vpp",Vout,"output voltage=")
+
+// Result
+// Output voltage is -3.1 Vpp \ No newline at end of file
diff --git a/317/CH18/EX18.12/example12.txt b/317/CH18/EX18.12/example12.txt
new file mode 100755
index 000000000..aa748a86f
--- /dev/null
+++ b/317/CH18/EX18.12/example12.txt
@@ -0,0 +1 @@
+Output voltage is -3.1 Vpp \ No newline at end of file
diff --git a/317/CH18/EX18.13/example13.sce b/317/CH18/EX18.13/example13.sce
new file mode 100755
index 000000000..5b7762aa3
--- /dev/null
+++ b/317/CH18/EX18.13/example13.sce
@@ -0,0 +1,25 @@
+// find output voltage and bandwidth
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 18-13, page 688
+
+clear; clc; close;
+
+// Given data
+Vin=10*10^-3;// ac input source in Vpp
+R=100*10^3;// internal resistance in ohms
+Rl=1;// load resistance in ohms
+funity=10^6;// unity gain frequency in hertz
+
+// Calculations
+Avcl=1;// closed loop voltage gain of a voltage follower
+Vout=Avcl*Vin;// output voltage in volts
+f2cl=funity/Avcl;// closed-loop bandwidth
+disp("Hertz",f2cl,"closed loop bandwidth=")
+disp(Vout,"output voltage=")
+
+// Result
+// Output voltage is 10 mVpp
+// bandwidth is 1 MHertz \ No newline at end of file
diff --git a/317/CH18/EX18.13/example13.txt b/317/CH18/EX18.13/example13.txt
new file mode 100755
index 000000000..7dcda67ef
--- /dev/null
+++ b/317/CH18/EX18.13/example13.txt
@@ -0,0 +1,2 @@
+Output voltage is 10 mVpp
+Bandwidth is 1 MHertz \ No newline at end of file
diff --git a/317/CH18/EX18.4/example4.sce b/317/CH18/EX18.4/example4.sce
new file mode 100755
index 000000000..25723e610
--- /dev/null
+++ b/317/CH18/EX18.4/example4.sce
@@ -0,0 +1,19 @@
+// find slew rate of op-amp
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 18-4, page 673
+
+clear; clc; close;
+
+// Given data
+dV=0.25;// voltage change in volts
+dT=0.1*10^-6;// time duration in which the voltage change took place in seconds
+
+// Calculations
+Sr=dV/dT;// slew rate in volts/second
+disp(Sr,"Slew rate=")
+
+// Result
+// slew rate of the op-amp is 2.5 Megavolts/second \ No newline at end of file
diff --git a/317/CH18/EX18.4/example4.txt b/317/CH18/EX18.4/example4.txt
new file mode 100755
index 000000000..d20cde03a
--- /dev/null
+++ b/317/CH18/EX18.4/example4.txt
@@ -0,0 +1 @@
+Slew rate of the op-amp is 2.5 Megavolts/second \ No newline at end of file
diff --git a/317/CH18/EX18.5/example5.sce b/317/CH18/EX18.5/example5.sce
new file mode 100755
index 000000000..5ab9a42ef
--- /dev/null
+++ b/317/CH18/EX18.5/example5.sce
@@ -0,0 +1,19 @@
+// find power band width
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 18-5, page 673
+
+clear; clc; close;
+
+// Given data
+Sr=15*10^6;// slew rate in volts/second
+Vp=10;// peak voltage in volts
+
+// Calculations
+fmax=Sr/(2*%pi*Vp);// power band width in hertz
+disp("Hertz ",fmax,"power band width=")
+
+// Result
+// Power bandwidth is 239 kHertz \ No newline at end of file
diff --git a/317/CH18/EX18.5/example5.txt b/317/CH18/EX18.5/example5.txt
new file mode 100755
index 000000000..a6a2cd446
--- /dev/null
+++ b/317/CH18/EX18.5/example5.txt
@@ -0,0 +1 @@
+ower bandwidth is 239 kHertz \ No newline at end of file
diff --git a/317/CH18/EX18.6/example6.sce b/317/CH18/EX18.6/example6.sce
new file mode 100755
index 000000000..c85dd0415
--- /dev/null
+++ b/317/CH18/EX18.6/example6.sce
@@ -0,0 +1,27 @@
+// find power band width
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 18-6, page 673
+
+clear; clc; close;
+
+// Given data
+Vp=8;// peak voltage in volts
+Sr1=0.5*10^6;// slew rate in volts/second
+Sr2=5*10^6;// slew rate in volts/second
+Sr3=50*10^6;// slew rate in volts/second
+
+// Calculations
+fmax1=Sr1/(2*%pi*Vp);// power band width in hertz
+fmax2=Sr2/(2*%pi*Vp);// power band width in hertz
+fmax3=Sr3/(2*%pi*Vp);// power band width in hertz
+disp("Hertz ",fmax1,"power band width 1=")
+disp("Hertz ",fmax2,"power band width 2=")
+disp("Hertz ",fmax3,"power band width 3=")
+
+// Result
+// Power bandwidth when slew rate is 0.5 Volts/micro seconds is 10 kHertz
+// Power bandwidth when slew rate is 5 Volts/micro seconds is 100 kHertz
+// Power bandwidth when slew rate is 50 Volts/micro seconds is 1 MHertz \ No newline at end of file
diff --git a/317/CH18/EX18.6/example6.txt b/317/CH18/EX18.6/example6.txt
new file mode 100755
index 000000000..2b3fd8492
--- /dev/null
+++ b/317/CH18/EX18.6/example6.txt
@@ -0,0 +1,3 @@
+Power bandwidth when slew rate is 0.5 Volts/micro seconds is 10 kHertz
+Power bandwidth when slew rate is 5 Volts/micro seconds is 100 kHertz
+Power bandwidth when slew rate is 50 Volts/micro seconds is 1 MHertz \ No newline at end of file
diff --git a/317/CH18/EX18.7/example7.sce b/317/CH18/EX18.7/example7.sce
new file mode 100755
index 000000000..ec3379dd4
--- /dev/null
+++ b/317/CH18/EX18.7/example7.sce
@@ -0,0 +1,32 @@
+// find closed-loop voltage gain, bandwidth and output voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 18-7, page 678
+
+clear; clc; close;
+
+// Given data
+R1=1.5*10^3;// in ohms from the given figure
+Rf=75*10^3;// in ohms from the given figure
+Vin=10^-2;// input voltage in mVpp
+f1=10^3;// frequency in hertz
+f2=10^6;// frequency in hertz
+funity=10^6;// unity gain frequency in hertz
+
+// Calculations
+Avcl=-Rf/R1;// closed loop voltage gain
+f2cl=funity/-Avcl;// closed-loop bandwidth
+Vout1=Avcl*Vin;// output voltage at 10^3 Hertz
+Vout2=-Vin;// output voltage at 10^6 Hertz as it is unity gain frequency in hertz
+disp(Avcl,"closed loop voltage gain=")
+disp("Hertz",f2cl,"closed loop bandwidth=")
+disp("Volts",Vout1,"output voltage 1=")
+disp("Volts",Vout2,"output voltage 2=")
+
+// Result
+// Closed loop voltage gain is -50
+// Closed loop bandwidth is 20 Khertz
+// Output voltage is -500 mVpp at 1 KHertz
+// Output voltage is -10 mVpp at 1000 KHertz \ No newline at end of file
diff --git a/317/CH18/EX18.7/example7.txt b/317/CH18/EX18.7/example7.txt
new file mode 100755
index 000000000..151a870b8
--- /dev/null
+++ b/317/CH18/EX18.7/example7.txt
@@ -0,0 +1,4 @@
+Closed loop voltage gain is -50
+Closed loop bandwidth is 20 Khertz
+Output voltage is -500 mVpp at 1 KHertz
+Output voltage is -10 mVpp at 1000 KHertz \ No newline at end of file
diff --git a/317/CH18/EX18.8/example8.sce b/317/CH18/EX18.8/example8.sce
new file mode 100755
index 000000000..19be850ad
--- /dev/null
+++ b/317/CH18/EX18.8/example8.sce
@@ -0,0 +1,30 @@
+// find output voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 18-8, page 679
+
+clear; clc; close;
+
+// Given data
+R1=1.5*10^3;// in ohms from the given figure
+Rf=75*10^3;// in ohms from the given figure
+Vin=0;// input voltage in mVpp
+Inbias=80*10^-9;// input bias current in amperes
+Inoff=20*10^-9;// input offset current in amperes
+Vinoff=2*10^-3;// input offset voltage in volts
+Rb1=0;// in ohms
+
+// Calculations
+Rb2=R1*Rf/(R1+Rf);// in ohms
+V1err=(Rb1-Rb2)*Inbias;// unwanted dc error input in volts
+V2err=(Rb1+Rb2)*Inoff/2;// unwanted dc error input in volts
+V3err=Vinoff;// unwanted dc error input in volts
+Avcl=-Rf/R1;// cloased loop voltage gain
+Verror=Avcl*(V1err+V2err+V3err);// output error voltage in volts;
+Vout=Verror;// output voltage in volts
+disp("Volts",Verror,"output error voltage=")
+
+// Result
+// Output voltage will be (+ or -) 94.9 mVolts \ No newline at end of file
diff --git a/317/CH18/EX18.8/example8.txt b/317/CH18/EX18.8/example8.txt
new file mode 100755
index 000000000..893785988
--- /dev/null
+++ b/317/CH18/EX18.8/example8.txt
@@ -0,0 +1 @@
+Output voltage will be (+ or -) 94.9 mVolts \ No newline at end of file
diff --git a/317/CH18/EX18.9/example9.sce b/317/CH18/EX18.9/example9.sce
new file mode 100755
index 000000000..fc277f144
--- /dev/null
+++ b/317/CH18/EX18.9/example9.sce
@@ -0,0 +1,30 @@
+// find output voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 18-9, page 679
+
+clear; clc; close;
+
+// Given data
+R1=1.5*10^3;// in ohms from the given figure
+Rf=75*10^3;// in ohms from the given figure
+Vin=0;// input voltage in mVpp
+Inbias=500*10^-9;// input bias current in amperes
+Inoff=200*10^-9;// input offset current in amperes
+Vinoff=6*10^-3;// input offset voltage in volts
+Rb1=0;// in ohms
+
+// Calculations
+Rb2=R1*Rf/(R1+Rf);// in ohms
+V1err=(Rb1-Rb2)*Inbias;// unwanted dc error input in volts
+V2err=(Rb1+Rb2)*Inoff/2;// unwanted dc error input in volts
+V3err=Vinoff;// unwanted dc error input in volts
+Avcl=-Rf/R1;// cloased loop voltage gain
+Verror=Avcl*(V1err+V2err+V3err);// output error voltage in volts;
+Vout=Verror;// output voltage in volts
+disp("Volts",Verror,"output error voltage=")
+
+// Result
+// Output voltage will be (+ or -) 270.5 mVolts \ No newline at end of file
diff --git a/317/CH18/EX18.9/example9.txt b/317/CH18/EX18.9/example9.txt
new file mode 100755
index 000000000..a1b33e972
--- /dev/null
+++ b/317/CH18/EX18.9/example9.txt
@@ -0,0 +1 @@
+Output voltage will be (+ or -) 270.5 mVolts \ No newline at end of file
diff --git a/317/CH19/EX19.1/example1.sce b/317/CH19/EX19.1/example1.sce
new file mode 100755
index 000000000..f2e72cb2c
--- /dev/null
+++ b/317/CH19/EX19.1/example1.sce
@@ -0,0 +1,29 @@
+// find feedback fraction,ideal and exact closed-loop voltage gain,percent error
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 19-1, page 709
+
+clear; clc; close;
+
+// Given data
+R1=10^2;// in ohms from the given figure
+Rf=3.9*10^3;// in ohms from the given figure
+Avol=10^5;// Avol of 741C
+
+// Calculations
+B=R1/(R1+Rf);// feedback fraction
+Avideal=1/B;// ideal closed loop voltage gain
+%error=100/(1+(Avol*B));// percentage % in closed-loop voltage gain
+Avexact=Avol/(1+(Avol*B));// exact closed loop voltage gain
+disp("hertz",B,"bandwidth=")
+disp(Avideal,"Ideal closed-loop voltage gain=")
+disp(Avexact,"exact closed-loop voltage gain=")
+disp("%",%error,"percentage eroor=")
+
+// Result
+// Bandwidth is 0.025
+// Ideal closed-loop voltage gain is 40
+// Exact closed-loop voltage gain is 39.984
+// Percentage error is 0.04% \ No newline at end of file
diff --git a/317/CH19/EX19.1/example1.txt b/317/CH19/EX19.1/example1.txt
new file mode 100755
index 000000000..0f9beb9a3
--- /dev/null
+++ b/317/CH19/EX19.1/example1.txt
@@ -0,0 +1,4 @@
+Bandwidth is 0.025
+Ideal closed-loop voltage gain is 40
+Exact closed-loop voltage gain is 39.984
+Percentage error is 0.04% \ No newline at end of file
diff --git a/317/CH19/EX19.10/example10.sce b/317/CH19/EX19.10/example10.sce
new file mode 100755
index 000000000..df146fa3a
--- /dev/null
+++ b/317/CH19/EX19.10/example10.sce
@@ -0,0 +1,21 @@
+// find closed-loop bandwidth
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 19-10, page 723
+
+clear; clc; close;
+
+// Given data
+// LM308
+Avol=250000;// given
+f2ol=1.2;// open-loop bandwidth in hertz
+Avcl=50;// closed loop voltage gain
+
+// Calculations
+f2cl=(Avol/Avcl)*f2ol;// closed-loop bandwidth in hertz
+disp("hertz",f2cl,"closed-loop bandwidth")
+
+// Result
+// closed-loop bandwidth is 6 KHertz \ No newline at end of file
diff --git a/317/CH19/EX19.10/example10.txt b/317/CH19/EX19.10/example10.txt
new file mode 100755
index 000000000..2b89149c8
--- /dev/null
+++ b/317/CH19/EX19.10/example10.txt
@@ -0,0 +1 @@
+closed-loop bandwidth is 6 KHertz \ No newline at end of file
diff --git a/317/CH19/EX19.11/example11.sce b/317/CH19/EX19.11/example11.sce
new file mode 100755
index 000000000..0086a7c4b
--- /dev/null
+++ b/317/CH19/EX19.11/example11.sce
@@ -0,0 +1,20 @@
+// find closed-loop bandwidth
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 19-11, page 724
+
+clear; clc; close;
+
+// Given data
+// LM12
+Avol=50000;// given
+f2ol=14;// open-loop bandwidth in hertz
+
+// Calculations
+f2cl=(1+Avol)*f2ol;// closed-loop bandwidth in hertz
+disp("hertz",f2cl,"closed-loop bandwidth")
+
+// Result
+// closed-loop bandwidth is 700 KHertz \ No newline at end of file
diff --git a/317/CH19/EX19.11/example11.txt b/317/CH19/EX19.11/example11.txt
new file mode 100755
index 000000000..e7d0b9280
--- /dev/null
+++ b/317/CH19/EX19.11/example11.txt
@@ -0,0 +1 @@
+closed-loop bandwidth is 700 KHertz \ No newline at end of file
diff --git a/317/CH19/EX19.12/example12.sce b/317/CH19/EX19.12/example12.sce
new file mode 100755
index 000000000..4cbccabfa
--- /dev/null
+++ b/317/CH19/EX19.12/example12.sce
@@ -0,0 +1,20 @@
+// find closed-loop bandwidth
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 19-12, page 724
+
+clear; clc; close;
+
+// Given data
+// OP-07A
+AvolB=2500-1;// given
+f2ol=20;// open-loop bandwidth in hertz
+
+// Calculations
+f2cl=(1+AvolB)*f2ol;// closed-loop bandwidth in hertz
+disp("hertz",f2cl,"closed-loop bandwidth")
+
+// Result
+// closed-loop bandwidth is 50 KHertz \ No newline at end of file
diff --git a/317/CH19/EX19.12/example12.txt b/317/CH19/EX19.12/example12.txt
new file mode 100755
index 000000000..8ee65cca5
--- /dev/null
+++ b/317/CH19/EX19.12/example12.txt
@@ -0,0 +1 @@
+closed-loop bandwidth is 50 KHertz \ No newline at end of file
diff --git a/317/CH19/EX19.13/example13.sce b/317/CH19/EX19.13/example13.sce
new file mode 100755
index 000000000..686d2eb2a
--- /dev/null
+++ b/317/CH19/EX19.13/example13.sce
@@ -0,0 +1,24 @@
+// find closed-loop bandwidth,peak voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 19-13, page 724
+
+clear; clc; close;
+
+// Given data
+// LM741C
+funity=10^6;// in hertz
+Sr=0.5*10^6;// slew rate in Volts/second
+Avcl=10;// closed-loop voltage gain
+
+// Calculations
+f2cl=funity/Avcl;// closed-loop bandwidth in hertz
+Vpeak=Sr/(2*%pi*f2cl);// peak voltage in volts
+disp("hertz",f2cl,"closed-loop bandwidth")
+disp("Volts",Vpeak,"peak voltage=")
+
+// Result
+// closed-loop bandwidth is 100 KHertz
+// Peak voltage is 0.795 Volts \ No newline at end of file
diff --git a/317/CH19/EX19.13/example13.txt b/317/CH19/EX19.13/example13.txt
new file mode 100755
index 000000000..09786233f
--- /dev/null
+++ b/317/CH19/EX19.13/example13.txt
@@ -0,0 +1,2 @@
+Closed-loop bandwidth is 100 KHertz
+Peak voltage is 0.795 Volts \ No newline at end of file
diff --git a/317/CH19/EX19.2/example2.sce b/317/CH19/EX19.2/example2.sce
new file mode 100755
index 000000000..2e1e31339
--- /dev/null
+++ b/317/CH19/EX19.2/example2.sce
@@ -0,0 +1,25 @@
+// find closed-loop input impedance
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 19-2, page 713
+
+clear; clc; close;
+
+// Given data
+R1=10^2;// in ohms from the given figure
+Rf=3.9*10^3;// in ohms from the given figure
+Avol=10^5;// Avol of 741C
+Rin=2*10^6;// in ohms
+Rcm=200*10^6;// in ohms
+
+// Calculations
+B=R1/(R1+Rf);// feedback fraction
+zincl=(1+(Avol*B))*Rin;// closed-loop input impedance in ohms
+// as zincl>100 Mega ohms
+zincl=Rcm*zincl/(zincl+Rcm)
+disp("ohms",zincl,"closed-loop input impedance=")
+
+// Result
+// closed-loop input impedance is 192 Mohms \ No newline at end of file
diff --git a/317/CH19/EX19.2/example2.txt b/317/CH19/EX19.2/example2.txt
new file mode 100755
index 000000000..778e63dc8
--- /dev/null
+++ b/317/CH19/EX19.2/example2.txt
@@ -0,0 +1 @@
+closed-loop input impedance is 192 Mohms \ No newline at end of file
diff --git a/317/CH19/EX19.3/example3.sce b/317/CH19/EX19.3/example3.sce
new file mode 100755
index 000000000..2333f499d
--- /dev/null
+++ b/317/CH19/EX19.3/example3.sce
@@ -0,0 +1,23 @@
+// find closed-loop output impedance
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 19-3, page 714
+
+clear; clc; close;
+
+// Given data
+R1=10^2;// in ohms from the given figure
+Rf=3.9*10^3;// in ohms from the given figure
+Avol=10^5;// Avol of 741C
+Rout=75;// in ohms
+Rcm=200*10^6;// in ohms
+
+// Calculations
+B=R1/(R1+Rf);// feedback fraction
+zoutcl=Rout/(1+(Avol*B));// closed-loop output impedance in ohms
+disp("ohms",zoutcl,"closed-loop output impedance=")
+
+// Result
+// closed-loop output impedance is 0.03 ohms \ No newline at end of file
diff --git a/317/CH19/EX19.3/example3.txt b/317/CH19/EX19.3/example3.txt
new file mode 100755
index 000000000..50003542b
--- /dev/null
+++ b/317/CH19/EX19.3/example3.txt
@@ -0,0 +1 @@
+closed-loop input impedance is 0.03 ohms \ No newline at end of file
diff --git a/317/CH19/EX19.4/example4.sce b/317/CH19/EX19.4/example4.sce
new file mode 100755
index 000000000..815e42e1a
--- /dev/null
+++ b/317/CH19/EX19.4/example4.sce
@@ -0,0 +1,22 @@
+// find closed-loop total harmonic distortion
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 19-4, page 714
+
+clear; clc; close;
+
+// Given data
+R1=10^2;// in ohms from the given figure
+Rf=3.9*10^3;// in ohms from the given figure
+Avol=10^5;// Avol of 741C
+THDol=7.5;// open loop total harmonic distortion in %
+
+// Calculations
+B=R1/(R1+Rf);// feedback fraction
+THDcl=THDol/(1+(Avol*B));// closed loop total harmonic distortion in %
+disp("%",THDcl,"closed-loop total harmonic distortion=")
+
+// Result
+// closed-loop total harmonic distortion is 0.003% \ No newline at end of file
diff --git a/317/CH19/EX19.4/example4.txt b/317/CH19/EX19.4/example4.txt
new file mode 100755
index 000000000..8033971c5
--- /dev/null
+++ b/317/CH19/EX19.4/example4.txt
@@ -0,0 +1 @@
+closed-loop total harmonic distortion is 0.003% \ No newline at end of file
diff --git a/317/CH19/EX19.6/example6.sce b/317/CH19/EX19.6/example6.sce
new file mode 100755
index 000000000..398879c26
--- /dev/null
+++ b/317/CH19/EX19.6/example6.sce
@@ -0,0 +1,23 @@
+// find closed-loop input and output impedance
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 19-6, page 717
+
+clear; clc; close;
+
+// Given data
+Rf=5*10^3;// in ohms from the given figure
+Avol=10^5;// Avol of 741C
+Rout=75;// in ohms
+
+// Calculations
+zincl=Rf/(1+Avol);// closed-loop input impedance in ohms
+zoutcl=Rout/(1+Avol);// closed-loop output impedance in ohms
+disp("ohms",zincl,"closed-loop input impedance=")
+disp("ohms",zoutcl,"closed-loop output impedance=")
+
+// Result
+// closed-loop input impedance is 0.05 ohms
+// closed-loop output impedance is 0.00075 ohms \ No newline at end of file
diff --git a/317/CH19/EX19.6/example6.txt b/317/CH19/EX19.6/example6.txt
new file mode 100755
index 000000000..bb0b69f6e
--- /dev/null
+++ b/317/CH19/EX19.6/example6.txt
@@ -0,0 +1,2 @@
+closed-loop input impedance is 0.05 ohms
+closed-loop output impedance is 0.00075 ohms \ No newline at end of file
diff --git a/317/CH19/EX19.9/example9.sce b/317/CH19/EX19.9/example9.sce
new file mode 100755
index 000000000..620b672d9
--- /dev/null
+++ b/317/CH19/EX19.9/example9.sce
@@ -0,0 +1,20 @@
+// find closed-loop bandwidth
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 19-9, page 723
+
+clear; clc; close;
+
+// Given data
+// LF411A
+AvolB=1000-1;// given
+f2ol=160;// open-loop bandwidth in hertz
+
+// Calculations
+f2cl=(1+AvolB)*f2ol;// closed-loop bandwidth in hertz
+disp("hertz",f2cl,"closed-loop bandwidth")
+
+// Result
+// closed-loop bandwidth is 160 KHertz \ No newline at end of file
diff --git a/317/CH19/EX19.9/example9.txt b/317/CH19/EX19.9/example9.txt
new file mode 100755
index 000000000..15fd5f74c
--- /dev/null
+++ b/317/CH19/EX19.9/example9.txt
@@ -0,0 +1 @@
+ closed-loop bandwidth is 160 KHertz \ No newline at end of file
diff --git a/317/CH2/EX2.5/example5.sce b/317/CH2/EX2.5/example5.sce
new file mode 100755
index 000000000..a5bb7087d
--- /dev/null
+++ b/317/CH2/EX2.5/example5.sce
@@ -0,0 +1,21 @@
+
+
+
+// Given data
+V(1)=0.7;// barrier potential in volts at 25 degree celcius
+T(1)=25; // temperature in degree celcius at which vbarrier potential is known
+T(2)=100; T(3)=0; // temperature in degree celcius at which barrier potential has to be found
+
+//Calculations
+dT(2)=T(2)-T(1);// difference in temperature
+dT(3)=T(3)-T(1);// difference in temperature
+dV(3)=(-0.002)*dT(3);// barrier potential for silicon decreases by 0.002 volts for each degree celcius rise
+dV(2)=(-0.002)*dT(2)// barrier potential for silicon decreases by 0.002 volts for each degree celcius rise
+V(2)=V(1)+dV(2);// to find barrier potential at T(2)
+V(3)=V(1)+dV(3);// to find barrier potential at T(3)
+disp("Volts",V(2),"Barrier Potential at 100 Degree celcius =")
+disp("Volts",V(3),"Barrier Potential at 0 Degree celcius =")
+
+// Result
+// barrier potential at 100 degree celcius is 0.55 volts
+// barrier potential at 0 degree celcius is 0.75 volts \ No newline at end of file
diff --git a/317/CH2/EX2.5/example5.txt b/317/CH2/EX2.5/example5.txt
new file mode 100755
index 000000000..be6758e4e
--- /dev/null
+++ b/317/CH2/EX2.5/example5.txt
@@ -0,0 +1,3 @@
+ barrier potential at 100 degree celcius is 0.55 volts
+ barrier potential at 0 degree celcius is 0.75 volts
+
diff --git a/317/CH2/EX2.6/example6.sce b/317/CH2/EX2.6/example6.sce
new file mode 100755
index 000000000..f6bf43028
--- /dev/null
+++ b/317/CH2/EX2.6/example6.sce
@@ -0,0 +1,17 @@
+
+// Example 2-6, page 51
+
+clear;clc; close;
+
+// Given data
+I(1)=5;// saturation current at given temperature in nano amperes
+T(1)=25;// temperature in degree celcius at which saturation current is known
+T(2)=100;// temperature in degree celcius at which saturation current is to be found
+
+// Calculations
+I(2)=(2^7)*I(1);// 7 doublings between 25 and 95 degree celcius
+I(3)=((1.07)^5)*I(2); // additional 5 degree between 95 and 100 degree celcius
+disp("Amperes",I(3),"Saturation Current =")
+
+// Result
+// saturation current at 100 degree celcius is 898 nano amperes.
diff --git a/317/CH2/EX2.6/example6.txt b/317/CH2/EX2.6/example6.txt
new file mode 100755
index 000000000..7ddf6f292
--- /dev/null
+++ b/317/CH2/EX2.6/example6.txt
@@ -0,0 +1 @@
+saturation current at 100 degree celcius is 898 nano amperes.
diff --git a/317/CH2/EX2.7/example7.sce b/317/CH2/EX2.7/example7.sce
new file mode 100755
index 000000000..c86d06b45
--- /dev/null
+++ b/317/CH2/EX2.7/example7.sce
@@ -0,0 +1,16 @@
+
+// Example 2-7, page 52
+
+clear;clc; close;
+
+// Given data
+I(1)=2*10^-9;// surface leakage current in amperes at given reverse voltage
+V(1)=25;// reverse voltage in volts at which surface leakage is known
+V(2)=35;// reverse voltage in volts at which surface leakage current is to be found
+
+// Calculations
+I(2)=V(2)*I(1)/V(1);// surface leakage current is directly proportional to reverse voltage
+disp("Amperes",I(2),"Surface leakage Current =")
+
+// result
+// surface leakage current is 2.8 nano amperes.
diff --git a/317/CH2/EX2.7/example7.txt b/317/CH2/EX2.7/example7.txt
new file mode 100755
index 000000000..15f4dbbeb
--- /dev/null
+++ b/317/CH2/EX2.7/example7.txt
@@ -0,0 +1 @@
+Surface leakage current is 2.8 nano amperes.
diff --git a/317/CH20/EX20.10/example10.sce b/317/CH20/EX20.10/example10.sce
new file mode 100755
index 000000000..71d14c88a
--- /dev/null
+++ b/317/CH20/EX20.10/example10.sce
@@ -0,0 +1,25 @@
+// find maximum,minimum voltage gain
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 20-10, page 771
+
+clear; clc; close;
+
+// Given data
+Rdsmin=50;// in ohms
+Rdsmax=120*10^3;// in ohms
+R1=1*10^3;// in ohms
+R2=47*10^3;// in ohms
+R3=100*10^3;// in ohms
+
+// Calculations
+Avmax=((R2/R1)+1)*(Rdsmax/(Rdsmax+R3));// maximum voltage gain
+Avmin=((R2/R1)+1)*(Rdsmin/(Rdsmin+R3));// minimum voltage gain
+disp(Avmin,"minimum voltage gain=")
+disp(Avmax,"maximum voltage gain=")
+
+// Result
+// Minimum voltage gain is 0.024
+// Maximum voltage gain is 26.2 \ No newline at end of file
diff --git a/317/CH20/EX20.10/example10.txt b/317/CH20/EX20.10/example10.txt
new file mode 100755
index 000000000..af2691c07
--- /dev/null
+++ b/317/CH20/EX20.10/example10.txt
@@ -0,0 +1,2 @@
+Minimum voltage gain is 0.024
+Maximum voltage gain is 26.2 \ No newline at end of file
diff --git a/317/CH20/EX20.2/example2.sce b/317/CH20/EX20.2/example2.sce
new file mode 100755
index 000000000..3e214ee5f
--- /dev/null
+++ b/317/CH20/EX20.2/example2.sce
@@ -0,0 +1,22 @@
+// find maximum,minimum voltage gain
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 20-2, page 747
+
+clear; clc; close;
+
+// Given data
+R1=1.2*10^3;// in ohms
+R2=91*10^3;// in ohms
+
+// Calculations
+Avmin=-R2/R1;// minimum voltage gain
+Avmax=0;// maximum voltage gain is 0
+disp(Avmin,"minimum voltage gain=")
+disp(Avmax,"maximum voltage gain=")
+
+// Result
+// Minimum voltage gain is -75.8
+// Maximum voltage gain is 0 \ No newline at end of file
diff --git a/317/CH20/EX20.2/example2.txt b/317/CH20/EX20.2/example2.txt
new file mode 100755
index 000000000..dd60dedc7
--- /dev/null
+++ b/317/CH20/EX20.2/example2.txt
@@ -0,0 +1,2 @@
+Minimum voltage gain is -75.8
+Maximum voltage gain is 0 \ No newline at end of file
diff --git a/317/CH20/EX20.3/example3.sce b/317/CH20/EX20.3/example3.sce
new file mode 100755
index 000000000..2d0f2743c
--- /dev/null
+++ b/317/CH20/EX20.3/example3.sce
@@ -0,0 +1,23 @@
+// find maximum positive voltage gain and value of other fixed resistance
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 20-3, page 747
+
+clear; clc; close;
+
+// Given data
+nR=7.5*10^3;// in ohms
+R=1.5*10^3;// in ohms
+
+// Calculations
+n=nR/R;// obvious
+Av=n;// maximum positive voltage gain
+R2=nR/(n-1);// other fixed resistance in hms
+disp(Av,"maximum voltage gain=")
+disp("ohms",R2,"resistance=")
+
+// Result
+// Maximum voltage gain is 5
+// Other resistance is 1.875 Kohms \ No newline at end of file
diff --git a/317/CH20/EX20.3/example3.txt b/317/CH20/EX20.3/example3.txt
new file mode 100755
index 000000000..d5243ee58
--- /dev/null
+++ b/317/CH20/EX20.3/example3.txt
@@ -0,0 +1,2 @@
+Maximum voltage gain is 5
+Other resistance is 1.875 Kohms \ No newline at end of file
diff --git a/317/CH20/EX20.5/example5.sce b/317/CH20/EX20.5/example5.sce
new file mode 100755
index 000000000..9c0db88c8
--- /dev/null
+++ b/317/CH20/EX20.5/example5.sce
@@ -0,0 +1,35 @@
+// find voltage gain of each channel
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 20-5, page 759
+
+clear; clc; close;
+
+// Given data
+R1=1*10^3;// in ohms
+R2=2*10^3;// in ohms
+R3=3*10^3;// in ohms
+R4=4*10^3;// in ohms
+R5=5*10^3;// in ohms
+Rf=6*10^3;// in ohms
+
+// Calculations
+R12=R1*R2/(R1+R2);// R1||R2
+R45=R4*R5/(R4+R5);// R4||R5
+R35=R3*R5/(R3+R5);// R3||R5
+Av1=-Rf/R1;// voltage gain of channel
+Av2=-Rf/R2;// voltage gain of channel
+Av3=((Rf/R12)+1)*(R45/(R3+R45));// voltage gain of channel
+Av4=((Rf/R12)+1)*(R35/(R4+R35));// voltage gain of channel
+disp(Av1,"voltage gain 1=")
+disp(Av2,"voltage gain 2=")
+disp(Av3,"voltage gain 3=")
+disp(Av4,"voltage gain 4=")
+
+// Results
+// Voltage gain of channel 1 is -6
+// Voltage gain of channel 2 is -3
+// Voltage gain of channel 3 is 4.26
+// Voltage gain of channel 4 is 3.19 \ No newline at end of file
diff --git a/317/CH20/EX20.5/example5.txt b/317/CH20/EX20.5/example5.txt
new file mode 100755
index 000000000..1776f197c
--- /dev/null
+++ b/317/CH20/EX20.5/example5.txt
@@ -0,0 +1,4 @@
+Voltage gain of channel 1 is -6
+Voltage gain of channel 2 is -3
+Voltage gain of channel 3 is 4.26
+Voltage gain of channel 4 is 3.19 \ No newline at end of file
diff --git a/317/CH20/EX20.6/example6.sce b/317/CH20/EX20.6/example6.sce
new file mode 100755
index 000000000..e24e2677e
--- /dev/null
+++ b/317/CH20/EX20.6/example6.sce
@@ -0,0 +1,25 @@
+// find decimal equivalent of binary input and output voltage of the converter
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 20-6, page 762
+
+clear; clc; close;
+
+// Given data
+D0=1;// binary input
+D1=0;// binary input
+D2=0;// binary input
+D3=1;// binary input
+Vref=5;// in volts
+
+// Calculations
+BIN=(D0*2^0)+(D1*2^1)+(D2*2^2)+(D3*2^3);// decimal equivalent of binary input
+Vout=-(BIN*2*Vref/(2^4));// output voltage in volts
+disp(BIN,"decimal equivalent of binary input=")
+disp("Volts",Vout,"output voltage=")
+
+// Result
+// decimal equivalent of binary input 1001 is 9
+// Output voltage of the convertor is -5.625 Volts \ No newline at end of file
diff --git a/317/CH20/EX20.6/example6.txt b/317/CH20/EX20.6/example6.txt
new file mode 100755
index 000000000..487360ccd
--- /dev/null
+++ b/317/CH20/EX20.6/example6.txt
@@ -0,0 +1,2 @@
+Decimal equivalent of binary input 1001 is 9
+Output voltage of the convertor is -5.625 Volts \ No newline at end of file
diff --git a/317/CH20/EX20.7/example7.sce b/317/CH20/EX20.7/example7.sce
new file mode 100755
index 000000000..3506a84ff
--- /dev/null
+++ b/317/CH20/EX20.7/example7.sce
@@ -0,0 +1,30 @@
+// find closed loop output impedance,short loaded current and voltage gain of the circuit
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 20-7, page 764
+
+clear; clc; close;
+
+// Given data
+R1=10^3;// in ohms
+R2=51*10^3;// in ohms
+Avol=100000;// Avol of 741C
+zoutol=75;// open-loop output impedance in ohms
+Bdc=125;// current gain
+Isc=25*10^-3;// short-load current in amperes
+
+// Calculations
+Av=-R2/R1;// voltage gain
+B=R1/(R1+R2);//feedback fraction
+zoutcl=zoutol/(1+(Avol*B));// closed-loop output impedance in ohms
+Imax=Bdc*Isc;// boosted value of short loaded current in amperes
+disp("ohms",zoutcl,"Closed loop output impedance=")
+disp(Av,"Voltage gain=")
+disp("amperes",Imax,"Short-load current=")
+
+// Result
+// Closed loop output impedance is 0.039 ohms
+// Voltage gain is -51
+// Short-load current is 3.13 Amperes \ No newline at end of file
diff --git a/317/CH20/EX20.7/example7.txt b/317/CH20/EX20.7/example7.txt
new file mode 100755
index 000000000..aaa35b046
--- /dev/null
+++ b/317/CH20/EX20.7/example7.txt
@@ -0,0 +1,3 @@
+Closed loop output impedance is 0.039 ohms
+Voltage gain is -51
+Short-load current is 3.13 Amperes \ No newline at end of file
diff --git a/317/CH20/EX20.8/example8.sce b/317/CH20/EX20.8/example8.sce
new file mode 100755
index 000000000..62175258e
--- /dev/null
+++ b/317/CH20/EX20.8/example8.sce
@@ -0,0 +1,23 @@
+// find output current and maximum load resistance
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 20-8, page 768
+
+clear; clc; close;
+
+// Given data
+R=10*10^3;// in ohms
+Vin=10;// input voltage in volts
+Vcc=15;// in volts
+
+// Calculations
+iout=Vin/R;// output current in amperes
+Rlmax=R*((Vcc/Vin)-1);// maximum load resistance in ohms
+disp("Amperes",iout,"output current=")
+disp("ohms",Rlmax,"Maximum load resistance=")
+
+// Result
+// Output current is 1 mAmperes
+// Maximum load resistance is 5 Kohms \ No newline at end of file
diff --git a/317/CH20/EX20.8/example8.txt b/317/CH20/EX20.8/example8.txt
new file mode 100755
index 000000000..641f06146
--- /dev/null
+++ b/317/CH20/EX20.8/example8.txt
@@ -0,0 +1,2 @@
+Output current is 1 mAmperes
+Maximum load resistance is 5 Kohms \ No newline at end of file
diff --git a/317/CH20/EX20.9/example9.sce b/317/CH20/EX20.9/example9.sce
new file mode 100755
index 000000000..8bfed405a
--- /dev/null
+++ b/317/CH20/EX20.9/example9.sce
@@ -0,0 +1,23 @@
+// find output current and maximum load resistance
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 20-9, page 768
+
+clear; clc; close;
+
+// Given data
+R=15*10^3;// in ohms
+Vin=3;// input voltage in volts
+Vcc=15;// in volts
+
+// Calculations
+iout=-Vin/R;// output current in amperes
+Rlmax=(R/2)*((Vcc/Vin)-1);// maximum load resistance in ohms
+disp("Amperes",iout,"output current=")
+disp("ohms",Rlmax,"Maximum load resistance=")
+
+// Result
+// Output current is -0.2 mAmperes
+// Maximum load resistance is 30 Kohms \ No newline at end of file
diff --git a/317/CH20/EX20.9/example9.txt b/317/CH20/EX20.9/example9.txt
new file mode 100755
index 000000000..f71689809
--- /dev/null
+++ b/317/CH20/EX20.9/example9.txt
@@ -0,0 +1,2 @@
+Output current is -0.2 mAmperes
+Maximum load resistance is 30 Kohms \ No newline at end of file
diff --git a/317/CH21/EX21.1/example1.sce b/317/CH21/EX21.1/example1.sce
new file mode 100755
index 000000000..092213d47
--- /dev/null
+++ b/317/CH21/EX21.1/example1.sce
@@ -0,0 +1,24 @@
+// find voltage gain ,cutoff frequency
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 21-1, page 806
+
+clear;clc; close;
+
+// Given data
+R1=10^3;// in ohms
+R2=39*10^3;// in ohms
+R3=12*10^3;// in ohms
+C1=680*10^-12;// capacitance in faraday
+
+// Calculations
+Av=(R2/R1)+1;// voltage gain
+fc=1/(2*%pi*R3*C1);// cutoff frequency in hertz
+disp(Av,"Voltage gain=")
+disp("Hertz",fc,"cutoff frequency=")
+
+// Result
+// voltage gain is 40
+// cutoff frequency is 19.5 KHertz \ No newline at end of file
diff --git a/317/CH21/EX21.1/example1.txt b/317/CH21/EX21.1/example1.txt
new file mode 100755
index 000000000..54466173c
--- /dev/null
+++ b/317/CH21/EX21.1/example1.txt
@@ -0,0 +1,2 @@
+Voltage gain is 40
+Cutoff frequency is 19.5 KHertz \ No newline at end of file
diff --git a/317/CH21/EX21.10/example10.sce b/317/CH21/EX21.10/example10.sce
new file mode 100755
index 000000000..f05a28771
--- /dev/null
+++ b/317/CH21/EX21.10/example10.sce
@@ -0,0 +1,37 @@
+// find pole frequency ,Q,resonant,cutoff,3-db frequency
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 21-10, page 821
+
+clear;clc; close;
+
+// Given data
+C=10^-9;// capacitance in faraday
+R1=10*10^3;// resistance in ohms
+R2=15*10^3;// resistance in ohms
+R=30*10^3;// resistance in ohms
+K0=0.94;// constant
+Kc=1.32;// constant
+K3=1.48;// constant
+
+// Calculations
+Av=(R2/R1)+1;// midband voltage gain
+Q=1/(3-Av);// q of the filter
+fp=1/(2*%pi*R*C);// peak frequency in hertz
+fc=fp/Kc;// cutoff frequency in hertz
+f0=fp/K0;// resonant frequency in hertz
+f3db=fp/K3;// 3-db frequency in hertz
+disp(Q,"Q of the filter=")
+disp("hertz",fc,"cutoff frequency=")
+disp("hertz",fp,"peak frequency=")
+disp("hertz",f0,"resonant frequency=")
+disp("hertz",f3db,"3db frequency=")
+
+// Result
+// Q is 2
+// peak frequency is 5.31 kHertz
+// cutoff frequency is 4.02 kHertz
+// resonant frequency is 5.65 kHertz
+// 3-db frequency is 3.59 kHertz \ No newline at end of file
diff --git a/317/CH21/EX21.10/example10.txt b/317/CH21/EX21.10/example10.txt
new file mode 100755
index 000000000..004c03d10
--- /dev/null
+++ b/317/CH21/EX21.10/example10.txt
@@ -0,0 +1,5 @@
+Q is 2
+peak frequency is 5.31 kHertz
+cutoff frequency is 4.02 kHertz
+resonant frequency is 5.65 kHertz
+3-db frequency is 3.59 kHertz \ No newline at end of file
diff --git a/317/CH21/EX21.12/example12.sce b/317/CH21/EX21.12/example12.sce
new file mode 100755
index 000000000..a3d1ee578
--- /dev/null
+++ b/317/CH21/EX21.12/example12.sce
@@ -0,0 +1,27 @@
+// find voltage gain,center frequency,Q
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 21-12, page 827
+
+clear;clc; close;
+
+// Given data
+C=120*10^-9;// capacitance in faraday
+R1=13*10^3;// resistance in ohms
+R2=10*10^3;// resistance in ohms
+R=22*10^3;// resistance in ohms
+
+// Calculations
+Av=(R2/R1)+1;// voltage gain
+Q=0.5/(2-Av);// q of the filter
+f0=1/(2*%pi*R*C);// center frequency in hertz
+disp(Q,"Q of the filter=")
+disp(Av,"Voltage gain=")
+disp("hertz",f0,"resonant frequency=")
+
+// Result
+// Q is 2.17
+// resonant frequency is 60.3 Hertz
+// Voltage gain is 1.77 \ No newline at end of file
diff --git a/317/CH21/EX21.12/example12.txt b/317/CH21/EX21.12/example12.txt
new file mode 100755
index 000000000..33eb1b166
--- /dev/null
+++ b/317/CH21/EX21.12/example12.txt
@@ -0,0 +1,3 @@
+Q is 2.17
+resonant frequency is 60.3 Hertz
+Voltage gain is 1.77 \ No newline at end of file
diff --git a/317/CH21/EX21.13/example13.sce b/317/CH21/EX21.13/example13.sce
new file mode 100755
index 000000000..f59029ee8
--- /dev/null
+++ b/317/CH21/EX21.13/example13.sce
@@ -0,0 +1,21 @@
+// find phase shift of output voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 21-13, page 833
+
+clear;clc; close;
+
+// Given data
+C=100*10^-9;// capacitance in faraday
+R=10^3;// resistance in ohms
+f=10^3;// frequency in hertz
+
+// Calculations
+fo=1/(2*%pi*R*C);// cutoff frequency in hertz
+angle=2*atan(fo/f)*180/%pi;// phase shift in degree
+disp("degrees",angle,"phase shift=")
+
+// Result
+// Phase shift is 116 degrees \ No newline at end of file
diff --git a/317/CH21/EX21.13/example13.txt b/317/CH21/EX21.13/example13.txt
new file mode 100755
index 000000000..12bc2f6f5
--- /dev/null
+++ b/317/CH21/EX21.13/example13.txt
@@ -0,0 +1 @@
+Phase shift is 116 degrees \ No newline at end of file
diff --git a/317/CH21/EX21.2/example2.sce b/317/CH21/EX21.2/example2.sce
new file mode 100755
index 000000000..44f4cb2e2
--- /dev/null
+++ b/317/CH21/EX21.2/example2.sce
@@ -0,0 +1,23 @@
+// find voltage gain ,cutoff frequency
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 21-2, page 807
+
+clear;clc; close;
+
+// Given data
+R1=220;// in ohms
+R2=43*10^3;// in ohms
+C1=100*10^-12;// capacitance in faraday
+
+// Calculations
+Av=-R2/R1;// voltage gain
+fc=1/(2*%pi*R2*C1);// cutoff frequency in hertz
+disp(Av,"Voltage gain=")
+disp("Hertz",fc,"cutoff frequency=")
+
+// Result
+// Voltage gain is -195
+// Cutoff frequency is 37 KHertz \ No newline at end of file
diff --git a/317/CH21/EX21.2/example2.txt b/317/CH21/EX21.2/example2.txt
new file mode 100755
index 000000000..988df4316
--- /dev/null
+++ b/317/CH21/EX21.2/example2.txt
@@ -0,0 +1,2 @@
+Voltage gain is -195
+Cutoff frequency is 37 KHertz \ No newline at end of file
diff --git a/317/CH21/EX21.3/example3.sce b/317/CH21/EX21.3/example3.sce
new file mode 100755
index 000000000..8b44e4a93
--- /dev/null
+++ b/317/CH21/EX21.3/example3.sce
@@ -0,0 +1,26 @@
+// find pole frequency ,Q,cutoff frequency
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 21-3, page 811
+
+clear;clc; close;
+
+// Given data
+C1=820*10^-12;// capacitance in faraday
+C2=1.64*10^-9;// capacitance in faraday
+R=30*10^3;// resistance in ohms
+
+// Calculations
+Q=((C2/C1)^0.5)/2;// q of the filter
+fp=1/(2*%pi*R*((C1*C2)^0.5));// peak frequency in hertz
+fc=fp;// for Butterworth response cutoff frequency is equal to peak frequency
+disp(Q,"Q of the filter=")
+disp("hertz",fc,"cutoff frequency=")
+disp("hertz",fp,"peak frequency=")
+
+// Result
+// Q of the filter is 0.707(Butterworth response)
+// peak frequency is 4.58 kHertz
+// cutoff frequency is 4.58 kHertz \ No newline at end of file
diff --git a/317/CH21/EX21.3/example3.txt b/317/CH21/EX21.3/example3.txt
new file mode 100755
index 000000000..091395f66
--- /dev/null
+++ b/317/CH21/EX21.3/example3.txt
@@ -0,0 +1,3 @@
+Q of the filter is 0.707(Butterworth response)
+peak frequency is 4.58 kHertz
+cutoff frequency is 4.58 kHertz \ No newline at end of file
diff --git a/317/CH21/EX21.4/example4.sce b/317/CH21/EX21.4/example4.sce
new file mode 100755
index 000000000..178dbbf10
--- /dev/null
+++ b/317/CH21/EX21.4/example4.sce
@@ -0,0 +1,27 @@
+// find pole frequency ,Q,cutoff frequency
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 21-4, page 811
+
+clear;clc; close;
+
+// Given data
+C1=330*10^-12;// capacitance in faraday
+C2=440*10^-12;// capacitance in faraday
+R=51*10^3;// resistance in ohms
+Kc=0.786;// constant for Bessel response
+
+// Calculations
+Q=((C2/C1)^0.5)/2;// q of the filter
+fp=1/(2*%pi*R*((C1*C2)^0.5));// peak frequency in hertz
+fc=Kc*fp;// for Bessel's response cutoff frequency is Kc*peak frequency
+disp(Q,"Q of the filter=")
+disp("hertz",fc,"cutoff frequency=")
+disp("hertz",fp,"peak frequency=")
+
+// Result
+// Q of the filter is 0.577(Bessel response)
+// peak frequency is 8.19 kHertz
+// cutoff frequency is 6.44 kHertz \ No newline at end of file
diff --git a/317/CH21/EX21.4/example4.txt b/317/CH21/EX21.4/example4.txt
new file mode 100755
index 000000000..375ddd03e
--- /dev/null
+++ b/317/CH21/EX21.4/example4.txt
@@ -0,0 +1,3 @@
+Q of the filter is 0.577(Bessel response)
+peak frequency is 8.19 kHertz
+cutoff frequency is 6.44 kHertz \ No newline at end of file
diff --git a/317/CH21/EX21.5/example5.sce b/317/CH21/EX21.5/example5.sce
new file mode 100755
index 000000000..f9332f56a
--- /dev/null
+++ b/317/CH21/EX21.5/example5.sce
@@ -0,0 +1,33 @@
+// find pole frequency ,Q,cutoff frequency, 3-db frequencies
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 21-5, page 812
+
+clear;clc; close;
+
+// Given data
+C1=390*10^-12;// capacitance in faraday
+C2=27*10^-9;// capacitance in faraday
+R=22*10^3;// resistance in ohms
+Ap=12.5;// in decibel
+K0=0.99;// constant
+Kc=1.38;// constant
+K3=1.54;// constant
+
+// Calculations
+Q=((C2/C1)^0.5)/2;// q of the filter
+fp=1/(2*%pi*R*((C1*C2)^0.5));// peak frequency in hertz
+fc=Kc*fp;// cutoff frequency in hertz
+f3db=K3*fp;// 3-db frequency in hertz
+disp(Q,"Q of the filter=")
+disp("hertz",fc,"cutoff frequency=")
+disp("hertz",fp,"peak frequency=")
+disp("hertz",f3db,"3db frequency=")
+
+// Result
+// Q of the filter is 4.16
+// peak frequency is 2.23 kHertz
+// cutoff frequency is 3.08 kHertz
+// 3-db frequency is 3.43 kHertz \ No newline at end of file
diff --git a/317/CH21/EX21.5/example5.txt b/317/CH21/EX21.5/example5.txt
new file mode 100755
index 000000000..2858ad027
--- /dev/null
+++ b/317/CH21/EX21.5/example5.txt
@@ -0,0 +1,4 @@
+Q of the filter is 4.16
+peak frequency is 2.23 kHertz
+cutoff frequency is 3.08 kHertz
+3-db frequency is 3.43 kHertz \ No newline at end of file
diff --git a/317/CH21/EX21.6/example6.sce b/317/CH21/EX21.6/example6.sce
new file mode 100755
index 000000000..fc4929271
--- /dev/null
+++ b/317/CH21/EX21.6/example6.sce
@@ -0,0 +1,28 @@
+// find pole frequency ,Q,cutoff frequency
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 21-6, page 817
+
+clear;clc; close;
+
+// Given data
+C=330*10^-12;// capacitance in faraday
+R1=51*10^3;// resistance in ohms
+R2=30*10^3;// resistance in ohms
+R=47*10^3;// resistance in ohms
+
+// Calculations
+Av=(R2/R1)+1;// midband voltage gain
+Q=1/(3-Av);// q of the filter
+fp=1/(2*%pi*R*C);// peak frequency in hertz
+fc=fp;// for Butterworth response cutoff frequency is equal to peak frequency
+disp(Q,"Q of the filter=")
+disp("hertz",fc,"cutoff frequency=")
+disp("hertz",fp,"peak frequency=")
+
+// Result
+// Q of the filter is 0.709
+// peak frequency is 10.3 kHertz
+// cutoff frequency is 10.3 kHertz
diff --git a/317/CH21/EX21.6/example6.txt b/317/CH21/EX21.6/example6.txt
new file mode 100755
index 000000000..a581b1baf
--- /dev/null
+++ b/317/CH21/EX21.6/example6.txt
@@ -0,0 +1,3 @@
+Q of the filter is 0.709
+peak frequency is 10.3 kHertz
+cutoff frequency is 10.3 kHertz \ No newline at end of file
diff --git a/317/CH21/EX21.7/example7.sce b/317/CH21/EX21.7/example7.sce
new file mode 100755
index 000000000..da4f1dff6
--- /dev/null
+++ b/317/CH21/EX21.7/example7.sce
@@ -0,0 +1,29 @@
+// find pole frequency ,Q,cutoff frequency
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 21-7, page 817
+
+clear;clc; close;
+
+// Given data
+C=100*10^-12;// capacitance in faraday
+R1=56*10^3;// resistance in ohms
+R2=15*10^3;// resistance in ohms
+R=82*10^3;// resistance in ohms
+Kc=0.786;// constant for Bessel response
+
+// Calculations
+Av=(R2/R1)+1;// midband voltage gain
+Q=1/(3-Av);// q of the filter
+fp=1/(2*%pi*R*C);// peak frequency in hertz
+fc=Kc*fp;// for Bessel's response cutoff frequency is Kc*peak frequency
+disp(Q,"Q of the filter=")
+disp("hertz",fc,"cutoff frequency=")
+disp("hertz",fp,"peak frequency=")
+
+// Result
+// Q of the filter is 0.578
+// peak frequency is 19.4 kHertz
+// cutoff frequency is 15.2 kHertz
diff --git a/317/CH21/EX21.7/example7.txt b/317/CH21/EX21.7/example7.txt
new file mode 100755
index 000000000..e36ed9fb3
--- /dev/null
+++ b/317/CH21/EX21.7/example7.txt
@@ -0,0 +1,3 @@
+Q of the filter is 0.578
+peak frequency is 19.4 kHertz
+cutoff frequency is 15.2 kHertz
diff --git a/317/CH21/EX21.9/example9.sce b/317/CH21/EX21.9/example9.sce
new file mode 100755
index 000000000..978d479a0
--- /dev/null
+++ b/317/CH21/EX21.9/example9.sce
@@ -0,0 +1,26 @@
+// find pole frequency ,Q,cutoff frequency
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 21-9, page 820
+
+clear;clc; close;
+
+// Given data
+C=4.7*10^-9;// capacitance in faraday
+R1=24*10^3;// resistance in ohms
+R2=12*10^3;// resistance in ohms
+
+// Calculations
+Q=((R1/R2)^0.5)/2;// q of the filter
+fp=1/(2*%pi*C*((R1*R2)^0.5));// peak frequency in hertz
+fc=fp;// for Butterworth response cutoff frequency is equal to peak frequency
+disp(Q,"Q of the filter=")
+disp("hertz",fc,"cutoff frequency=")
+disp("hertz",fp,"peak frequency=")
+
+// Results
+// Q of the filter is 0.707(Butterworth response)
+// peak frequency is 2 kHertz
+// cutoff frequency is 2 kHertz \ No newline at end of file
diff --git a/317/CH21/EX21.9/example9.txt b/317/CH21/EX21.9/example9.txt
new file mode 100755
index 000000000..10037b7ef
--- /dev/null
+++ b/317/CH21/EX21.9/example9.txt
@@ -0,0 +1,3 @@
+Q of the filter is 0.707(Butterworth response)
+peak frequency is 2 kHertz
+cutoff frequency is 2 kHertz \ No newline at end of file
diff --git a/317/CH22/EX22.10/example10.sce b/317/CH22/EX22.10/example10.sce
new file mode 100755
index 000000000..62a2766aa
--- /dev/null
+++ b/317/CH22/EX22.10/example10.sce
@@ -0,0 +1,23 @@
+// find frequency of output signal
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 22-10, page 871
+
+clear;clc; close;
+
+// Given data
+R1=18*10^3;// resistance in ohms
+R2=2*10^3;// resistance in ohms
+R=10^3;// resistance in ohms
+C=0.1*10^-6;// capacitance in faraday
+
+// Calculations
+B=R1/(R1+R2);// feedback fraction
+T=2*R*C*log((1+B)/(1-B));// time period of output signal
+f=1/T;// frequency of output signal
+disp("hertz",f,"Frequency=")
+
+// Result
+// Frequency of output signal is 1.7 KHertz \ No newline at end of file
diff --git a/317/CH22/EX22.10/example10.txt b/317/CH22/EX22.10/example10.txt
new file mode 100755
index 000000000..d3f6093eb
--- /dev/null
+++ b/317/CH22/EX22.10/example10.txt
@@ -0,0 +1 @@
+Frequency of output signal is 1.7 KHertz \ No newline at end of file
diff --git a/317/CH22/EX22.12/example12.sce b/317/CH22/EX22.12/example12.sce
new file mode 100755
index 000000000..91ff690bd
--- /dev/null
+++ b/317/CH22/EX22.12/example12.sce
@@ -0,0 +1,28 @@
+// find frequency and peak-to-peak voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 22-12, page 873
+
+clear;clc; close;
+
+// Given data
+Vsat=13;// in volts
+R1=1*10^3;// resistance in ohms
+R2=100*10^3;// resistance in ohms
+R3=10*10^3;// resistance in ohms
+R4=100*10^3;// resistance in ohms
+C=10*10^-6;// capacitance in faraday
+
+// Calculations
+UTP=(R1/R2)*Vsat;// upper trip point in volts
+H=2*UTP;// hysteresis in volts
+Vout=H;// peak to peak voltage in volts
+f=R2/(4*R1*R3*C);// frequency in hertz
+disp("hertz",f,"Frequency=")
+disp("Volts",Vout,"output voltage=")
+
+// Result
+// Peak-to-peak output is 0.26 Volts
+// frequency is 250 Hertz \ No newline at end of file
diff --git a/317/CH22/EX22.12/example12.txt b/317/CH22/EX22.12/example12.txt
new file mode 100755
index 000000000..4d4d3d3ba
--- /dev/null
+++ b/317/CH22/EX22.12/example12.txt
@@ -0,0 +1,2 @@
+Peak-to-peak output is 0.26 Volts
+Frequency is 250 Hertz \ No newline at end of file
diff --git a/317/CH22/EX22.4/example4.sce b/317/CH22/EX22.4/example4.sce
new file mode 100755
index 000000000..fc8250def
--- /dev/null
+++ b/317/CH22/EX22.4/example4.sce
@@ -0,0 +1,25 @@
+// find trip point,cutoff frequency
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 22-4, page 854
+
+clear;clc; close;
+
+// Given data
+Vcc=15;// in volts from the figure
+C=10*10^-6;// capacitance in faraday
+R1=200*10^3;// resistance in ohms
+R2=100*10^3;// resistance in ohms
+
+// Calculations
+Vref=(R2/(R1+R2))*Vcc;// reference voltage in volts
+R=R1*R2/(R1+R2);// equivalent resistance in ohms
+fc=1/(2*%pi*R*C);// cutoff frequency in hertz
+disp("hertz",fc,"cutoff frequency=")
+disp("Volts",Vref,"Trip point=")
+
+// Result
+// Trip point is 5 Volts
+// cutoff frequency is 0.239 Hertz \ No newline at end of file
diff --git a/317/CH22/EX22.4/example4.txt b/317/CH22/EX22.4/example4.txt
new file mode 100755
index 000000000..4e3ba2909
--- /dev/null
+++ b/317/CH22/EX22.4/example4.txt
@@ -0,0 +1,2 @@
+Trip point is 5 Volts
+Cutoff frequency is 0.239 Hertz \ No newline at end of file
diff --git a/317/CH22/EX22.5/example5.sce b/317/CH22/EX22.5/example5.sce
new file mode 100755
index 000000000..b51ba4b3c
--- /dev/null
+++ b/317/CH22/EX22.5/example5.sce
@@ -0,0 +1,28 @@
+// find duty cycle of output waveform
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 22-5, page 855
+
+clear;clc; close;
+
+// Given data
+Vp=10;// peak voltage in volts
+Vcc=15;// in volts from the figure
+C=10*10^-6;// capacitance in faraday
+R1=200*10^3;// resistance in ohms
+R2=100*10^3;// resistance in ohms
+
+// Calculations
+// input is a sine wave it is 10sin(angle)
+Vref=(R2/(R1+R2))*Vcc;// reference voltage in volts
+// output is a rectangular waveform whose trip point is 5 Volts
+angle1=asin(Vref/Vp)*180/%pi;// angle where switching occurs
+angle2=180-angle1;// other angle where switching occurs
+angle=angle2-angle1;// conduction angle in degrees
+D=angle*100/360;// duty cycle in %
+disp("%",D,"duty cycle=")
+
+// Result
+// duty cycle is 33.3 % \ No newline at end of file
diff --git a/317/CH22/EX22.5/example5.txt b/317/CH22/EX22.5/example5.txt
new file mode 100755
index 000000000..4aedafe18
--- /dev/null
+++ b/317/CH22/EX22.5/example5.txt
@@ -0,0 +1 @@
+duty cycle is 33.3 % \ No newline at end of file
diff --git a/317/CH22/EX22.6/example6.sce b/317/CH22/EX22.6/example6.sce
new file mode 100755
index 000000000..77e4ac75d
--- /dev/null
+++ b/317/CH22/EX22.6/example6.sce
@@ -0,0 +1,26 @@
+// find trip points and hysteresis
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 22-6, page 860
+
+clear;clc; close;
+
+// Given data
+Vsat=13.5;// in volts
+R1=1*10^3;// resistance in ohms
+R2=47*10^3;// resistance in ohms
+
+// Calculations
+B=R1/(R1+R2);// feedback fraction
+UTP=(R1/R2)*Vsat;// upper trip point in volts
+LTP=-(R1/R2)*Vsat;// lower trip point in volts
+H=UTP-LTP;// hysteresis in volts
+disp("Volts",UTP,"upper trip point=")
+disp("Volts",LTP,"lower trip point=")
+disp("Volts",H,"hysteresis=")
+
+// Result
+// Trip points are -0.287 and +0.287 Volts
+// Hysteresis is 0.574 Volts \ No newline at end of file
diff --git a/317/CH22/EX22.6/example6.txt b/317/CH22/EX22.6/example6.txt
new file mode 100755
index 000000000..bf839ec79
--- /dev/null
+++ b/317/CH22/EX22.6/example6.txt
@@ -0,0 +1,2 @@
+Trip points are -0.287 and +0.287 Volts
+Hysteresis is 0.574 Volts \ No newline at end of file
diff --git a/317/CH22/EX22.7/example7.sce b/317/CH22/EX22.7/example7.sce
new file mode 100755
index 000000000..21823c4f4
--- /dev/null
+++ b/317/CH22/EX22.7/example7.sce
@@ -0,0 +1,25 @@
+// find output voltage, closed loop time constant
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 22-7, page 865
+
+clear;clc; close;
+
+// Given data
+Avol=100000;// open loop voltage gain
+Vin=8;// input voltage in volts
+C=1*10^-6;// capacitance in faraday
+R=2*10^3;// resistance in ohms
+T=10^-3;// in seconds
+
+// Calculations
+t=R*C*(1+Avol);// closed loop time constant in seconds
+V=(T*Vin)/(R*C);// magnitude of negative output voltage at end of pulse in volts
+disp("seconds",t,"time constant=")
+disp("Volts",V,"output voltage=")
+
+// Result
+// Closed loop time constant is 200 seconds
+// Output voltage at end of pulse is -4 volts \ No newline at end of file
diff --git a/317/CH22/EX22.7/example7.txt b/317/CH22/EX22.7/example7.txt
new file mode 100755
index 000000000..7d9846c63
--- /dev/null
+++ b/317/CH22/EX22.7/example7.txt
@@ -0,0 +1,2 @@
+Closed loop time constant is 200 seconds
+Output voltage at end of pulse is -4 volts \ No newline at end of file
diff --git a/317/CH22/EX22.8/example8.sce b/317/CH22/EX22.8/example8.sce
new file mode 100755
index 000000000..855270fe5
--- /dev/null
+++ b/317/CH22/EX22.8/example8.sce
@@ -0,0 +1,21 @@
+// find output voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 22-8, page 868
+
+clear;clc; close;
+
+// Given data
+fin=10^3;// frequency in hertz`
+Vp=5;// peak voltage in volts
+C=10*10^-6;// capacitance in faraday
+R=10^3;// resistance in ohms
+
+// Calculations
+Vout=Vp/(2*fin*R*C);// output voltage in Vpp
+disp("Volts",Vout,"output voltage=")
+
+// Result
+// Output voltage is 0.25 Vpp \ No newline at end of file
diff --git a/317/CH22/EX22.8/example8.txt b/317/CH22/EX22.8/example8.txt
new file mode 100755
index 000000000..66b5ff262
--- /dev/null
+++ b/317/CH22/EX22.8/example8.txt
@@ -0,0 +1 @@
+Output voltage is 0.25 Vpp \ No newline at end of file
diff --git a/317/CH23/EX23.1/example1.sce b/317/CH23/EX23.1/example1.sce
new file mode 100755
index 000000000..2284840ed
--- /dev/null
+++ b/317/CH23/EX23.1/example1.sce
@@ -0,0 +1,23 @@
+// find minimum and maximum frequency
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 23-1, page 897
+
+clear;clc; close;
+
+// Given data
+C=0.01*10^-6;// capacitance in faraday
+Rmin=1*10^3;// resistance in ohms
+Rmax=101*10^3;// resistance in ohms
+
+// Calculations
+fcmin=1/(2*%pi*Rmax*C);// cutoff frequency in hertz
+fcmax=1/(2*%pi*Rmin*C);// cutoff frequency in hertz
+disp("hertz",fcmax,"Maximum frequency of osscillation=")
+disp("hertz",fcmin,"Minimum frequency of osscillation=")
+
+// Result
+// Minimum frequency of osscillation is 158 Hertz
+// Maximum frequency of osscillation is 15.9 KHertz \ No newline at end of file
diff --git a/317/CH23/EX23.1/example1.txt b/317/CH23/EX23.1/example1.txt
new file mode 100755
index 000000000..728647f10
--- /dev/null
+++ b/317/CH23/EX23.1/example1.txt
@@ -0,0 +1,2 @@
+Minimum frequency of osscillation is 158 Hertz
+Maximum frequency of osscillation is 15.9 KHertz \ No newline at end of file
diff --git a/317/CH23/EX23.10/example10.sce b/317/CH23/EX23.10/example10.sce
new file mode 100755
index 000000000..8b9ada654
--- /dev/null
+++ b/317/CH23/EX23.10/example10.sce
@@ -0,0 +1,38 @@
+// find period of output pulses ,minimum and maximum pulse width, quiescent pulse width
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 23-10, page 927
+
+clear;clc; close;
+
+// Given data
+C=0.01*10^-6;// capacitance in faraday
+R=9.1*10^3;// resistance in ohms
+Vcc=12;// in volts
+f=2.5*10^3;// frequency in hertz
+Vmod=2;// peak voltage
+
+// Calculations
+T=1/f;// period of output pulses
+UTP=2*Vcc/3;// upper trip point in volts
+UTPmin=UTP-Vmod;// minimum upper trip point in volts
+UTPmax=UTP+Vmod;// maximum upper trip point in volts
+W=1.1*R*C;// quiescent pulse width
+Wmin=-R*C*log(1-(UTPmin/Vcc));// minimum pulse width
+Wmax=-R*C*log(1-(UTPmax/Vcc));// maximum pulse width
+disp("seconds",T,"period of output cycle=")
+disp("Volts",UTPmin,"Minium UTP=")
+disp("Volts",UTPmax,"Maxium UTP=")
+disp("seconds",W,"Quiescent pulse width=")
+disp("seconds",Wmin,"minimum pulse width=")
+disp("seconds",Wmax,"maximum pulse width=")
+
+// Result
+// Period of output pulses is 400 Microseconds
+// Quiescent pulse width is 100 Micro seconds
+// Minimum UTP is 6 Volts
+// Maximum UTP is 10 Volts
+// Minimum pulse width is 63.1 Microseconds
+// Maximum pulse width is 163 Microseconds \ No newline at end of file
diff --git a/317/CH23/EX23.10/example10.txt b/317/CH23/EX23.10/example10.txt
new file mode 100755
index 000000000..64daf82f1
--- /dev/null
+++ b/317/CH23/EX23.10/example10.txt
@@ -0,0 +1,6 @@
+Period of output pulses is 400 Microseconds
+Quiescent pulse width is 100 Micro seconds
+Minium UTP is 6 Volts
+Maximum UTP is 10 Volts
+Minimum pulse width is 63.1 Microseconds
+Maximum pulse width is 163 Microseconds \ No newline at end of file
diff --git a/317/CH23/EX23.12/example12.sce b/317/CH23/EX23.12/example12.sce
new file mode 100755
index 000000000..9f74de011
--- /dev/null
+++ b/317/CH23/EX23.12/example12.sce
@@ -0,0 +1,27 @@
+// find slope of output ramp,its peak value,duration
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 23-12, page 929
+
+clear;clc; close;
+
+// Given data
+C=100*10^-9;// capacitance in faraday
+Ic=10^-3;// collector cuurent in amperes
+Vcc=15;// in volts
+f=2.5*10^3;// frequency in hertz
+
+// Calculations
+S=Ic/C;// slope in Volts/second
+V=2*Vcc/3;// peak value of ramp
+T=2*Vcc/(3*S);// duration of ramp in seconds
+disp(S,"slope of output ramp=")
+disp("Volts",V,"peak value=")
+disp("seconds",T,"duration of the ramp=")
+
+// Result
+// slope of output ramp is 10^4 Volts/Second
+// Peak value is 10 Volts
+// duration of the ramp is 10^-2 second \ No newline at end of file
diff --git a/317/CH23/EX23.12/example12.txt b/317/CH23/EX23.12/example12.txt
new file mode 100755
index 000000000..740c4f1bc
--- /dev/null
+++ b/317/CH23/EX23.12/example12.txt
@@ -0,0 +1,3 @@
+slope of output ramp is 10^4 Volts/Second
+Peak value is 10 Volts
+duration of the ramp is 10^-2 second \ No newline at end of file
diff --git a/317/CH23/EX23.2/example2.sce b/317/CH23/EX23.2/example2.sce
new file mode 100755
index 000000000..6b31b4560
--- /dev/null
+++ b/317/CH23/EX23.2/example2.sce
@@ -0,0 +1,21 @@
+// find output voltage of oscillator
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 23-2 , page 897
+
+clear;clc; close;
+
+// Given data
+R=10^3;// lamp resistance in ohms
+V=2;// lamp voltage in volts
+Rb=2*10^3;// feedback resistance in ohms
+
+// Calculations
+I=V/R;// lamp current in amperes
+Vout=I*(R+Rb);// output voltage in volts
+disp("Volts",Vout,"output voltage=")
+
+// Result
+// Output voltage of the oscillator is 6vrms \ No newline at end of file
diff --git a/317/CH23/EX23.2/example2.txt b/317/CH23/EX23.2/example2.txt
new file mode 100755
index 000000000..1df2c3b93
--- /dev/null
+++ b/317/CH23/EX23.2/example2.txt
@@ -0,0 +1 @@
+Output voltage of the oscillator is 6vrms \ No newline at end of file
diff --git a/317/CH23/EX23.4/example4.sce b/317/CH23/EX23.4/example4.sce
new file mode 100755
index 000000000..050e8b21c
--- /dev/null
+++ b/317/CH23/EX23.4/example4.sce
@@ -0,0 +1,22 @@
+// find frequency of oscillation
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 23-4, page 908
+
+clear;clc; close;
+
+// Given data
+C1=0.001*10^-6;// capacitance in faraday
+C2=0.01*10^-6;// capacitance in faraday
+C3=50*10^-12;// capacitance in faraday
+L=15*10^-6;// inductance in henry
+
+// Calculations
+C=1/((1/C1)+(1/C2)+(1/C3));// equivalent capacitance in faraday
+fr=1/(2*%pi*(L*C)^0.5);// frequency of oscillation in hertz
+disp("hertz",fr,"frequency of osscillation=")
+
+// Result
+// frequency of oscillation is 5.81 MHertz \ No newline at end of file
diff --git a/317/CH23/EX23.4/example4.txt b/317/CH23/EX23.4/example4.txt
new file mode 100755
index 000000000..cf742cedf
--- /dev/null
+++ b/317/CH23/EX23.4/example4.txt
@@ -0,0 +1 @@
+frequency of oscillation is 5.81 MHertz \ No newline at end of file
diff --git a/317/CH23/EX23.5/example5.sce b/317/CH23/EX23.5/example5.sce
new file mode 100755
index 000000000..561928b99
--- /dev/null
+++ b/317/CH23/EX23.5/example5.sce
@@ -0,0 +1,25 @@
+// find series and parallel resonant frequencies of crystal
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 23-5, page 912
+
+clear;clc; close;
+
+// Given data
+L=3;// inductance in henry
+Cm=10*10^-12;// capacitance in faraday
+Cs=0.05*10^-12;// capacitance in faraday
+R=2*10^3;// resistance in ohms
+
+// Calculations
+fs=1/(2*%pi*(L*Cs)^0.5);// series resonant frequency in hertz
+Cp=Cm*Cs/(Cm+Cs);// equivalent parallel capacitance
+fp=1/(2*%pi*(L*Cp)^0.5);// parallel resonant frequency in hertz
+disp("hertz",fs,"Series resonant frequency=")
+disp("hertz",fp,"parallel resonant frequency=")
+
+// Result
+// Series resonant frequency of the crystal is 411 Khertz
+// Parallel resonant frequency of the crystal is 412 Khertz \ No newline at end of file
diff --git a/317/CH23/EX23.5/example5.txt b/317/CH23/EX23.5/example5.txt
new file mode 100755
index 000000000..ed060b148
--- /dev/null
+++ b/317/CH23/EX23.5/example5.txt
@@ -0,0 +1,2 @@
+Series resonant frequency of the crystal is 411 Khertz
+Parallel resonant frequency of the crystal is 412 Khertz \ No newline at end of file
diff --git a/317/CH23/EX23.6/example6.sce b/317/CH23/EX23.6/example6.sce
new file mode 100755
index 000000000..c85332b95
--- /dev/null
+++ b/317/CH23/EX23.6/example6.sce
@@ -0,0 +1,26 @@
+// find minimum trigger voltage,maximum capacitor voltage ,width of output pulse
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 23-6, page 918
+
+clear;clc; close;
+
+// Given data
+C=0.47*10^-6;// capacitance in faraday
+R=33*10^3;// resistance in ohms
+Vcc=12;// in volts
+
+// Calculations
+UTP=2*Vcc/3;// upper trip point in volts
+LTP=Vcc/3;// lower trip point in volts
+W=1.1*R*C;// pulse width
+disp("Volts",UTP,"Maximum trigger voltage=")
+disp("Volts",LTP,"Minimum trigger voltage=")
+disp("seconds",W,"pulse width=")
+
+// Result
+// Minimum trigger voltage is 4 Volts
+// Maximum capacitor voltage is 8 Volts
+// Pulse width is 17.1 mSeconds \ No newline at end of file
diff --git a/317/CH23/EX23.6/example6.txt b/317/CH23/EX23.6/example6.txt
new file mode 100755
index 000000000..c292b3c9a
--- /dev/null
+++ b/317/CH23/EX23.6/example6.txt
@@ -0,0 +1,3 @@
+Minimum trigger voltage is 4 Volts
+Maximum capacitor voltage is 8 Volts
+Pulse width is 17.1 mSeconds \ No newline at end of file
diff --git a/317/CH23/EX23.7/example7.sce b/317/CH23/EX23.7/example7.sce
new file mode 100755
index 000000000..7451648b6
--- /dev/null
+++ b/317/CH23/EX23.7/example7.sce
@@ -0,0 +1,19 @@
+// find width of output pulse
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 23-7, page 919
+
+clear;clc; close;
+
+// Given data
+C=470*10^-6;// capacitance in faraday
+R=10*10^6;// resistance in ohms
+
+// Calculations
+W=1.1*R*C;// pulse width
+disp("seconds",W,"pulse width=")
+
+// Result
+// Pulse width is 1.44 hrs \ No newline at end of file
diff --git a/317/CH23/EX23.7/example7.txt b/317/CH23/EX23.7/example7.txt
new file mode 100755
index 000000000..2d6f1570a
--- /dev/null
+++ b/317/CH23/EX23.7/example7.txt
@@ -0,0 +1 @@
+Pulse width is 1.44 hrs \ No newline at end of file
diff --git a/317/CH23/EX23.8/example8.sce b/317/CH23/EX23.8/example8.sce
new file mode 100755
index 000000000..8f30e36ef
--- /dev/null
+++ b/317/CH23/EX23.8/example8.sce
@@ -0,0 +1,23 @@
+// find frequency of output and duty cycle
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 23-8, page 922
+
+clear;clc; close;
+
+// Given data
+C=47*10^-9;// capacitance in faraday
+R1=75*10^3;// resistance in ohms
+R2=30*10^3;// resistance in ohms
+
+// Calculations
+f=1.44/((R1+2*R2)*C);// frequency in hertz
+D=(R1+R2)/(R1+(2*R2));// duty cycle
+disp("hertz",f,"frequency in hertz=")
+disp("%",D,"duty cycle")
+
+// Result
+// Frequency of output signal is 227 hertz
+// duty cycle is 0.778 \ No newline at end of file
diff --git a/317/CH23/EX23.8/example8.txt b/317/CH23/EX23.8/example8.txt
new file mode 100755
index 000000000..2be59cb80
--- /dev/null
+++ b/317/CH23/EX23.8/example8.txt
@@ -0,0 +1,2 @@
+Frequency of output signal is 227 hertz
+Duty cycle is 0.778 \ No newline at end of file
diff --git a/317/CH24/EX24.1/example1.sce b/317/CH24/EX24.1/example1.sce
new file mode 100755
index 000000000..15d0a22d5
--- /dev/null
+++ b/317/CH24/EX24.1/example1.sce
@@ -0,0 +1,29 @@
+// find output,load,collector current
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 24-1, page 954
+
+clear; clc; close;
+
+// Given data
+Vin=15;// input voltage
+Rs=10;// in ohms
+Vz=9.1;// in volts
+Vbe=0.8;// in volts
+Rl=40;// in ohms
+
+// Calculations
+Vout=Vz+Vbe;// output voltage in volts
+Is=(Vin-Vout)/Rs;// current through series resistor in amperes
+Il=Vout/Rl;// load current in amperes
+Ic=Is-Il;// collector current in ampers
+disp("Volts",Vout,"output voltage=")
+disp("amperes",Il,"load current=")
+disp("amperes",Ic,"collector current=")
+
+// Results
+// Output voltage is 9.9
+// Load current is 248 mAmperes
+// Collector current is 262 mAmperes \ No newline at end of file
diff --git a/317/CH24/EX24.1/example1.txt b/317/CH24/EX24.1/example1.txt
new file mode 100755
index 000000000..8d67e912c
--- /dev/null
+++ b/317/CH24/EX24.1/example1.txt
@@ -0,0 +1,3 @@
+Output voltage is 9.9 Volts
+Load current is 248 mAmperes
+Collector current is 262 mAmperes \ No newline at end of file
diff --git a/317/CH24/EX24.10/example10.sce b/317/CH24/EX24.10/example10.sce
new file mode 100755
index 000000000..fb6da3f7c
--- /dev/null
+++ b/317/CH24/EX24.10/example10.sce
@@ -0,0 +1,24 @@
+// find load regulation and line regulation
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 24-10, page 964
+
+clear; clc; close;
+
+// Given data
+Vnl=10.16;// in volts
+Vfl=10.15;// in volts
+Vhl=10.16;// in volts
+Vll=10.07;// in volts
+
+// Calculations
+ld=((Vnl-Vfl)/Vfl)*100 ;// load regulation in %
+ln=((Vhl-Vll)/Vll)*100;// loan regulation in %
+disp("%",ld,"load regulation=")
+disp("%",ln,"line regulation=")
+
+// Results
+// load regulation is 0.0985%
+// line regulation is 0.894% \ No newline at end of file
diff --git a/317/CH24/EX24.10/example10.txt b/317/CH24/EX24.10/example10.txt
new file mode 100755
index 000000000..d28c74122
--- /dev/null
+++ b/317/CH24/EX24.10/example10.txt
@@ -0,0 +1,2 @@
+load regulation is 0.0985%
+line regulation is 0.894% \ No newline at end of file
diff --git a/317/CH24/EX24.13/example13.sce b/317/CH24/EX24.13/example13.sce
new file mode 100755
index 000000000..b600dd26b
--- /dev/null
+++ b/317/CH24/EX24.13/example13.sce
@@ -0,0 +1,19 @@
+// find output voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 24-13, page 972
+
+clear; clc; close;
+
+// Given data
+R1=2*10^3;// in ohms
+R2=22*10^3 ;// in ohms
+
+// Calculations
+Vout=((R1+R2)/R1)*1.25;// output voltage in volts
+disp("Volts",Vout,"output voltage=")
+
+// Results
+// Output voltage is 15 Volts \ No newline at end of file
diff --git a/317/CH24/EX24.13/example13.txt b/317/CH24/EX24.13/example13.txt
new file mode 100755
index 000000000..8ec459dc4
--- /dev/null
+++ b/317/CH24/EX24.13/example13.txt
@@ -0,0 +1 @@
+Output voltage is 15 Volts \ No newline at end of file
diff --git a/317/CH24/EX24.15/example15.sce b/317/CH24/EX24.15/example15.sce
new file mode 100755
index 000000000..e3145739a
--- /dev/null
+++ b/317/CH24/EX24.15/example15.sce
@@ -0,0 +1,20 @@
+// find output voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 24-15, page 984
+
+clear; clc; close;
+
+// Given data
+R1=2.21*10^3;// in ohms
+R2=2.8*10^3 ;// in ohms
+Vref=2.21;// in volts
+
+// Calculations
+Vout=((R1+R2)/R1)*Vref;// output voltage in volts
+disp("Volts",Vout,"output voltage=")
+
+// Results
+// Output voltage is 5.01 Volts \ No newline at end of file
diff --git a/317/CH24/EX24.15/example15.txt b/317/CH24/EX24.15/example15.txt
new file mode 100755
index 000000000..b1d8bc407
--- /dev/null
+++ b/317/CH24/EX24.15/example15.txt
@@ -0,0 +1 @@
+Output voltage is 5.01 Volts \ No newline at end of file
diff --git a/317/CH24/EX24.16/example16.sce b/317/CH24/EX24.16/example16.sce
new file mode 100755
index 000000000..181336c75
--- /dev/null
+++ b/317/CH24/EX24.16/example16.sce
@@ -0,0 +1,20 @@
+// find output voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 24-16, page 984
+
+clear; clc; close;
+
+// Given data
+R1=1*10^3;// in ohms
+R2=5.79*10^3 ;// in ohms
+Vref=2.21;// in volts
+
+// Calculations
+Vout=((R1+R2)/R1)*Vref;// output voltage in volts
+disp("Volts",Vout,"output voltage=")
+
+// Results
+// Output voltage is 15 Volts \ No newline at end of file
diff --git a/317/CH24/EX24.16/example16.txt b/317/CH24/EX24.16/example16.txt
new file mode 100755
index 000000000..8ec459dc4
--- /dev/null
+++ b/317/CH24/EX24.16/example16.txt
@@ -0,0 +1 @@
+Output voltage is 15 Volts \ No newline at end of file
diff --git a/317/CH24/EX24.2/example2.sce b/317/CH24/EX24.2/example2.sce
new file mode 100755
index 000000000..2d202a5e5
--- /dev/null
+++ b/317/CH24/EX24.2/example2.sce
@@ -0,0 +1,31 @@
+// find output voltage,load,collector current
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 24-2, page 954
+
+clear; clc; close;
+
+// Given data
+Vin=15;// input voltage
+Rs=10;// in ohms
+Vz=6.2;// in volts
+Vbe=0.81;// in volts
+Rl=40;// in ohms
+R1=750;// in ohms
+R2=250 ;// in ohms
+
+// Calculations
+Vout=((R1+R2)/R1)*(Vz+Vbe);// output voltage in volts
+Is=(Vin-Vout)/Rs;// current through series resistor in amperes
+Il=Vout/Rl;// load current in amperes
+Ic=Is-Il;// collector current in ampers
+disp("Volts",Vout,"output voltage=")
+disp("amperes",Il,"load current=")
+disp("amperes",Ic,"collector current=")
+
+// Results
+// Output voltage is 9.35
+// Load current is 234 mAmperes
+// Collector current is 331 mAmperes \ No newline at end of file
diff --git a/317/CH24/EX24.2/example2.txt b/317/CH24/EX24.2/example2.txt
new file mode 100755
index 000000000..5b4cb6037
--- /dev/null
+++ b/317/CH24/EX24.2/example2.txt
@@ -0,0 +1,3 @@
+Output voltage is 9.35
+Load current is 234 mAmperes
+Collector current is 331 mAmperes \ No newline at end of file
diff --git a/317/CH24/EX24.3/example3.sce b/317/CH24/EX24.3/example3.sce
new file mode 100755
index 000000000..7dea2ade4
--- /dev/null
+++ b/317/CH24/EX24.3/example3.sce
@@ -0,0 +1,34 @@
+// find efficiency and power dissipated
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 24-3, page 955
+
+clear; clc; close;
+
+// Given data
+Vin=15;// input voltage
+Rs=10;// in ohms
+Vz=6.2;// in volts
+Vbe=0.81;// in volts
+Rl=40;// in ohms
+R1=750;// in ohms
+R2=250 ;// in ohms
+
+// Calculations
+Vout=((R1+R2)/R1)*(Vz+Vbe);// output voltage in volts
+Is=(Vin-Vout)/Rs;// current through series resistor in amperes
+Il=Vout/Rl;// load current in amperes
+Ic=Is-Il;// collector current in ampers
+Pout=Vout*Il;// load power in watts
+Iin=Is;// as I3 is very low input current in amperes
+Pin=Vin*Iin;// input power in watts
+E=(Pout/Pin)*100;// efficiency in %
+Preg=Pin-Pout;// power dissipated by regulator in watts
+disp("%",E,"efficiency=")
+disp("watts",Preg,"power dissipated=")
+
+// Results
+// Efficiency is 25.8 %
+// Power dissipated by regulator is 6.29 watts \ No newline at end of file
diff --git a/317/CH24/EX24.3/example3.txt b/317/CH24/EX24.3/example3.txt
new file mode 100755
index 000000000..4db406e13
--- /dev/null
+++ b/317/CH24/EX24.3/example3.txt
@@ -0,0 +1,2 @@
+Efficiency is 25.8 %
+Power dissipated by regulator is 6.29 watts \ No newline at end of file
diff --git a/317/CH24/EX24.4/example4.sce b/317/CH24/EX24.4/example4.sce
new file mode 100755
index 000000000..6b9c6f6df
--- /dev/null
+++ b/317/CH24/EX24.4/example4.sce
@@ -0,0 +1,33 @@
+// find output voltage,input,load,collector current
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 24-4, page 955
+
+clear; clc; close;
+
+// Given data
+Vin=15;// input voltage
+Rs=10;// in ohms
+Vz=6.8;// in volts
+Rl=40;// in ohms
+R1=7.5*10^3;// in ohms
+R2=2.5*10^3 ;// in ohms
+
+// Calculations
+Vout=((R1+R2)/R1)*Vz;// output voltage in volts
+Is=(Vin-Vout)/Rs;// current through series resistor in amperes
+Iin=Is;// as I3 is very low input current in amperes
+Il=Vout/Rl;// load current in amperes
+Ic=Is-Il;// collector current in ampers
+disp("Volts",Vout,"output voltage=")
+disp("amperes",Iin,"input current=")
+disp("amperes",Il,"load current=")
+disp("amperes",Ic,"collector current=")
+
+// Results
+// Output voltage is 9.07 Volts
+// Input current is 593 mAmperes
+// Load current is 227 mAmperes
+// Collector current is 366 mAmperes \ No newline at end of file
diff --git a/317/CH24/EX24.4/example4.txt b/317/CH24/EX24.4/example4.txt
new file mode 100755
index 000000000..8d5008440
--- /dev/null
+++ b/317/CH24/EX24.4/example4.txt
@@ -0,0 +1,4 @@
+Output voltage is 9.07 Volts
+Input current is 593 mAmperes
+Load current is 227 mAmperes
+Collector current is 366 mAmperes \ No newline at end of file
diff --git a/317/CH24/EX24.6/example6.sce b/317/CH24/EX24.6/example6.sce
new file mode 100755
index 000000000..664d3483d
--- /dev/null
+++ b/317/CH24/EX24.6/example6.sce
@@ -0,0 +1,24 @@
+// find load regulation and line regulation
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 24-6, page 956
+
+clear; clc; close;
+
+// Given data
+Vnl=9.91;// in volts
+Vfl=9.81;// in volts
+Vhl=9.94;// in volts
+Vll=9.79 ;// in volts
+
+// Calculations
+ld=((Vnl-Vfl)/Vfl)*100 ;// load regulation in %
+ln=((Vhl-Vll)/Vll)*100;// loan regulation in %
+disp("%",ld,"load regulation=")
+disp("%",ln,"line regulation=")
+
+// Results
+// load regulation is 1.02%
+// line regulation is 1.53% \ No newline at end of file
diff --git a/317/CH24/EX24.6/example6.txt b/317/CH24/EX24.6/example6.txt
new file mode 100755
index 000000000..51e22cfa1
--- /dev/null
+++ b/317/CH24/EX24.6/example6.txt
@@ -0,0 +1,2 @@
+load regulation is 1.02%
+line regulation is 1.53% \ No newline at end of file
diff --git a/317/CH24/EX24.7/example7.sce b/317/CH24/EX24.7/example7.sce
new file mode 100755
index 000000000..c65011df7
--- /dev/null
+++ b/317/CH24/EX24.7/example7.sce
@@ -0,0 +1,27 @@
+// find output voltage,power dissipation
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 24-7, page 962
+
+clear; clc; close;
+
+// Given data
+Vin=15;// input voltage
+Vz=6.2;// in volts
+Vbe=0.7;// in volts
+Rl=40;// in ohms
+R1=3*10^3;// in ohms
+R2=1*10^3 ;// in ohms
+
+// Calculations
+Vout=((R1+R2)/R1)*(Vz+Vbe);// output voltage in volts
+Ic=Vout/Rl;// transistor current is equal to load current
+Pd=(Vin-Vout)*Ic;// power dissipation in watts
+disp("Volts",Vout,"output voltage=")
+disp("Watts",Pd,"power dissipation=")
+
+// Results
+// Output voltage is 9.2 Volts
+// power dissipation is 1.33 Watts \ No newline at end of file
diff --git a/317/CH24/EX24.7/example7.txt b/317/CH24/EX24.7/example7.txt
new file mode 100755
index 000000000..4b474287f
--- /dev/null
+++ b/317/CH24/EX24.7/example7.txt
@@ -0,0 +1,2 @@
+Output voltage is 9.2 Volts
+Power dissipation is 1.33 Watts \ No newline at end of file
diff --git a/317/CH24/EX24.8/example8.sce b/317/CH24/EX24.8/example8.sce
new file mode 100755
index 000000000..96eafd677
--- /dev/null
+++ b/317/CH24/EX24.8/example8.sce
@@ -0,0 +1,28 @@
+// find efficiency
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 24-8, page 963
+
+clear; clc; close;
+
+// Given data
+Vin=15;// input voltage
+Vz=6.2;// in volts
+Vbe=0.7;// in volts
+Rl=40;// in ohms
+R1=3*10^3;// in ohms
+R2=1*10^3 ;// in ohms
+
+// Calculations
+Vout=((R1+R2)/R1)*(Vz+Vbe);// output voltage in volts
+Il=Vout/Rl;// load current in amperes
+Ic=Il;// transistor current is equal to load current
+Pout=Vout*Il;// load power in watts
+Pin=Vin*Ic;// input power in watts
+E=(Pout/Pin)*100;// efficiency in %
+disp("%",E,"efficiency=")
+
+// Results
+// Efficiency is 61.3 % \ No newline at end of file
diff --git a/317/CH24/EX24.8/example8.txt b/317/CH24/EX24.8/example8.txt
new file mode 100755
index 000000000..3ca0fad15
--- /dev/null
+++ b/317/CH24/EX24.8/example8.txt
@@ -0,0 +1 @@
+Efficiency is 61.3 % \ No newline at end of file
diff --git a/317/CH3/EX3.2/example2.sce b/317/CH3/EX3.2/example2.sce
new file mode 100755
index 000000000..28d187361
--- /dev/null
+++ b/317/CH3/EX3.2/example2.sce
@@ -0,0 +1,16 @@
+
+// Example 3-2, page 63
+
+clear;clc; close;
+
+// Given data
+v=1.2; // diode voltage in volts
+i=1.75; // diode current in amperes
+P(1)=5;// power rating in watts
+
+// Calculations
+P(2)=v*i; // power dissipation
+disp("Watts",P(2),"Power dissipation")
+
+// Result
+// As power dissipation is lower than power rating the diode will not get destroyed.
diff --git a/317/CH3/EX3.2/example2.txt b/317/CH3/EX3.2/example2.txt
new file mode 100755
index 000000000..7999d2592
--- /dev/null
+++ b/317/CH3/EX3.2/example2.txt
@@ -0,0 +1 @@
+ As power dissipation is lower than power rating the diode will not get destroyed
diff --git a/317/CH3/EX3.3/example3.sce b/317/CH3/EX3.3/example3.sce
new file mode 100755
index 000000000..dd1fdab62
--- /dev/null
+++ b/317/CH3/EX3.3/example3.sce
@@ -0,0 +1,17 @@
+// to find load voltage and load current using ideal diode
+
+// Example 3-3, page 65
+
+clear;clc; close;
+
+// Given data
+// diode is forward biased, equivalent to a closed switch.
+
+// Calculations
+V=10;// load voltage in volts
+R=1000;// load resistance in ohms
+I=V/R;// all the source voltage appears across the load resistor
+disp("Amperes",I,"Load Current=")
+disp("Volts",V,"Load Voltage=")
+
+
diff --git a/317/CH3/EX3.3/example3.txt b/317/CH3/EX3.3/example3.txt
new file mode 100755
index 000000000..4be85e7e7
--- /dev/null
+++ b/317/CH3/EX3.3/example3.txt
@@ -0,0 +1,2 @@
+load current is 10 milliampears
+load voltage is 10 volt
diff --git a/317/CH3/EX3.4/example4.sce b/317/CH3/EX3.4/example4.sce
new file mode 100755
index 000000000..7266b4096
--- /dev/null
+++ b/317/CH3/EX3.4/example4.sce
@@ -0,0 +1,22 @@
+
+// Example 3-4, page 65`
+
+clear;clc; close;
+
+// Given data
+// refer to the diagram, thevenize the circuit to the left of the diode.
+// looking at the diode back toward the source,we see a voltage divider with 6 killo-ohms and 3 killo-ohms.
+R=2000;// thevenin resistance in ohms
+V=12;// thevenin voltage in volts
+
+// Calculations
+disp("Using Thevenin Thm")
+// we have a series circuit and the diode is forward biased.
+// visualize the diode as a closed switch
+I=V/3000; // load current in amperes
+V(1)=I*1000;// load voltage
+disp("Amperes",I,"Load Current=")
+disp("Volts",V(1),"Load Voltage=")
+
+
+
diff --git a/317/CH3/EX3.4/example4.txt b/317/CH3/EX3.4/example4.txt
new file mode 100755
index 000000000..1d052cacf
--- /dev/null
+++ b/317/CH3/EX3.4/example4.txt
@@ -0,0 +1,3 @@
+load current is 4 milliamperes
+load voltage is 4 volts
+
diff --git a/317/CH3/EX3.5/example5.sce b/317/CH3/EX3.5/example5.sce
new file mode 100755
index 000000000..3785f7106
--- /dev/null
+++ b/317/CH3/EX3.5/example5.sce
@@ -0,0 +1,22 @@
+
+// Example 3-5, page 67`
+
+clear;clc; close;
+
+// Given data
+// the diode is forward biased, equivalent to a battery of 0.7 volts
+V=10;// voltage of battery in volts
+Vd=0.7;// diode drop in volts
+
+// Calculations
+Vl=V-Vd;// load voltage in volts
+R=1000;// load resistance in ohms
+Il=Vl/R;// load current in amperes
+Pd=Il*Vd;// diode power in watts
+disp("Amperes",Il,"Load Current=")
+disp("Volts",Vl,"Load Voltage=")
+disp("Watts",Pd,"Diode power=")
+
+
+
+
diff --git a/317/CH3/EX3.5/example5.txt b/317/CH3/EX3.5/example5.txt
new file mode 100755
index 000000000..546d8274b
--- /dev/null
+++ b/317/CH3/EX3.5/example5.txt
@@ -0,0 +1,3 @@
+load voltage is 9.3 volts
+load current is 9.3 milli amperes
+diode power is 6.51 milli watts
diff --git a/317/CH3/EX3.6/example6.sce b/317/CH3/EX3.6/example6.sce
new file mode 100755
index 000000000..845ef7b6e
--- /dev/null
+++ b/317/CH3/EX3.6/example6.sce
@@ -0,0 +1,22 @@
+
+// Example 3-6, page 67`
+
+clear;clc; close;
+
+// Given data
+// thevenize the circuit to the left of the diode.
+// looking at the diode back toward the source,we see a voltage divider with 6 killo-ohms and 3 killo-ohms.
+R=2000;// thevenin resistance in ohms
+V(1)=12;// thevenin voltage in volts
+
+// Calculations
+disp("Using Thevenin Thm")
+V(2)=0.7;// diode voltage in volts
+I=(V(1)-V(2))/3000// load current in amperes
+P=V(2)*I // diode power in watts
+V=I*1000// load voltage in volts
+disp("Amperes",I,"Load Current=")
+disp("Volts",V,"Load Voltage=")
+disp("Watts",P,"Diode power=")
+
+
diff --git a/317/CH3/EX3.6/example6.txt b/317/CH3/EX3.6/example6.txt
new file mode 100755
index 000000000..876496119
--- /dev/null
+++ b/317/CH3/EX3.6/example6.txt
@@ -0,0 +1,3 @@
+load voltage is 3.77 volts
+load current is 3.77 milli amperes
+diode power is 2.64 milli watts
diff --git a/317/CH3/EX3.7/example7.sce b/317/CH3/EX3.7/example7.sce
new file mode 100755
index 000000000..664ed35e4
--- /dev/null
+++ b/317/CH3/EX3.7/example7.sce
@@ -0,0 +1,21 @@
+
+// Example 3-7, page 68
+
+clear;clc; close;
+
+// Given data
+Vd=0.7;// diode drop in volts
+V=10;// source voltage
+R=1000;// resistance in ohms
+
+// Calculations
+Vl=V-Vd;// load voltage in volts
+I=Vl/R;// load current in amperes
+P=(V-Vl)*I;// diode power in watts
+disp("Amperes",I,"Load Current=")
+disp("Volts",Vl,"Load Voltage=")
+disp("Watts",P,"Diode power=")
+
+
+
+
diff --git a/317/CH3/EX3.7/example7.txt b/317/CH3/EX3.7/example7.txt
new file mode 100755
index 000000000..be954be37
--- /dev/null
+++ b/317/CH3/EX3.7/example7.txt
@@ -0,0 +1,4 @@
+load voltage is 9.3 volts
+load current is 9.3 milli amperes
+diode power is 6.51 milli watt
+
diff --git a/317/CH3/EX3.8/example8.sce b/317/CH3/EX3.8/example8.sce
new file mode 100755
index 000000000..ef0dcfcc1
--- /dev/null
+++ b/317/CH3/EX3.8/example8.sce
@@ -0,0 +1,22 @@
+
+// Example 3-8, page 69`
+
+clear;clc; close;
+
+// Given data
+Rl=10;// load resistance in ohms
+Rb=0.23;// bulk resistance in ohms
+// diode drop=0.7 volts
+
+// Calculations
+Rt=Rl+Rb;// total resistance in ohms
+Vt=10-0.7;// voltage of battery-diode drop
+I=Vt/Rt;// load current
+Vl=I*10;// load voltage
+Vd=10-Vl;// source voltage-load voltage
+P=Vd*I;
+disp("Amperes",I,"Load Current=")
+disp("Volts",Vl,"Load Voltage=")
+disp("Watts",P,"Diode power=")
+
+
diff --git a/317/CH3/EX3.8/example8.txt b/317/CH3/EX3.8/example8.txt
new file mode 100755
index 000000000..45401ebb9
--- /dev/null
+++ b/317/CH3/EX3.8/example8.txt
@@ -0,0 +1,3 @@
+load voltage is 9.09 volts
+load current is 0.909 amperes
+diode power is 0.826 watts
diff --git a/317/CH4/EX4.1/example1.sce b/317/CH4/EX4.1/example1.sce
new file mode 100755
index 000000000..3a0ae3f44
--- /dev/null
+++ b/317/CH4/EX4.1/example1.sce
@@ -0,0 +1 @@
+//Theory Example \ No newline at end of file
diff --git a/317/CH4/EX4.1/example1.txt b/317/CH4/EX4.1/example1.txt
new file mode 100755
index 000000000..c94b56693
--- /dev/null
+++ b/317/CH4/EX4.1/example1.txt
@@ -0,0 +1,7 @@
+for an ideal diode
+peak load voltage is 14.1 volts
+dc load voltage is 4.49 volts
+
+with second approximation
+peak load voltage is 13.4 volts
+dc load voltage is 4.27 volts
diff --git a/317/CH4/EX4.10/example10.sce b/317/CH4/EX4.10/example10.sce
new file mode 100755
index 000000000..af91d2a73
--- /dev/null
+++ b/317/CH4/EX4.10/example10.sce
@@ -0,0 +1,18 @@
+
+// Example 4-10, page 114
+
+clear;clc; close;
+
+// Given data
+V1=120;// rms input voltage in volts
+// turns ratio 8:1
+
+// Calculations
+V2=V1/8;// rms secondary voltage in volts
+Vp=V2/0.707;// peak secondary voltage
+PIV=Vp;// peak inverse voltage
+disp(PIV)
+disp("Volts",PIV,"Peak inverse voltage =")
+
+// Result
+// peak inverse voltage is 21.2 volts
diff --git a/317/CH4/EX4.10/example10.txt b/317/CH4/EX4.10/example10.txt
new file mode 100755
index 000000000..b120c23e8
--- /dev/null
+++ b/317/CH4/EX4.10/example10.txt
@@ -0,0 +1 @@
+peak inverse voltage is 21.2 volts
diff --git a/317/CH4/EX4.2/example2.sce b/317/CH4/EX4.2/example2.sce
new file mode 100755
index 000000000..ecbb4b909
--- /dev/null
+++ b/317/CH4/EX4.2/example2.sce
@@ -0,0 +1,29 @@
+
+// Example 4-2, page 95
+
+clear;clc; close;
+
+// Given data
+// refer to the diagram
+// turns ratio 5:1
+V1=120;// primary voltage in volts
+
+// Calculations
+
+V2=V1/5;// secondary voltage in volts
+Vpin=V2/0.707;// peak secondary voltage in volts
+// with ideal diode
+Vpout=Vpin;
+Vdc=Vpout/%pi;
+disp("Volts",Vpout,"Peak voltage =")
+disp("Volts",Vdc,"dc load voltage=")
+// with second approximation
+
+Vpout=Vpin-0.7;// peak load voltage in volts
+Vdc=Vpout/%pi;
+disp("Volts",Vpout,"Peak voltage =")
+disp("Volts",Vdc,"dc load voltage=")
+
+
+
+
diff --git a/317/CH4/EX4.2/example2.txt b/317/CH4/EX4.2/example2.txt
new file mode 100755
index 000000000..2953e1763
--- /dev/null
+++ b/317/CH4/EX4.2/example2.txt
@@ -0,0 +1,7 @@
+for an ideal diode
+peak load voltage is 34 volts
+dc load voltage is 10.8 volts
+
+with second approximation
+peak load voltage is 33.3 volts
+dc load voltage is 10.6 volts
diff --git a/317/CH4/EX4.3/example3.sce b/317/CH4/EX4.3/example3.sce
new file mode 100755
index 000000000..0356b4400
--- /dev/null
+++ b/317/CH4/EX4.3/example3.sce
@@ -0,0 +1,25 @@
+
+// Example 4-3, page 97
+
+clear;clc; close;
+
+// Given data
+Vrms=120;// in volts
+// 10:1 step down transformer
+
+// Calculations
+
+Vp1=Vrms/0.707;// peak primary voltage in volts
+Vp2=Vp1/10;// peak secondary voltage in volts
+// the full wave rectifier acts like 2 back-to-back half-wave rectifiers.because of the center tap,the input voltage to each half-wave rectifier is only half the secondary voltage
+Vpin=0.5*Vp2;
+disp("Volts",Vpin,"Peak input voltage =")
+
+Vpout=Vpin;// ideally
+disp("Volts",Vpout,"Peak voltage =")
+
+Vpout=Vpin-0.7;// using second approximation
+disp("Volts",Vpout,"Peak voltage =")
+
+
+
diff --git a/317/CH4/EX4.3/example3.txt b/317/CH4/EX4.3/example3.txt
new file mode 100755
index 000000000..2e20f22ee
--- /dev/null
+++ b/317/CH4/EX4.3/example3.txt
@@ -0,0 +1,3 @@
+peak input voltage is 8.5 volts
+ideally peak output voltage is 8.5 volts
+with second approximation peak output voltage is 7.8 volts.
diff --git a/317/CH4/EX4.5/example5.sce b/317/CH4/EX4.5/example5.sce
new file mode 100755
index 000000000..3a0ae3f44
--- /dev/null
+++ b/317/CH4/EX4.5/example5.sce
@@ -0,0 +1 @@
+//Theory Example \ No newline at end of file
diff --git a/317/CH4/EX4.5/example5.txt b/317/CH4/EX4.5/example5.txt
new file mode 100755
index 000000000..b4f9a44aa
--- /dev/null
+++ b/317/CH4/EX4.5/example5.txt
@@ -0,0 +1,4 @@
+peak primary voltage is 170 volts
+peak secondary voltage is 17 volts
+ideally peak output voltage is 17 volts
+with second approximation peak output voltage is 15.6 volts.
diff --git a/317/CH4/EX4.6/example6.sce b/317/CH4/EX4.6/example6.sce
new file mode 100755
index 000000000..0e6061273
--- /dev/null
+++ b/317/CH4/EX4.6/example6.sce
@@ -0,0 +1 @@
+//Theory Example
diff --git a/317/CH4/EX4.6/example6.txt b/317/CH4/EX4.6/example6.txt
new file mode 100755
index 000000000..4e0af9b38
--- /dev/null
+++ b/317/CH4/EX4.6/example6.txt
@@ -0,0 +1,2 @@
+dc load voltage is 34 volts
+ripple is 1.1 Vpp
diff --git a/317/CH4/EX4.7/example7.sce b/317/CH4/EX4.7/example7.sce
new file mode 100755
index 000000000..0e6061273
--- /dev/null
+++ b/317/CH4/EX4.7/example7.sce
@@ -0,0 +1 @@
+//Theory Example
diff --git a/317/CH4/EX4.7/example7.txt b/317/CH4/EX4.7/example7.txt
new file mode 100755
index 000000000..3dc3791d6
--- /dev/null
+++ b/317/CH4/EX4.7/example7.txt
@@ -0,0 +1,2 @@
+dc load voltage is 17 volts
+ripple is 0.28 Vpp
diff --git a/317/CH4/EX4.8/example8.sce b/317/CH4/EX4.8/example8.sce
new file mode 100755
index 000000000..ea39e164a
--- /dev/null
+++ b/317/CH4/EX4.8/example8.sce
@@ -0,0 +1,28 @@
+// calculating of dc load voltage and ripple
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 4-8, page 110
+
+clear;clc; close;
+
+// Given data
+V1=120;// rms input voltage in volts
+Rl=5000;// dc load resistance in ohms
+f=60;// frequency in hertz
+C=100*10^-6// capacitance in farads
+// 5:1 step down transformer
+
+// Calculations
+V2=V1/5;// rms secondary voltage in volts
+Vp=V2/0.707;// peak secondary voltage
+Vl=Vp;// ideal diode and small ripple
+Il=Vl/Rl;// dc load current in amperes
+Vr=Il/(2*f*C);// ripple in vpp,bridge rectifier
+disp("Volts",Vl,"dc load voltage =")
+disp("Volts",Vr,"riple =")
+
+// Result
+// dc load voltage is 34 volts
+// ripple is 0.57 Vpp
diff --git a/317/CH4/EX4.8/example8.txt b/317/CH4/EX4.8/example8.txt
new file mode 100755
index 000000000..069891d8c
--- /dev/null
+++ b/317/CH4/EX4.8/example8.txt
@@ -0,0 +1,2 @@
+dc load voltage is 34 volts
+ripple is 0.57 Vpp
diff --git a/317/CH4/EX4.9/example9.sce b/317/CH4/EX4.9/example9.sce
new file mode 100755
index 000000000..7b8b86c97
--- /dev/null
+++ b/317/CH4/EX4.9/example9.sce
@@ -0,0 +1,28 @@
+// calculating of dc load voltage and ripple
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 4-9, page 111
+
+clear;clc; close;
+
+// Given data
+V1=120;// rms input voltage in volts
+Rl=500;// dc load resistance in ohms
+f=60;// frequency in hertz
+C=4700*10^-6// capacitance in farads
+// 15:1 step down transformer
+
+// Calculations
+V2=V1/15;// rms secondary voltage in volts
+Vp=V2/0.707;// peak secondary voltage
+Vl=Vp-1.4;// using second approximation
+Il=Vl/Rl;// dc load current in amperes
+Vr=Il/(2*f*C);// ripple in vpp,bridge rectifier
+disp("Volts",Vl,"dc load voltage =")
+disp("Volts",Vr,"riple =")
+
+// Result
+// dc load voltage is 9.9 volts
+// ripple is 35 mVpp
diff --git a/317/CH4/EX4.9/example9.txt b/317/CH4/EX4.9/example9.txt
new file mode 100755
index 000000000..c0fd34223
--- /dev/null
+++ b/317/CH4/EX4.9/example9.txt
@@ -0,0 +1,2 @@
+dc load voltage is 9.9 volts
+ripple is 35 mVpp
diff --git a/317/CH5/EX5.1/example1.sce b/317/CH5/EX5.1/example1.sce
new file mode 100755
index 000000000..f851ab770
--- /dev/null
+++ b/317/CH5/EX5.1/example1.sce
@@ -0,0 +1,25 @@
+// find minimum and maximum zener currents
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 1-1, page 9
+
+clear;clc; close;
+
+// Given data
+R=820;// resistance in ohms
+V=10;// breakdown voltage of diode
+Vinmin=20;// minimum input voltage in volts
+Vinmax=40;// maximum input voltage in volts
+
+// Calculations
+// voltage across resistor=input voltage-breakdown voltage
+Ismin=(Vinmin-V)/R;// minimum zener current in amperes
+Ismax=(Vinmax-V)/R;// maximum zener current in amperes
+disp("Amperes",Ismin,"Minimum zener current =")
+disp("Amperes",Ismax,"Maximum zener current =")
+
+// results
+// minimum zener current is 12.2 mAmperes
+// maximum zener current is 36.6 mAmperes
diff --git a/317/CH5/EX5.1/example1.txt b/317/CH5/EX5.1/example1.txt
new file mode 100755
index 000000000..74ae2999a
--- /dev/null
+++ b/317/CH5/EX5.1/example1.txt
@@ -0,0 +1,2 @@
+minimum zener current is 12.2 mAmperes
+maximum zener current is 36.6 mAmperes
diff --git a/317/CH5/EX5.10/example10.sce b/317/CH5/EX5.10/example10.sce
new file mode 100755
index 000000000..440f4d5e5
--- /dev/null
+++ b/317/CH5/EX5.10/example10.sce
@@ -0,0 +1,20 @@
+// find maximum allowable series resistance
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 5-10, page 157
+
+clear;clc; close;
+
+// Given data
+Rlmin=140;// minimum load resistance in ohms
+Vsmin=22;// minimum input voltage in volts
+Vz=12;// zener voltage in volts
+
+// Calculations
+Rsmax=((Vsmin/Vz)-1)*Rlmin;// maximum series resistance in ohms
+disp("ohms",Rsmax,"Series resistance=")
+
+// Result
+// maximum series resistance is 117 ohms
diff --git a/317/CH5/EX5.10/example10.txt b/317/CH5/EX5.10/example10.txt
new file mode 100755
index 000000000..4b86a82b8
--- /dev/null
+++ b/317/CH5/EX5.10/example10.txt
@@ -0,0 +1 @@
+maximum series resistance is 117 ohms
diff --git a/317/CH5/EX5.11/example11.sce b/317/CH5/EX5.11/example11.sce
new file mode 100755
index 000000000..068ddc5b7
--- /dev/null
+++ b/317/CH5/EX5.11/example11.sce
@@ -0,0 +1,20 @@
+// find maximum allowable series resistance
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 5-11, page 157
+
+clear;clc; close;
+
+// Given data
+Ilmax=20*10^-3;// maximum load current in amperes
+Vsmin=15;// minimum input voltage in volts
+Vz=6.8;// zener voltage in volts
+
+// Calculations
+Rsmax=(Vsmin-Vz)/Ilmax;// maximum series resistance in ohms
+disp("ohms",Rsmax,"Series resistance=")
+
+// Result
+// maximum series resistance is 410 ohms
diff --git a/317/CH5/EX5.11/example11.txt b/317/CH5/EX5.11/example11.txt
new file mode 100755
index 000000000..f4688741c
--- /dev/null
+++ b/317/CH5/EX5.11/example11.txt
@@ -0,0 +1 @@
+maximum series resistance is 410 ohms
diff --git a/317/CH5/EX5.12/example12.sce b/317/CH5/EX5.12/example12.sce
new file mode 100755
index 000000000..9db40b798
--- /dev/null
+++ b/317/CH5/EX5.12/example12.sce
@@ -0,0 +1,20 @@
+// find approximate load current
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 5-12, page 168
+
+clear;clc; close;
+
+// Given data
+Vs=50;// dc input voltage in volts
+Vd=2;// forward voltage in volts
+Rs=2.2*10^3;// series resistance in ohms
+
+// Calculations
+Is=(Vs-Vd)/Rs;// load current in amperes
+disp("Amperes",Is,"load current =")
+
+// Result
+// approximate load current is 21.8 mAmperes.
diff --git a/317/CH5/EX5.12/example12.txt b/317/CH5/EX5.12/example12.txt
new file mode 100755
index 000000000..5706a9c69
--- /dev/null
+++ b/317/CH5/EX5.12/example12.txt
@@ -0,0 +1 @@
+approximate load current is 21.8 mAmperes
diff --git a/317/CH5/EX5.13/example13.sce b/317/CH5/EX5.13/example13.sce
new file mode 100755
index 000000000..bde55533b
--- /dev/null
+++ b/317/CH5/EX5.13/example13.sce
@@ -0,0 +1,21 @@
+// find load current
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 5-13, page 168
+
+clear;clc; close;
+
+// Given data
+// input terminals are shorted
+Vs=9;// dc input voltage in volts
+Vd=2;// forward voltage in volts
+Rs=470;// series resistance in ohms
+
+// Calculations
+Is=(Vs-Vd)/Rs;// load current in amperes
+disp("Amperes",Is,"load current =")
+
+// Result
+// approximate load current is 14.9 mAmperes.
diff --git a/317/CH5/EX5.13/example13.txt b/317/CH5/EX5.13/example13.txt
new file mode 100755
index 000000000..59c7138f3
--- /dev/null
+++ b/317/CH5/EX5.13/example13.txt
@@ -0,0 +1 @@
+approximate load current is 14.9 mAmperes.
diff --git a/317/CH5/EX5.14/example14.sce b/317/CH5/EX5.14/example14.sce
new file mode 100755
index 000000000..39578ed54
--- /dev/null
+++ b/317/CH5/EX5.14/example14.sce
@@ -0,0 +1,24 @@
+// find average LED current,power dissipation in series resistor
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 5-14, page 169
+
+clear;clc; close;
+
+// Given data
+V=20;// ac source rms voltage in volts
+Rs=680;// series resistance in ohms
+
+// Calculations
+Vp=sqrt(2)*V;// peak voltage in volts
+Is1=Vp/Rs;// peak current in amperes
+Is2=Is1/%pi;// average of the half-wave currnt through LED
+P=(V)^2/Rs;// power dissipated in watts
+disp("Amperes",Is2,"average LED current =")
+disp("Watts",P,"dissipated power=")
+
+// Result
+// Average LED current is 13.1 mAmperes
+// Power dissipated is 0.588 watts.
diff --git a/317/CH5/EX5.14/example14.txt b/317/CH5/EX5.14/example14.txt
new file mode 100755
index 000000000..f3564a0a6
--- /dev/null
+++ b/317/CH5/EX5.14/example14.txt
@@ -0,0 +1,2 @@
+Average LED current is 13.1 mAmperes
+Power dissipated is 0.588 watts
diff --git a/317/CH5/EX5.15/example15.sce b/317/CH5/EX5.15/example15.sce
new file mode 100755
index 000000000..5c6858874
--- /dev/null
+++ b/317/CH5/EX5.15/example15.sce
@@ -0,0 +1,23 @@
+// find average LED current
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 5-15, page 170
+
+clear;clc; close;
+
+// Given data
+f=60;// frequency in hertz
+C=0.68*10^-6;// capacitance in faradays
+V=170;// voltage in volts
+
+// Calculations
+Xc=1/(2*%pi*f*C);// capacitive resistance in ohms
+Is1=V/Xc;// peak current in amperes
+Is2=Is1/%pi;// average of the half-wave currnt through LED
+disp("Amperes",Is2,"average LED current =")
+
+// Result
+// Average LED current is 13.9 mAmperes
+
diff --git a/317/CH5/EX5.15/example15.txt b/317/CH5/EX5.15/example15.txt
new file mode 100755
index 000000000..ab5f69aff
--- /dev/null
+++ b/317/CH5/EX5.15/example15.txt
@@ -0,0 +1 @@
+Average LED current is 13.9 mAmperes
diff --git a/317/CH5/EX5.2/example2.sce b/317/CH5/EX5.2/example2.sce
new file mode 100755
index 000000000..9c63836f9
--- /dev/null
+++ b/317/CH5/EX5.2/example2.sce
@@ -0,0 +1,22 @@
+// to check if zener diode shown in the figure is operating in the breakdown region
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 5-2, page 149
+
+clear;clc; close;
+
+// Given data
+Rl=1*10^3;// in ohms
+Rs=270;// in ohms
+Vs=18;// in volts
+Vz=10;// zener voltage in volts
+
+// Calculations
+Vth=(Rl/(Rs+Rl))*Vs;// Thevenin voltage facing the diode
+disp("Volts",Vth,"Thevenin voltage=")
+disp("Vth>Vz")
+
+// Result
+// Since thevenin voltage is greater than zener voltage,zener diode is operating in the breakdown region \ No newline at end of file
diff --git a/317/CH5/EX5.2/example2.txt b/317/CH5/EX5.2/example2.txt
new file mode 100755
index 000000000..19d394637
--- /dev/null
+++ b/317/CH5/EX5.2/example2.txt
@@ -0,0 +1 @@
+Since thevenin voltage is greater than zener voltage,zener diode is operating in the breakdown region
diff --git a/317/CH5/EX5.3/example3.sce b/317/CH5/EX5.3/example3.sce
new file mode 100755
index 000000000..dfd50c75b
--- /dev/null
+++ b/317/CH5/EX5.3/example3.sce
@@ -0,0 +1,24 @@
+// to find zener current
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 5-3, page 149
+
+clear;clc; close;
+
+// Given data
+Vl=10;// load voltage in volts
+Rl=1*10^3;// in ohms
+Rs=270;// in ohms
+Vs=18;// in volts
+Vz=10;// zener voltage in volts
+
+// Calculations
+Is=(Vs-Vz)/Rs; // current through series resistor in amperes
+Il=Vl/Rl;// in amperes
+Iz=Is-Il;// zener current in amperes
+disp("Amperes",Iz,"zener current =")
+
+// Result
+// Zener current is 19.6 mAmperes
diff --git a/317/CH5/EX5.3/example3.txt b/317/CH5/EX5.3/example3.txt
new file mode 100755
index 000000000..7230ed5d4
--- /dev/null
+++ b/317/CH5/EX5.3/example3.txt
@@ -0,0 +1 @@
+Zener current is 19.6 mAmperes
diff --git a/317/CH5/EX5.7/example7.sce b/317/CH5/EX5.7/example7.sce
new file mode 100755
index 000000000..a3cbe91d6
--- /dev/null
+++ b/317/CH5/EX5.7/example7.sce
@@ -0,0 +1,21 @@
+// using second approximation find load voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 5-7, page 153
+
+clear;clc; close;
+
+// Given data
+Iz=20*10^-3;// zener current in amperes
+Rz=8.5;// zener resistance in ohms
+Vz=10;// breakdown voltage in volts
+
+// Calculations
+dVl=Iz*Rz;// change in load voltage in volts
+Vl=Vz+dVl;// load voltage in volts
+disp("Volts",Vl,"load voltage=")
+
+// Result
+// load voltage is 10.17 volts
diff --git a/317/CH5/EX5.7/example7.txt b/317/CH5/EX5.7/example7.txt
new file mode 100755
index 000000000..1c3cbe0d2
--- /dev/null
+++ b/317/CH5/EX5.7/example7.txt
@@ -0,0 +1 @@
+load voltage is 10.17 volts
diff --git a/317/CH5/EX5.8/example8.sce b/317/CH5/EX5.8/example8.sce
new file mode 100755
index 000000000..4f5d33a26
--- /dev/null
+++ b/317/CH5/EX5.8/example8.sce
@@ -0,0 +1,21 @@
+// find approximate ripple voltage across load
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 5-8, page 154
+
+clear;clc; close;
+
+// Given data
+Rs=270; // series resistance in ohms
+Vrin=2;// input ripple in volts
+Rz=8.5;// zener resistance in ohms
+Vz=10;// breakdown voltage in volts
+
+// Calculations
+Vrout=(Rz/Rs)*Vrin;// output ripple in volts
+disp("Volts",Vrout,"load ripple=")
+
+// Result
+// approximate load ripple is 63 mVolts
diff --git a/317/CH5/EX5.8/example8.txt b/317/CH5/EX5.8/example8.txt
new file mode 100755
index 000000000..060cf7ae8
--- /dev/null
+++ b/317/CH5/EX5.8/example8.txt
@@ -0,0 +1 @@
+approximate load ripple is 63 mVolts
diff --git a/317/CH6/EX6.1/example1.sce b/317/CH6/EX6.1/example1.sce
new file mode 100755
index 000000000..d61e6c848
--- /dev/null
+++ b/317/CH6/EX6.1/example1.sce
@@ -0,0 +1,20 @@
+// to find current gain of the transistor
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 6-1, page 194
+
+clear;clc; close;
+
+// Given data
+Ic=10*10^-3;// collector current in amperes
+Ib=40*10^-6;// base current in amperes
+
+// Calculations
+Bdc=Ic/Ib;// current gain
+disp(Bdc)
+disp(Bdc,"current gain =")
+
+// Result
+// current gain is 250.
diff --git a/317/CH6/EX6.1/example1.txt b/317/CH6/EX6.1/example1.txt
new file mode 100755
index 000000000..93ef6a64d
--- /dev/null
+++ b/317/CH6/EX6.1/example1.txt
@@ -0,0 +1 @@
+current gain is 250
diff --git a/317/CH6/EX6.11/example11.sce b/317/CH6/EX6.11/example11.sce
new file mode 100755
index 000000000..faa99735a
--- /dev/null
+++ b/317/CH6/EX6.11/example11.sce
@@ -0,0 +1,21 @@
+// find power dissipation
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 6-11, page 211
+
+clear;clc; close;
+
+// Given data
+Vce=10;// collector-emmiter voltage in volts
+Ic=20*10^-3;// collector-current in amperes
+T=25;// ambient temperature
+P=625*10^-3;// power rating in watts at 25 degree celcius
+
+// Calculations
+Pd=Vce*Ic;// power dissipation in watts
+disp("watts",Pd,"dissipated power=")
+
+// Result
+// As power dissipation is less than rated power at ambient temperature,transistor(2N3904) is safe
diff --git a/317/CH6/EX6.11/example11.txt b/317/CH6/EX6.11/example11.txt
new file mode 100755
index 000000000..d19a66742
--- /dev/null
+++ b/317/CH6/EX6.11/example11.txt
@@ -0,0 +1 @@
+As power dissipation is less than rated power at ambient temperature,transistor(2N3904) is safe
diff --git a/317/CH6/EX6.12/example12.sce b/317/CH6/EX6.12/example12.sce
new file mode 100755
index 000000000..47c2599da
--- /dev/null
+++ b/317/CH6/EX6.12/example12.sce
@@ -0,0 +1,23 @@
+// find if transistor is safe
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 6-12, page 212
+
+clear;clc; close;
+
+// Given data
+T1=100;// ambient temperature
+T2=25;// in degree celcius
+P=625*10^-3;// power rating in watts at 25 degree celcius
+d=5*10^-3;// derating factor with respect to temperature
+
+// Calculations
+dT=T1-T2;// difference in temperature
+dP=d*dT;// difference in power
+Pd=P-dP;// maximum power dissipated in watts when ambient temperature is 100 degree celcius
+disp("watts",Pd,"dissipated power=")
+
+// Result
+// If power dissipation is less than rated power at ambient temperatureor ambient temperature doesnt increase,transistor is safe \ No newline at end of file
diff --git a/317/CH6/EX6.12/example12.txt b/317/CH6/EX6.12/example12.txt
new file mode 100755
index 000000000..492fd0ece
--- /dev/null
+++ b/317/CH6/EX6.12/example12.txt
@@ -0,0 +1 @@
+If power dissipation is less than rated power at ambient temperatureor ambient temperature doesnt increase,transistor is safe
diff --git a/317/CH6/EX6.2/example2.sce b/317/CH6/EX6.2/example2.sce
new file mode 100755
index 000000000..ca309f6d0
--- /dev/null
+++ b/317/CH6/EX6.2/example2.sce
@@ -0,0 +1,19 @@
+// to find collector current of the transistor
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 6-2, page 194
+
+clear;clc; close;
+
+// Given data
+Bdc=175;// current gain
+Ib=0.1*10^-3;// base current in amperes
+
+// Calculations
+Ic=Bdc*Ib;// collector current in amperes
+disp("Amperes",Ic,"collector current =")
+
+// Result
+// Collector current is 17.5 mAmperes.
diff --git a/317/CH6/EX6.2/example2.txt b/317/CH6/EX6.2/example2.txt
new file mode 100755
index 000000000..36ee0d37e
--- /dev/null
+++ b/317/CH6/EX6.2/example2.txt
@@ -0,0 +1 @@
+Collector current is 17.5 mAmperes
diff --git a/317/CH6/EX6.3/example3.sce b/317/CH6/EX6.3/example3.sce
new file mode 100755
index 000000000..7f12ee910
--- /dev/null
+++ b/317/CH6/EX6.3/example3.sce
@@ -0,0 +1,20 @@
+// to find base current of the transistor
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 6-3, page 195
+
+ clear;clc; close;
+
+// Given data
+Ic=2*10^-3;// collector current in amperes
+Bdc=135;// current gain
+
+// Calculations
+Ib=Ic/Bdc;// collector current in amperes
+disp("Amperes",Ib,"base current =")
+
+// Result
+// Base current is 14.8 micro Amperes.
+
diff --git a/317/CH6/EX6.3/example3.txt b/317/CH6/EX6.3/example3.txt
new file mode 100755
index 000000000..cc571e7ea
--- /dev/null
+++ b/317/CH6/EX6.3/example3.txt
@@ -0,0 +1 @@
+Base current is 14.8 micro Amperes.
diff --git a/317/CH6/EX6.4/example4.sce b/317/CH6/EX6.4/example4.sce
new file mode 100755
index 000000000..98eea0b41
--- /dev/null
+++ b/317/CH6/EX6.4/example4.sce
@@ -0,0 +1,22 @@
+// to find base current
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 6-4, page 197
+
+ clear;clc; close;
+
+// Given data
+Bdc=200;// current gain
+Vbb=2;// base source voltage in volts
+Vbe=0.7;// emitter diode in volts
+Rb=100*10^3;// resistance in ohms
+
+// Calculations
+Ib=(Vbb-Vbe)/Rb;// current through base resistor in amperes
+Ic=Ib*Bdc;// collector current in amperes
+disp("Amperes",Ic,"collector current =")
+
+// Result
+// collector current is 2.6mAmperes
diff --git a/317/CH6/EX6.4/example4.txt b/317/CH6/EX6.4/example4.txt
new file mode 100755
index 000000000..c3be7b9f3
--- /dev/null
+++ b/317/CH6/EX6.4/example4.txt
@@ -0,0 +1 @@
+collector current is 2.6mAmperes
diff --git a/317/CH6/EX6.5/example5.sce b/317/CH6/EX6.5/example5.sce
new file mode 100755
index 000000000..b9a8bc8d6
--- /dev/null
+++ b/317/CH6/EX6.5/example5.sce
@@ -0,0 +1,29 @@
+// find Ib,Ic,Vce,Pd
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 6-5, page 201
+
+clear;clc; close;
+
+// Given data
+Rc=2*10^3;// resistance in ohms
+Bdc=300;// current gain
+Vbb=10;// base source voltage in volts
+Vbe=0.7;// emitter diode in volts
+Rb=1*10^6;// resistance in ohms
+Vcc=10;// in volts
+
+// Calculations
+Ib=(Vbb-Vbe)/Rb;// current through base resistor in amperes
+Ic=Ib*Bdc;// collector current in amperes
+Vce=Vcc-(Ic*Rc);// collector-emitter voltage in volts
+Pd=Vce*Ic;// collector power dissipation in watts
+disp("Amperes",Ib,"base current =")
+disp("Amperes",Ic,"collector current =")
+disp("Volts",Vce,"collector-emitter voltage =")
+disp("watts",Pd,"dissipated power=")
+
+// Result
+// Ib is 9.3 microAmperes,Ic is 2.79 mAmperes,Vce is 4.42 volts,Pd is 12.3 mWatts \ No newline at end of file
diff --git a/317/CH6/EX6.5/example5.txt b/317/CH6/EX6.5/example5.txt
new file mode 100755
index 000000000..a2a6a0db3
--- /dev/null
+++ b/317/CH6/EX6.5/example5.txt
@@ -0,0 +1 @@
+Ib is 9.3 microAmperes,Ic is 2.79 mAmperes,Vce is 4.42 volts,Pd is 12.3 mWatts
diff --git a/317/CH6/EX6.6/example6.sce b/317/CH6/EX6.6/example6.sce
new file mode 100755
index 000000000..a91a0836c
--- /dev/null
+++ b/317/CH6/EX6.6/example6.sce
@@ -0,0 +1,25 @@
+// calculate current gain for 2N4424
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 6-6, page 202
+
+clear;clc; close;
+
+// Given data
+Rc=470;// resistance in ohms
+Vbb=10;// base source voltage in volts
+Vbe=0.7;// emitter diode in volts
+Rb=330*10^3;// resistance in ohms
+Vce=5.45;// collector-emitter voltage in volts
+
+// Calculations
+V=Vbb-Vce;// voltage across collector-resistance in volts
+Ic=V/Rc;// collector current in amperes
+Ib=(Vbb-Vbe)/Rb;// current through base resistor in amperes
+Bdc=Ic/Ib;// current gain
+disp(Bdc,"current gain")
+
+// Result
+// current gain is 343
diff --git a/317/CH6/EX6.6/example6.txt b/317/CH6/EX6.6/example6.txt
new file mode 100755
index 000000000..917da58e5
--- /dev/null
+++ b/317/CH6/EX6.6/example6.txt
@@ -0,0 +1 @@
+current gain is 343
diff --git a/317/CH6/EX6.7/example7.sce b/317/CH6/EX6.7/example7.sce
new file mode 100755
index 000000000..8916c72a1
--- /dev/null
+++ b/317/CH6/EX6.7/example7.sce
@@ -0,0 +1,25 @@
+// find collector-emmiter voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 6-7, page 204
+
+clear;clc; close;
+
+// Given data
+Rb=470*10^3;// resistance in ohms
+Vbe=0;// as emmiter diode is ideal
+Bdc=100;// current gain
+Vbb=15;// base source voltage in volts
+Rc=3.6*10^3;// resistance in ohms
+Vcc=15;// collector-supply voltage in volts
+
+// Calculations
+Ib=(Vbb-Vbe)/Rb;// current through base resistor in amperes
+Ic=Ib*Bdc;// collector current in amperes
+Vce=Vcc-(Ic*Rc);// collector-emitter voltage in volts
+disp("Volts",Vce,"collector-emitter voltage =")
+
+// Result
+// collector-emmiter voltage is 3.52 Volts
diff --git a/317/CH6/EX6.7/example7.txt b/317/CH6/EX6.7/example7.txt
new file mode 100755
index 000000000..88e0dcae3
--- /dev/null
+++ b/317/CH6/EX6.7/example7.txt
@@ -0,0 +1 @@
+collector-emmiter voltage is 3.52 Volts
diff --git a/317/CH6/EX6.8/example8.sce b/317/CH6/EX6.8/example8.sce
new file mode 100755
index 000000000..f9b706eeb
--- /dev/null
+++ b/317/CH6/EX6.8/example8.sce
@@ -0,0 +1,25 @@
+// find collector-emmiter voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 6-8, page 205
+
+clear;clc; close;
+
+// Given data
+Rb=470*10^3;// resistance in ohms
+Vbe=0.7;// using second approximation
+Bdc=100;// current gain
+Vbb=15;// base source voltage in volts
+Rc=3.6*10^3;// resistance in ohms
+Vcc=15;// collector-supply voltage in volts
+
+// Calculations
+Ib=(Vbb-Vbe)/Rb;// current through base resistor in amperes
+Ic=Ib*Bdc;// collector current in amperes
+Vce=Vcc-(Ic*Rc);// collector-emitter voltage in volts
+disp("Volts",Vce,"collector-emitter voltage =")
+
+// Result
+// collector-emmiter voltage is 4.06 Volts.
diff --git a/317/CH6/EX6.8/example8.txt b/317/CH6/EX6.8/example8.txt
new file mode 100755
index 000000000..54c40de02
--- /dev/null
+++ b/317/CH6/EX6.8/example8.txt
@@ -0,0 +1 @@
+collector-emmiter voltage is 4.06 Volts.
diff --git a/317/CH6/EX6.9/example9.sce b/317/CH6/EX6.9/example9.sce
new file mode 100755
index 000000000..15b6d44d1
--- /dev/null
+++ b/317/CH6/EX6.9/example9.sce
@@ -0,0 +1,25 @@
+// find collector-emmiter voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 6-9, page 206
+
+clear;clc; close;
+
+// Given data
+Rb=470*10^3;// resistance in ohms
+Vbe=1;// voltage across emitter diode in volts
+Bdc=100;// current gain
+Vbb=15;// base source voltage in volts
+Rc=3.6*10^3;// resistance in ohms
+Vcc=15;// collector-supply voltage in volts
+
+// Calculations
+Ib=(Vbb-Vbe)/Rb;// current through base resistor in amperes
+Ic=Ib*Bdc;// collector current in amperes
+Vce=Vcc-(Ic*Rc);// collector-emitter voltage in volts
+disp("Volts",Vce,"collector-emitter voltage =")
+
+// Result
+// collector-emmiter voltage is 4.27 Volts
diff --git a/317/CH6/EX6.9/example9.txt b/317/CH6/EX6.9/example9.txt
new file mode 100755
index 000000000..bf238e55e
--- /dev/null
+++ b/317/CH6/EX6.9/example9.txt
@@ -0,0 +1 @@
+collector-emmiter voltage is 4.27 Volts
diff --git a/317/CH7/EX7.1/example1.sce b/317/CH7/EX7.1/example1.sce
new file mode 100755
index 000000000..65a4475f9
--- /dev/null
+++ b/317/CH7/EX7.1/example1.sce
@@ -0,0 +1,22 @@
+// calculate saturation current and cutoff voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 7-1, page 228
+
+clear;clc; close;
+
+// Given data
+Vcc=30;// collector supply voltage in volts
+Rc=3*10^3;// collector resistance in ohms
+
+// Calculations
+Icsat=Vcc/Rc;// saturation current in amperes
+Vcecutoff=Vcc;// cutoff voltage in volts
+disp("Amperes",Icsat,"Saturation Current")
+disp("Volts",Vcecutoff,"cutoff voltage")
+
+// Result
+// saturation current is 10 mAmperes
+// cutoff voltage is 30 Volts
diff --git a/317/CH7/EX7.1/example1.txt b/317/CH7/EX7.1/example1.txt
new file mode 100755
index 000000000..6f4b4fc44
--- /dev/null
+++ b/317/CH7/EX7.1/example1.txt
@@ -0,0 +1,2 @@
+saturation current is 10 mAmperes
+cutoff voltage is 30 Volts
diff --git a/317/CH7/EX7.2/example2.sce b/317/CH7/EX7.2/example2.sce
new file mode 100755
index 000000000..843f43e7f
--- /dev/null
+++ b/317/CH7/EX7.2/example2.sce
@@ -0,0 +1,23 @@
+// calculate saturation current and cutoff voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 7-2, page 228
+
+clear;clc; close;
+
+// Given data
+
+Vcc=9;// collector supply voltage in volts
+Rc=3*10^3;// collector resistance in ohms
+
+// Calculations
+Icsat=Vcc/Rc;// saturation current in amperes
+Vcecutoff=Vcc;// cutoff voltage in volts
+disp("Amperes",Icsat,"Saturation Current")
+disp("Volts",Vcecutoff,"cutoff voltage")
+
+// Result
+// saturation current is 3 mAmperes
+// cutoff voltage is 9 Volts
diff --git a/317/CH7/EX7.2/example2.txt b/317/CH7/EX7.2/example2.txt
new file mode 100755
index 000000000..62d811706
--- /dev/null
+++ b/317/CH7/EX7.2/example2.txt
@@ -0,0 +1,2 @@
+saturation current is 3 mAmperes
+cutoff voltage is 9 Volts
diff --git a/317/CH7/EX7.3/example3.sce b/317/CH7/EX7.3/example3.sce
new file mode 100755
index 000000000..80e14c8c0
--- /dev/null
+++ b/317/CH7/EX7.3/example3.sce
@@ -0,0 +1,24 @@
+// calculate saturation current and cutoff voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 7-3, page 229
+
+clear;clc; close;
+
+// Given data
+
+Vcc=15;// collector supply voltage in volts
+Rc=1*10^3;// collector resistance in ohms
+
+// Calculations
+Icsat=Vcc/Rc;// saturation current in amperes
+Vcecutoff=Vcc;// cutoff voltage in volts
+disp("Amperes",Icsat,"Saturation Current")
+disp("Volts",Vcecutoff,"cutoff voltage")
+
+
+// Result
+// saturation current is 15 mAmperes
+// cutoff voltage is 15 Volts
diff --git a/317/CH7/EX7.3/example3.txt b/317/CH7/EX7.3/example3.txt
new file mode 100755
index 000000000..f3baed4ce
--- /dev/null
+++ b/317/CH7/EX7.3/example3.txt
@@ -0,0 +1,2 @@
+saturation current is 15 mAmperes
+cutoff voltage is 15 Volts
diff --git a/317/CH7/EX7.4/example4.sce b/317/CH7/EX7.4/example4.sce
new file mode 100755
index 000000000..ab3f10246
--- /dev/null
+++ b/317/CH7/EX7.4/example4.sce
@@ -0,0 +1,22 @@
+// calculate saturation current and cutoff voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 7-4, page 229
+
+clear;clc; close;
+
+// Given data
+Vcc=15;// collector supply voltage in volts
+Rc=3*10^3;// collector resistance in ohms
+
+// Calculations
+Icsat=Vcc/Rc;// saturation current in amperes
+Vcecutoff=Vcc;// cutoff voltage in volts
+disp("Amperes",Icsat,"Saturation Current")
+disp("Volts",Vcecutoff,"cutoff voltage")
+
+// Result
+// saturation current is 5 mAmperes
+// cutoff voltage is 15 Volts \ No newline at end of file
diff --git a/317/CH7/EX7.4/example4.txt b/317/CH7/EX7.4/example4.txt
new file mode 100755
index 000000000..bbabcaa64
--- /dev/null
+++ b/317/CH7/EX7.4/example4.txt
@@ -0,0 +1,2 @@
+saturation current is 5 mAmperes
+cutoff voltage is 15 Volts
diff --git a/317/CH7/EX7.5/example5.sce b/317/CH7/EX7.5/example5.sce
new file mode 100755
index 000000000..5258ec89d
--- /dev/null
+++ b/317/CH7/EX7.5/example5.sce
@@ -0,0 +1,25 @@
+// calculate collector-emitter resistance voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 7-5, page 232
+
+clear;clc; close;
+
+// Given data
+Bdc=100
+Vbb=15;// in volts
+Vcc=15;// collector supply voltage in volts
+Vbe=0.7;// in volts
+Rb=1*10^6;// base resistance in ohms
+Rc=3*10^3;// collector resistance in ohms
+
+// Calculations
+Ib=(Vbb-Vbe)/Rb;// base current in amperes
+Ic=Bdc*Ib;// collector current in amperes
+Vce=Vcc-(Ic*Rc);// collector-emitter voltage in volts
+disp("Volts",Vce,"collector-emitter voltage")
+
+// Result
+// collector-emitter voltage is 10.7 volts
diff --git a/317/CH7/EX7.5/example5.txt b/317/CH7/EX7.5/example5.txt
new file mode 100755
index 000000000..ac5a7b788
--- /dev/null
+++ b/317/CH7/EX7.5/example5.txt
@@ -0,0 +1 @@
+collector-emitter voltage is 10.7 volts
diff --git a/317/CH7/EX7.6/example6.sce b/317/CH7/EX7.6/example6.sce
new file mode 100755
index 000000000..a5623989e
--- /dev/null
+++ b/317/CH7/EX7.6/example6.sce
@@ -0,0 +1,24 @@
+// find whether transistor remains in saturated region
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 7-6, page 235
+
+clear;clc; close;
+
+// Given data
+Vcc=20;// collector supply voltage in volts
+Vbb=10;// base voltage in volts
+Rc=10*10^3;// collector resistance in ohms
+Rb=1*10^6;// base resistance in ohms
+Bdc=50;
+
+// Calculations
+Ib=Vbb/Rb;// base current in amperes
+Ic=Bdc*Ib;// collector current in amperes
+Vce=Vcc-(Ic*Rc);// collector-emitter voltage in volts
+disp("Volts",Vce,"collector-emitter voltage")
+
+// Result
+// as Vce>0 ,the transistor is not saturated
diff --git a/317/CH7/EX7.6/example7.txt b/317/CH7/EX7.6/example7.txt
new file mode 100755
index 000000000..8c52e2b0e
--- /dev/null
+++ b/317/CH7/EX7.6/example7.txt
@@ -0,0 +1 @@
+as Ic>Icsat ,the transistor is saturated
diff --git a/317/CH7/EX7.7/example7.sce b/317/CH7/EX7.7/example7.sce
new file mode 100755
index 000000000..f1a2f2cfa
--- /dev/null
+++ b/317/CH7/EX7.7/example7.sce
@@ -0,0 +1,26 @@
+// find whether transistor remains in saturated region
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 7-7, page 235
+
+clear;clc; close;
+
+// Given data
+Vcc=20;// collector supply voltage in volts
+Vbb=10;// base voltage in volts
+Rc=5*10^3;// collector resistance in ohms
+Rb=1*10^6;// base resistance in ohms
+Bdc=50;
+
+// Calculations
+Icsat=Vcc/Rc;// saturation current in amperes
+Ib=Vbb/Rb;// base current in amperes
+Ic=Bdc*Ib;// collector current in amperes
+disp(Ic)
+disp(Icsat)
+disp("Ic>Icsat")
+
+// Result
+// as Ic>Icsat ,the transistor is saturated
diff --git a/317/CH7/EX7.7/example7.txt b/317/CH7/EX7.7/example7.txt
new file mode 100755
index 000000000..8c52e2b0e
--- /dev/null
+++ b/317/CH7/EX7.7/example7.txt
@@ -0,0 +1 @@
+as Ic>Icsat ,the transistor is saturated
diff --git a/317/CH7/EX7.8/example8.sce b/317/CH7/EX7.8/example8.sce
new file mode 100755
index 000000000..bff4181d8
--- /dev/null
+++ b/317/CH7/EX7.8/example8.sce
@@ -0,0 +1,25 @@
+// find the 2 values of output voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 7-8, page 236
+
+clear;clc; close;
+
+// Given data
+Vcc=5;// collector supply voltage in volts
+Vbb=10;// base voltage in volts
+Rc=1*10^3;// collector resistance in ohms
+Rb=10*10^3;// base resistance in ohms
+Bdc=50;// current gain
+Vcesat=0.15;// saturation voltage in volts
+Iceo=50*10^-9;// collector leakage current in amperes
+
+// Calculations
+Vce=Vcc-(Iceo*Rc);// collector-emitter voltage in volts
+disp("Volts",Vcesat,"Output voltage")
+disp("Volts",Vce,"Output voltage")
+
+// Result
+// the 2 output voltages are 5 volts and 0.15 volts
diff --git a/317/CH7/EX7.8/example8.txt b/317/CH7/EX7.8/example8.txt
new file mode 100755
index 000000000..82c78bc72
--- /dev/null
+++ b/317/CH7/EX7.8/example8.txt
@@ -0,0 +1 @@
+the 2 output voltages are 5 volts and 0.15 volts
diff --git a/317/CH7/EX7.9/example9.sce b/317/CH7/EX7.9/example9.sce
new file mode 100755
index 000000000..d2b1c8cdb
--- /dev/null
+++ b/317/CH7/EX7.9/example9.sce
@@ -0,0 +1,27 @@
+// find voltage between collector and ground and between collector and emitter
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 7-9, page 239
+
+clear;clc; close;
+
+// Given data
+Vcc=15;// collector supply voltage in volts
+Vbb=5;// base voltage in volts
+Rc=2*10^3;// collector resistance in ohms
+Re=1*10^3;// emitter resistance in ohms
+
+// Calculations
+Ve=Vbb-0.7;// emitter voltage in volts
+Ie=Ve/Re;// emitter current in amperes
+Ic=Ie;// collector current is equal to emitter current
+Vc=Vcc-(Ic*Rc);// collector voltage in volts
+Vce=Vc-Ve;// collector-emitter voltage in volts
+disp("Volts",Vce,"collector-emitter voltage")
+disp("Volts",Vc,"collector-ground voltage")
+
+// Result
+// collector-to-ground voltage is 6.4 volts
+// collector-emitter voltage is 2.1 volts
diff --git a/317/CH7/EX7.9/example9.txt b/317/CH7/EX7.9/example9.txt
new file mode 100755
index 000000000..dfc000777
--- /dev/null
+++ b/317/CH7/EX7.9/example9.txt
@@ -0,0 +1 @@
+collector-to-ground voltage is 6.4 volts
diff --git a/317/CH8/EX8.1/example1.sce b/317/CH8/EX8.1/example1.sce
new file mode 100755
index 000000000..92e04874b
--- /dev/null
+++ b/317/CH8/EX8.1/example1.sce
@@ -0,0 +1,29 @@
+// calculate the collector-emmitter voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 8-1, page 263
+
+clear;clc; close;
+
+// Given data
+
+Vcc=10;// collector supply voltage in volts
+R1=10*10^3;// in ohms
+R2=2.2*10^3;// in ohms
+Rc=3.6*10^3;// collector resistance
+Re=1*10^3;// emitter resistance
+
+// Calculations
+
+Vbb=R2*Vcc/(R1+R2);// base voltage in ohms
+Ve=Vbb-0.7;// emitter voltage
+Ie=Ve/Re;// emitter current in amperes
+Ic=Ie;// collector current is approximately equal to emitter current
+Vc=Vcc-(Ic*Rc);// collector-to-ground voltage in volts
+Vce=Vc-Ve;// collector-emitter voltage in volts
+disp("Volts",Vce,"Collector-Emitter Voltage")
+
+// Result
+// collector-emitter voltage is 4.92 volts.
diff --git a/317/CH8/EX8.1/example1.txt b/317/CH8/EX8.1/example1.txt
new file mode 100755
index 000000000..dfb7fba01
--- /dev/null
+++ b/317/CH8/EX8.1/example1.txt
@@ -0,0 +1 @@
+Collector-emitter voltage is 4.92 volts.
diff --git a/317/CH8/EX8.3/example3.sce b/317/CH8/EX8.3/example3.sce
new file mode 100755
index 000000000..eaf1d17c1
--- /dev/null
+++ b/317/CH8/EX8.3/example3.sce
@@ -0,0 +1,27 @@
+// find emitter current
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 8-3, page 266
+
+clear;clc; close;
+
+// Given data
+R1=10*10^3;// in ohms
+R2=2.2*10^3;// in ohms
+Rc=3.6*10^3;// in ohms
+Re=1*10^3;// in ohms
+Bdc=200;// current gain
+Vbb=1.8;// base supply voltage in volts
+Vbe=0.7;// voltage across emitter in volts
+
+// Calculations
+Rth=(R1*R2)/(R1+R2);// thevenin voltage in volts(R1||R2)
+Rin=Bdc*Re;// input resistance of base
+// as Rth<0.01*Rin, voltage divider is stiff
+Ie=(Vbb-Vbe)/(Re+(Rth/Bdc));// emitter current in amperes
+disp("Amperes",Ie,"Emitter Current")
+
+// Result
+// voltage divider is stiff, emitter current is 1.09 milliamperes
diff --git a/317/CH8/EX8.3/example3.txt b/317/CH8/EX8.3/example3.txt
new file mode 100755
index 000000000..8ba3f87cd
--- /dev/null
+++ b/317/CH8/EX8.3/example3.txt
@@ -0,0 +1 @@
+voltage divider is stiff, emitter current is 1.09 milliamperes
diff --git a/317/CH8/EX8.4/example4.sce b/317/CH8/EX8.4/example4.sce
new file mode 100755
index 000000000..a196a723e
--- /dev/null
+++ b/317/CH8/EX8.4/example4.sce
@@ -0,0 +1,31 @@
+// find resistances to fit in the given VDB design
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 8-4, page 269
+
+clear;clc; close;
+
+// Given data
+// 2N3904
+Bdc=100;// current gain
+Vcc=10 ;// supply voltage in volts
+Ic=10*10^-3;// collector current in amperes
+
+// Calculations
+Ve=0.1*Vcc;// emitter voltage in volts
+Ie=Ic;// collector current is equal to emitter current
+Re=Ve/Ie;// emitter resistance in ohms
+Rc=4*Re;// collector resistance in ohms
+R2max=0.01*Bdc*Re;// in ohms
+V2=Ve+0.7;// in volts
+V1=Vcc-V2;// in volts
+R1=(V1*R2max)/V2;// in ohms
+disp("Ohms",R1,"R1=")
+disp("Ohms",R2max,"R2=")
+disp("Ohms",Rc," Collector Resistance=")
+disp("Ohms",Re,"Emitter Resistance=")
+
+// Result
+// R1=488 ohms, R2=100 ohms, Rc=400 ohms, Re=100 ohms
diff --git a/317/CH8/EX8.4/example4.txt b/317/CH8/EX8.4/example4.txt
new file mode 100755
index 000000000..63f9e9244
--- /dev/null
+++ b/317/CH8/EX8.4/example4.txt
@@ -0,0 +1 @@
+R1=488 ohms, R2=100 ohms, Rc=400 ohms, Re=100 ohms
diff --git a/317/CH8/EX8.5/example5.sce b/317/CH8/EX8.5/example5.sce
new file mode 100755
index 000000000..bb87cbaae
--- /dev/null
+++ b/317/CH8/EX8.5/example5.sce
@@ -0,0 +1,24 @@
+// find collector voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 8-5, page 271
+
+clear;clc; close;
+
+// Given data
+Re=1.8*10^3;// emitter current in ohms
+Rc=3.6*10^3;// collector resistance in ohms
+Rb=2.7*10^3;// in ohms
+Vre=1.3;// voltage across the emitter resistor in volts
+Vcc=10;// collector supply voltage in volts
+
+// Calculations
+Ie=Vre/Re;// emitter current in amperes
+Ic=Ie;// collector current is equal to emitter current
+Vc=Vcc-Ic*Rc;// collector voltage in volts
+disp("Volts",Vc,"Collector Voltage")
+
+// Result
+// collector voltage is 7.4 volts
diff --git a/317/CH8/EX8.5/example5.txt b/317/CH8/EX8.5/example5.txt
new file mode 100755
index 000000000..270275d80
--- /dev/null
+++ b/317/CH8/EX8.5/example5.txt
@@ -0,0 +1 @@
+collector voltage is 7.4 volts
diff --git a/317/CH8/EX8.6/example6.sce b/317/CH8/EX8.6/example6.sce
new file mode 100755
index 000000000..606ec29d4
--- /dev/null
+++ b/317/CH8/EX8.6/example6.sce
@@ -0,0 +1,23 @@
+// find collector to ground voltage
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 8-6, page 271
+
+clear;clc; close;
+
+// Given data
+Vee=15;// in volts
+Vcc=15;// in volts
+Rc=10*10^3;// in ohms
+Re=20*10^3;// in ohms
+
+// Calculations
+Ie=(Vee-0.7)/Re;// emitter current in amperes
+Ic=Ie;// collector current is equal to emitter current
+Vc=Vcc-Ic*Rc;// collector voltage in volts
+disp("Volts",Vc,"Collector Voltage")
+
+// Result
+// collector to ground voltage is 7.85 volts
diff --git a/317/CH8/EX8.6/example6.txt b/317/CH8/EX8.6/example6.txt
new file mode 100755
index 000000000..d58e2e615
--- /dev/null
+++ b/317/CH8/EX8.6/example6.txt
@@ -0,0 +1 @@
+collector to ground voltage is 7.85 volts
diff --git a/317/CH8/EX8.7/example7.sce b/317/CH8/EX8.7/example7.sce
new file mode 100755
index 000000000..2a98eb1ef
--- /dev/null
+++ b/317/CH8/EX8.7/example7.sce
@@ -0,0 +1,33 @@
+// calculate the 3 transistor voltages for pnp circuit
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 8-7, page 278
+
+clear;clc; close;
+
+// Given data
+Vee=10;// in volts
+Vcc=10;// in volts
+Rc=3.6*10^3;// in ohms
+Re=1*10^3;// in ohms
+R1=10*10^3;// in ohms
+R2=2.2*10^3;// in ohms
+
+// Calculations
+V2=(R2/(R2+R1))*Vee;//voltage across R2
+Ve=V2-0.7;// voltage across emitter resistor in volts
+Ie=Ve/Re;// emitter current in amperes
+Ic=Ie;// collector current is equal to emitter current
+Vc=Ic*Rc;// collector-ground voltage in volts
+Vb=Vcc-V2;// base -ground voltage in volts
+Vee=Vcc-Ve;// emitter-ground voltage in volts
+disp("Volts",Vc,"Collector Voltage")
+disp("Volts",Vb,"Base Voltage")
+disp("Volts",Vee,"Emitter Voltage")
+
+// Result
+// collector-ground voltage is 3.96 volts
+// base-ground voltage is 8.2 volts
+// emitter-ground voltage is 8.9 volts
diff --git a/317/CH8/EX8.7/example7.txt b/317/CH8/EX8.7/example7.txt
new file mode 100755
index 000000000..68ec0a0fa
--- /dev/null
+++ b/317/CH8/EX8.7/example7.txt
@@ -0,0 +1,3 @@
+collector-ground voltage is 3.96 volts
+base-ground voltage is 8.2 volts
+emitter-ground voltage is 8.9 volts
diff --git a/317/CH9/EX9.1/example1.sce b/317/CH9/EX9.1/example1.sce
new file mode 100755
index 000000000..6f93e83ca
--- /dev/null
+++ b/317/CH9/EX9.1/example1.sce
@@ -0,0 +1,21 @@
+// find the value of capacitance
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 9-1, page 289
+
+clear;clc; close;
+
+// Given data
+R=2*10^3;// resistance in ohms
+fmin=20;// lower frequency range
+fmax=20*10^3;// higher frequency range
+
+// Calculations
+Xc=200;// Xc<0.1*R at 20 Hertz
+C=1/(2*%pi*fmin*Xc);// in faraday
+disp("Faraday",C,"Capacitance=")
+
+// Result
+// Capacitance required is 39.8 micro Faraday
diff --git a/317/CH9/EX9.1/example1.txt b/317/CH9/EX9.1/example1.txt
new file mode 100755
index 000000000..903830ae1
--- /dev/null
+++ b/317/CH9/EX9.1/example1.txt
@@ -0,0 +1 @@
+Capacitance required is 39.8 micro Faraday
diff --git a/317/CH9/EX9.2/example2.sce b/317/CH9/EX9.2/example2.sce
new file mode 100755
index 000000000..a14f32739
--- /dev/null
+++ b/317/CH9/EX9.2/example2.sce
@@ -0,0 +1,22 @@
+// find the value of capacitance
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 9-2, page 293
+
+clear;clc; close;
+
+// Given data
+R1=600;// resistance in ohms
+R2=1*10^3;// resistance in ohms
+R=(R1*R2)/(R1+R2);// R=R1||R2
+f=1*10^3;// frequency in hertz
+
+// Calculations
+Xc=37.5;// Xc<0.1*R at 1000 Hertz
+C=1/(2*%pi*f*Xc);// in faraday
+disp("Faraday",C,"Capacitance=")
+
+// Result
+// Capacitance required is 4.2 micro Faraday
diff --git a/317/CH9/EX9.2/example2.txt b/317/CH9/EX9.2/example2.txt
new file mode 100755
index 000000000..4ae2aa21b
--- /dev/null
+++ b/317/CH9/EX9.2/example2.txt
@@ -0,0 +1 @@
+Capacitance required is 4.2 micro Faraday
diff --git a/317/CH9/EX9.3/example3.sce b/317/CH9/EX9.3/example3.sce
new file mode 100755
index 000000000..25c82c4a5
--- /dev/null
+++ b/317/CH9/EX9.3/example3.sce
@@ -0,0 +1,21 @@
+// find maximum small signal emitter current
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 9-3, page 297
+
+clear;clc; close;
+
+// Given data
+Vee=2;// in volts
+Vbe=0.7;// in volts
+Re=1*10^3;// in ohms
+
+// Calculations
+Ieq=(Vee-Vbe)/Re;// Q point emitter current in amperes
+ieppmax=0.1*Ieq;// maximum small signal emitter current in amperes
+disp(ieppmax,"maximum small signal emitter current")
+
+// Result
+// Maximum small signal emitter current is 130 microApp.
diff --git a/317/CH9/EX9.3/example3.txt b/317/CH9/EX9.3/example3.txt
new file mode 100755
index 000000000..7539076ca
--- /dev/null
+++ b/317/CH9/EX9.3/example3.txt
@@ -0,0 +1 @@
+Maximum small signal emitter current is 130 microApp
diff --git a/317/CH9/EX9.4/example4.sce b/317/CH9/EX9.4/example4.sce
new file mode 100755
index 000000000..a12fa248a
--- /dev/null
+++ b/317/CH9/EX9.4/example4.sce
@@ -0,0 +1,18 @@
+// find re(ac)
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 9-4, page 301
+
+clear;clc; close;
+
+// Given data
+Ie=3*10^-3;// emitter current in amperes
+
+// Calculations
+re=25*10^-3/Ie;// ac emitter resistance in ohms
+disp("Ohms",re,"re(ac)=")
+
+// Result
+// re(ac) of the base-biased amplifier is 8.33 ohms
diff --git a/317/CH9/EX9.4/example4.txt b/317/CH9/EX9.4/example4.txt
new file mode 100755
index 000000000..ba9f5e3f0
--- /dev/null
+++ b/317/CH9/EX9.4/example4.txt
@@ -0,0 +1 @@
+re of the base-biased amplifier is 8.33 ohms \ No newline at end of file
diff --git a/317/CH9/EX9.5/example5.sce b/317/CH9/EX9.5/example5.sce
new file mode 100755
index 000000000..9c23d1a98
--- /dev/null
+++ b/317/CH9/EX9.5/example5.sce
@@ -0,0 +1,18 @@
+// find re(ac)
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 9-5, page 301
+
+clear;clc; close;
+
+// Given data
+Ie=1.1*10^-3;// emitter current in amperes
+
+// Calculations
+re=25*10^-3/Ie;// ac emitter resistance in ohms
+disp("Ohms",re,"re(ac)=")
+
+// Result
+// re(ac) of the base-biased amplifier is 22.7 ohms
diff --git a/317/CH9/EX9.5/example5.txt b/317/CH9/EX9.5/example5.txt
new file mode 100755
index 000000000..62053afa5
--- /dev/null
+++ b/317/CH9/EX9.5/example5.txt
@@ -0,0 +1 @@
+re of the base-biased amplifier is 22.7 ohms \ No newline at end of file
diff --git a/317/CH9/EX9.6/example6.sce b/317/CH9/EX9.6/example6.sce
new file mode 100755
index 000000000..78cd0ec74
--- /dev/null
+++ b/317/CH9/EX9.6/example6.sce
@@ -0,0 +1,18 @@
+// find re(ac)
+// Electronic Principles
+// By Albert Malvino , David Bates
+// Seventh Edition
+// The McGraw-Hill Companies
+// Example 9-6, page 301
+
+clear;clc; close;
+
+// Given data
+Ie=1.3*10^-3;// emitter current in amperes
+
+// Calculations
+re=25*10^-3/Ie;// ac emitter resistance in ohms
+disp("Ohms",re,"re(ac)=")
+
+// Result
+// re(ac) of the base-biased amplifier is 19.2 ohms
diff --git a/317/CH9/EX9.6/example6.txt b/317/CH9/EX9.6/example6.txt
new file mode 100755
index 000000000..d0ec94055
--- /dev/null
+++ b/317/CH9/EX9.6/example6.txt
@@ -0,0 +1 @@
+re of the base-biased amplifier is 19.2 ohms \ No newline at end of file