summaryrefslogtreecommitdiff
path: root/2969/CH3
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /2969/CH3
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '2969/CH3')
-rwxr-xr-x2969/CH3/EX3.1/Ex3_1.sce11
-rwxr-xr-x2969/CH3/EX3.10/Ex3_10.sce37
-rwxr-xr-x2969/CH3/EX3.11/Ex3_11.sce31
-rwxr-xr-x2969/CH3/EX3.12/Ex3_12.sce28
-rwxr-xr-x2969/CH3/EX3.13/Ex3_13.sce31
-rwxr-xr-x2969/CH3/EX3.2/Ex3_2.sce12
-rwxr-xr-x2969/CH3/EX3.3/Ex3_3.sce18
-rwxr-xr-x2969/CH3/EX3.4/Ex3_4.sce20
-rwxr-xr-x2969/CH3/EX3.5/Ex3_5.sce18
-rwxr-xr-x2969/CH3/EX3.6/Ex3_6.sce25
-rwxr-xr-x2969/CH3/EX3.8/Ex3_8.sce44
11 files changed, 275 insertions, 0 deletions
diff --git a/2969/CH3/EX3.1/Ex3_1.sce b/2969/CH3/EX3.1/Ex3_1.sce
new file mode 100755
index 000000000..274269311
--- /dev/null
+++ b/2969/CH3/EX3.1/Ex3_1.sce
@@ -0,0 +1,11 @@
+clc
+clear
+//DATA GIVEN
+Q=-50; //heat rejected to cooling water in kJ/kg
+W=-100; //work input in kJ/kg
+
+//using First Law of Thermodynamics, Q=(u2-u1)+W
+Du=Q-W; //(u2-u1) change in internal energy in kJ/kg
+//since Du is +ve, there is gain in internal energy
+
+printf('The GAIN in internal energy is: %2.0f kJ/kg. \n',Du);
diff --git a/2969/CH3/EX3.10/Ex3_10.sce b/2969/CH3/EX3.10/Ex3_10.sce
new file mode 100755
index 000000000..e10c09b95
--- /dev/null
+++ b/2969/CH3/EX3.10/Ex3_10.sce
@@ -0,0 +1,37 @@
+clc
+clear
+//DATA GIVEN
+//initial state
+p1=10^5; //initial pressure of gas in Pa
+V1=0.45; //initial volume of gas in m^3
+T1=80+273; //initial temperature of gas in K
+//final state
+p2=5*10^5; //final pressure of gas in Pa
+V2=0.13; //final volume of gas in m^3
+
+//gamma for air, g
+g=1.4;
+R=294.2 //J/kgK
+
+m=p1*V1/R/T1; //mass in kg
+
+//p1*(V1^n)=p2*(V2^n)
+n=log(p1/p2)/log(V2/V1); //index n
+
+//In a polytropic process
+//(T2/T1)=(V1/V2)^(n-1);
+T2=T1*(V1/V2)^(n-1); //temp. T2 in K
+
+Cv=R/(g-1);
+Du=m*Cv*(T2-T1)/1000; //increase in internal energy in kJ
+
+//using First Law of Thermodynamics, Q=(u2-u1)+W
+//W12=(p1*V1-p2*V2)/(n-1)=mR(T2-T1)/(n-1)
+W12=m*R*(T1-T2)/(n-1)/1000;
+Q=Du+W12;
+//since Q is -ve, there is rejection of heat from system to surroundings
+
+printf(' (i) The Mass of the gas is: %1.3f kg. \n',(m));
+printf(' (ii) The index n is: %1.3f. \n',(n));
+printf('(iii) The change in internal energy is: %2.1f kJ. \n',(Du));
+printf(' (iv) The Heat REJECTED is: %2.2f kJ. \n',(-Q));
diff --git a/2969/CH3/EX3.11/Ex3_11.sce b/2969/CH3/EX3.11/Ex3_11.sce
new file mode 100755
index 000000000..62b63315e
--- /dev/null
+++ b/2969/CH3/EX3.11/Ex3_11.sce
@@ -0,0 +1,31 @@
+clc
+clear
+//DATA GIVEN
+//initial state
+p1=1.02; //initial pressure of air in bar
+V1=0.015; //initial volume of air in m^3
+T1=22+273; //initial temperature of air in K
+//final state
+p2=6.8; //final pressure of air in bar
+//Law of adiabatic compression, pV^g=C
+
+//gamma for air, g
+g=1.4
+R=0.287;
+
+//In a adiabatic process
+//(T2/T1)=(p2/p1)^((g-1)/g);
+T2=T1*(p2/p1)^((g-1)/g);; //final temp. T2 in K
+
+//p1*(V1^g)=p2*(V2^g)
+V2=V1*(p1/p2)^(1/g); //final volume in m^3
+
+m=p1*10^5*V1/10^3/R/T1; //mass in kg
+
+//W=(p1*V1-p2*V2)/(g-1)=mR(T2-T1)/(g-1)
+W=m*R*(T1-T2)/(g-1);
+//since W is -ve, the work is done on the air
+
+printf(' (i) The Final temperature is: %3.2f deg. celsius. \n',(T2-273));
+printf(' (ii) The Final Volume is: %1.5f m^3. \n',V2);
+printf('(iii) The Work done on the air is: %1.3f kJ. \n',(-W));
diff --git a/2969/CH3/EX3.12/Ex3_12.sce b/2969/CH3/EX3.12/Ex3_12.sce
new file mode 100755
index 000000000..2ccbea2f8
--- /dev/null
+++ b/2969/CH3/EX3.12/Ex3_12.sce
@@ -0,0 +1,28 @@
+clc
+clear
+//DATA GIVEN
+m=0.44; //mass of air in kg
+T1=180+273; //initial temperature of air in K
+T2=15+273; //final temperature of air in K
+W12=52.5; //work done during the process in kJ
+//V2/V1=3
+Vr=3; //volume ratio, Vr=V2/V1
+
+//Law of adiabatic expansion, pV^g=C
+
+//In an adiabatic process
+//(T2/T1)=(V1/V2)^(g-1);
+g=1+[(log(T2/T1)/log(1/Vr))]; //gamma for air, g=Cp/Cv
+
+//W12=(p1*V1-p2*V2)/(n-1)=mR(T2-T1)/(g-1)
+R=W12/m/(T1-T2)*(g-1);
+//R=Cp-Cv
+
+Cv=R/(g-1);
+Cp=g*Cv;
+
+printf(' (i) The value of Cv is: %1.3f kJ/kgK. \n',Cv);
+printf(' (ii) The value of Cp is: %1.3f kJ/kgK. \n',Cp);
+
+//NOTE:
+//there is slight variation in answers of the book due to rounding off of the values
diff --git a/2969/CH3/EX3.13/Ex3_13.sce b/2969/CH3/EX3.13/Ex3_13.sce
new file mode 100755
index 000000000..73e7aea89
--- /dev/null
+++ b/2969/CH3/EX3.13/Ex3_13.sce
@@ -0,0 +1,31 @@
+clc
+clear
+//DATA GIVEN
+m=1; //mass of etahne gas in kg
+M=30; //molecular weight of ethane
+p1=1.1; //initial pressure in bar
+T1=27+273; //initial temperature in K
+p2=6.6; //final pressure in bar
+Cp=1.75; //in kJ/kgK
+
+//Law of compression, pV^1.3=C
+n=1.3;
+
+//Characteristic gas constant, R = Universal gas constant (Ro)/Molecular weight(M)
+Ro=8314;
+R=Ro/M/1000; //kJ/kgK
+
+//R=Cp-Cv
+Cv=Cp-R;
+g=Cp/Cv; //gamma g
+
+//In a polytropic process
+//(T2/T1)=(p2/p1)^((n-1)/n);
+T2=T1*(p2/p1)^((n-1)/n);; //final temp. T2 in K
+
+//W=(p1*V1-p2*V2)/(n-1)=mR(T2-T1)/(g-1)
+W=m*R*(T1-T2)/(n-1);
+
+Q=[(g-n)/(g-1)]*W; //heat flow in kJ/kg
+
+printf(' The Heat SUPPLIED is: %2.1f kJ/kg. \n',(Q));
diff --git a/2969/CH3/EX3.2/Ex3_2.sce b/2969/CH3/EX3.2/Ex3_2.sce
new file mode 100755
index 000000000..114ed7333
--- /dev/null
+++ b/2969/CH3/EX3.2/Ex3_2.sce
@@ -0,0 +1,12 @@
+clc
+clear
+//DATA GIVEN
+u1=450; //internal energy at beginning of the expansion in kJ/kg
+u2=220; //internal energy after expansion in kJ/kg
+W=120; //work done by the air during expansion in kJ/kg
+
+//using First Law of Thermodynamics, Q=(u2-u1)+W
+Q=(u2-u1)+W; //heat flow in kJ/kg
+//since Q is -ve, there is rejection of heat
+
+printf('The heat REJECTED by air is: %3.0f kJ/kg. \n',(-Q));
diff --git a/2969/CH3/EX3.3/Ex3_3.sce b/2969/CH3/EX3.3/Ex3_3.sce
new file mode 100755
index 000000000..2620c936c
--- /dev/null
+++ b/2969/CH3/EX3.3/Ex3_3.sce
@@ -0,0 +1,18 @@
+clc
+clear
+//DATA GIVEN
+m=0.3; //mass of nitrogen in kg
+p1=0.1; //pressure in MPa
+T1=40+273; //temperature before compression in K
+p2=1; //pressure in MPa
+T2=160+273; //temperature after compression in K
+W=-30; //work done during the compression in kJ/kg
+Cv=0.75 //in kJ/kgK
+
+//using First Law of Thermodynamics, Q=(u2-u1)+W
+//(u2-u1)=m*Cv*(T2-T1)
+Du=m*Cv*(T2-T1);
+Q=Du+W; //heat flow in kJ/kg
+//since Q is -ve, there is rejection of heat
+
+printf('The heat REJECTED by air is: %1.0f kJ. \n',(-Q));
diff --git a/2969/CH3/EX3.4/Ex3_4.sce b/2969/CH3/EX3.4/Ex3_4.sce
new file mode 100755
index 000000000..59fcab224
--- /dev/null
+++ b/2969/CH3/EX3.4/Ex3_4.sce
@@ -0,0 +1,20 @@
+clc
+clear
+//DATA GIVEN
+//initial state
+p1=0.105; //pressure of gas in MPa
+V1=0.4; //volume of gas in m^3
+//final state
+p2=0.105; //pressure of gas in MPa
+V2=0.20; //volume of gas in m^3
+
+Q=-42.5; //heat transferred in kJ
+p=p1;
+
+//process used- ISOBARIC (Constant pressure)
+W12=p*(V2-V1)*1000; //work in kJ
+//using First Law of Thermodynamics, Q=(u2-u1)+W
+Du=Q-W12; //(u2-u1) change in internal energy in kJ
+//since Du is -ve, there is decrease in internal energy
+
+printf('The DECREASE in internal energy is: %2.1f kJ. \n',(-Du));
diff --git a/2969/CH3/EX3.5/Ex3_5.sce b/2969/CH3/EX3.5/Ex3_5.sce
new file mode 100755
index 000000000..f34d24f82
--- /dev/null
+++ b/2969/CH3/EX3.5/Ex3_5.sce
@@ -0,0 +1,18 @@
+clc
+clear
+//DATA GIVEN
+//part-1
+//pressure=p1,temperature=T1
+//part-2
+//pressure=p2,temperature=T2
+
+//Acc. First Law of Thermodynamics, Q=(u2-u1)+W
+//when partition moved
+DQ=0;
+DW=0;
+DU=DQ-DW;
+//DU=0
+
+printf(' CONCLUSION: \n');
+printf(' Acc. to First Law of Thermodynamics, \n');
+printf(' When partion moved, there is conservation of internal energy. \n');
diff --git a/2969/CH3/EX3.6/Ex3_6.sce b/2969/CH3/EX3.6/Ex3_6.sce
new file mode 100755
index 000000000..6e2efbc99
--- /dev/null
+++ b/2969/CH3/EX3.6/Ex3_6.sce
@@ -0,0 +1,25 @@
+clc
+clear
+//DATA GIVEN
+//initial state
+p1=10^5; //initial pressure of air in Pa
+v1=1.8; //volume of air in m^3/kg
+T1=25+273; //initial temperature of air in K
+//final state
+p2=5*10^5; //final pressure of air in Pa
+T2=25+273; //final temperature of air in K
+
+//process used- ISOTHERMAL (Constant temperature)
+W12=[p1*v1*log(p1/p2)]/1000; //work in kJ/kg
+//since W is -ve, work is supplied to the air
+
+//since temperature is constant
+Du=0; //(u2-u1) change in internal energy in kJ/kg
+
+//using First Law of Thermodynamics, Q=(u2-u1)+W
+Q=Du+W12;
+//since Q is -ve, there is rejection of heat from system to surroundings
+
+printf(' (i) The Work done on the air is: %3.1f kJ/kg. \n',(-W12));
+printf(' (ii) The change in internal energy is: %1.0f kJ/kg. \n',(Du));
+printf('(iii) The Heat REJECTED is: %3.1f kJ/kg. \n',(-Q));
diff --git a/2969/CH3/EX3.8/Ex3_8.sce b/2969/CH3/EX3.8/Ex3_8.sce
new file mode 100755
index 000000000..da26d5ab7
--- /dev/null
+++ b/2969/CH3/EX3.8/Ex3_8.sce
@@ -0,0 +1,44 @@
+clc
+clear
+//DATA GIVEN
+p1=4*10^5; //initial pressure in N/m^2
+V1=0.2; //initial volume in m^3
+T1=130+273; //initial temperature in K
+p2=1.02*10^5; //final pressure after adiabatic expansion in N/m^2
+Q23=72.5; //increase in enthalpy during constant pressure process in kJ
+Cp=1; //in kJ/kgK
+Cv=0.714; //in kJ/khK
+
+//gamma for air, g
+g=Cp/Cv;
+R=(Cp-Cv)*1000;
+
+//for reversible adiabatic process 1-2
+//p1*(V1^g)=p2*(V2^g)
+V2=V1*(p1/p2)^(1/g); //final volume in m^3
+//(T2/T1)=(p2/p1)^((g-1)/g);
+T2=T1*(p2/p1)^((g-1)/g);; //final temp. T2 in K
+
+m=p1*V1/R/T1; //mass in kg
+
+//for constant pressure process 2-3
+//Q23=m*Cp*(T3-T2);
+T3=Q23/m/Cp+T2;
+//V2/T2=V3/T3
+V3=V2/T2*T3;
+
+//Work done by the path 1-2-3, W123=W12+W23
+W12=(p1*V1-p2*V2)/(g-1);
+W23=p2*(V3-V2);
+W123=W12+W23;
+
+//if the above processes are replaced by a single reversible polytropic process giving the same work between initial and final states,
+//W13=W123=(p1V1-p3V3)/(n-1)
+p3=p2;
+n=1+(p1*V1-p3*V3)/W123; //index of expansion, n
+
+printf(' (i) The Total Work done is: %5.0f Nm or J. \n',W123);
+printf(' (ii) The value of index of expansion, n is: %1.3f. \n',n);
+
+//NOTE:
+//there is slight variation in answers of the book due to rounding off of the values