diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /2921/CH5/EX5.1/Ex5_1.sce | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '2921/CH5/EX5.1/Ex5_1.sce')
-rwxr-xr-x | 2921/CH5/EX5.1/Ex5_1.sce | 34 |
1 files changed, 34 insertions, 0 deletions
diff --git a/2921/CH5/EX5.1/Ex5_1.sce b/2921/CH5/EX5.1/Ex5_1.sce new file mode 100755 index 000000000..1ecd0a97e --- /dev/null +++ b/2921/CH5/EX5.1/Ex5_1.sce @@ -0,0 +1,34 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-5.1 Page No.93\n'); + +SF=2; //[] Safety factor +F=500; //[lb] Load +L=40; //[in] Length of shaft +Su=95000; //[lb/in^2] Ultimate strength (Appendix 4) +Sy=60000; //[lb/in^2] Yield strength (Appendix 4) + +Mmax=F*L/4; //[lb*in] Maximum bending moment +Mmin=-F*L/4; //[lb/in^2] Minimum bending moment + +Csurface=1; //[] As surface is polished +Csize=0.85; //[] Assuming 0.5<D<2 +Ctype=1; //[] Bending stress + +Sn=Csize*Csurface*Ctype*(0.5*Su); //[lb/in^2] Endurance limit + +if Mmax==abs(Mmin) then + Sm=0; //[lb/in^2] Mean stress +end + +Sa=Sn/SF; //[lb/in^2] As (1/SF)=(Sm/Sy)+(Sa/Sn) from soderberg equation + +Sa_Z=(Mmax-Mmin)/2; //[lb*in^2] Product of altenating stress and section modulus + +Z=Sa_Z/Sa; //[in^4] Section modulus + +D=(32*Z/%pi)^(1/3); //[in] Diameter of shaft + +D1=1.375; //[in] Next higher available is 1.375 in. so use D1 + +mprintf('\n The required diameter of rotating shaft is %f in.', D1); |