summaryrefslogtreecommitdiff
path: root/2873/CH1
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /2873/CH1
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '2873/CH1')
-rwxr-xr-x2873/CH1/EX1.1/Ex1_1.sce13
-rwxr-xr-x2873/CH1/EX1.10/Ex1_10.jpgbin0 -> 215305 bytes
-rwxr-xr-x2873/CH1/EX1.10/Ex1_10.sce21
-rwxr-xr-x2873/CH1/EX1.11/Ex1_11.jpgbin0 -> 443744 bytes
-rwxr-xr-x2873/CH1/EX1.11/Ex1_11.sce20
-rwxr-xr-x2873/CH1/EX1.12/Ex1_12.sce16
-rwxr-xr-x2873/CH1/EX1.13/Ex1_13.sce15
-rwxr-xr-x2873/CH1/EX1.14/Ex1_14.sce19
-rwxr-xr-x2873/CH1/EX1.15/Ex1_15.sce23
-rwxr-xr-x2873/CH1/EX1.16/Ex1_16.sce30
-rwxr-xr-x2873/CH1/EX1.17/Ex1_17.sce23
-rwxr-xr-x2873/CH1/EX1.18/Ex1_18.sce34
-rwxr-xr-x2873/CH1/EX1.19/Ex1_19.sce29
-rwxr-xr-x2873/CH1/EX1.2/Ex1_2.sce14
-rwxr-xr-x2873/CH1/EX1.20/Ex1_20.sce33
-rwxr-xr-x2873/CH1/EX1.21/Ex1_21.sce19
-rwxr-xr-x2873/CH1/EX1.22/Ex1_22.sce77
-rwxr-xr-x2873/CH1/EX1.23/Ex1_23.sce67
-rwxr-xr-x2873/CH1/EX1.24/Ex1_24.sce72
-rwxr-xr-x2873/CH1/EX1.25/Ex1_25.sce16
-rwxr-xr-x2873/CH1/EX1.26/Ex1_26.sce55
-rwxr-xr-x2873/CH1/EX1.27/Ex1_27.sce20
-rwxr-xr-x2873/CH1/EX1.28/Ex1_28.sce35
-rwxr-xr-x2873/CH1/EX1.3/Ex1_3.sce17
-rwxr-xr-x2873/CH1/EX1.4/Ex1_4.sce17
-rwxr-xr-x2873/CH1/EX1.5/Ex1_5.jpgbin0 -> 394340 bytes
-rwxr-xr-x2873/CH1/EX1.5/Ex1_5.sce21
-rwxr-xr-x2873/CH1/EX1.6/Ex1_6.sce18
-rwxr-xr-x2873/CH1/EX1.7/Ex1_7.sce16
-rwxr-xr-x2873/CH1/EX1.8/Ex1_8.jpgbin0 -> 353133 bytes
-rwxr-xr-x2873/CH1/EX1.8/Ex1_8.sce18
-rwxr-xr-x2873/CH1/EX1.9/Ex1_9.jpgbin0 -> 311525 bytes
-rwxr-xr-x2873/CH1/EX1.9/Ex1_9.sce29
33 files changed, 787 insertions, 0 deletions
diff --git a/2873/CH1/EX1.1/Ex1_1.sce b/2873/CH1/EX1.1/Ex1_1.sce
new file mode 100755
index 000000000..445294112
--- /dev/null
+++ b/2873/CH1/EX1.1/Ex1_1.sce
@@ -0,0 +1,13 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Engineering Thermodynamics by Onkar Singh,Chapter 1,Example 1")
+h=30*10^-2;//manometer deflection of mercury in m
+g=9.78;//acceleration due to gravity in m/s^2
+rho=13550;//density of mercury at room temperature in kg/m^3
+disp("pressure difference(p)in pa")
+disp("p=rho*g*h")
+p=rho*g*h
diff --git a/2873/CH1/EX1.10/Ex1_10.jpg b/2873/CH1/EX1.10/Ex1_10.jpg
new file mode 100755
index 000000000..d9fc42946
--- /dev/null
+++ b/2873/CH1/EX1.10/Ex1_10.jpg
Binary files differ
diff --git a/2873/CH1/EX1.10/Ex1_10.sce b/2873/CH1/EX1.10/Ex1_10.sce
new file mode 100755
index 000000000..d92874f83
--- /dev/null
+++ b/2873/CH1/EX1.10/Ex1_10.sce
@@ -0,0 +1,21 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Engineering Thermodynamics by Onkar Singh,Chapter 1,Example 10")
+h=720*10^-3;//barometer reading in m of Hg
+Pga=400;//gauge pressure in compartment A in kpa
+Pgb=150;//gauge pressure in compartment B in kpa
+rho=13.6*10^3;//density of mercury in kg/m^3
+g=9.81;//acceleration due to gravity in m/s^2
+disp("atmospheric pressure(Patm)in kpa")
+Patm=(rho*g*h)/1000
+disp("absolute temperature in compartment A(Pa) in kpa")
+disp("Paa=Pga+Patm")
+Pa=Pga+Patm
+disp("absolute temperature in compartment B(Pb) in kpa")
+disp("Pb=Pgb+Patm")
+Pb=Pgb+Patm
+disp("absolute pressure in compartments in A & B=496.06 kpa & 246.06 kpa")
diff --git a/2873/CH1/EX1.11/Ex1_11.jpg b/2873/CH1/EX1.11/Ex1_11.jpg
new file mode 100755
index 000000000..b5cf33938
--- /dev/null
+++ b/2873/CH1/EX1.11/Ex1_11.jpg
Binary files differ
diff --git a/2873/CH1/EX1.11/Ex1_11.sce b/2873/CH1/EX1.11/Ex1_11.sce
new file mode 100755
index 000000000..11d366356
--- /dev/null
+++ b/2873/CH1/EX1.11/Ex1_11.sce
@@ -0,0 +1,20 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Engineering Thermodynamics by Onkar Singh,Chapter 1,Example 11")
+Patm=90*10^3;//atmospheric pressure in pa
+RHOw=1000;//density of water in kg/m^3
+RHOm=13600;//density of mercury in kg/m^3
+RHOo=850;//density of oil in kg/m^3
+g=9.81;//acceleration due to ggravity in m/s^2
+h1=.15;//height difference between water column in m
+h2=.25;//height difference between oil column in m
+h3=.4;//height difference between mercury column in m
+disp("the pressure of air in air tank can be obtained by equalising pressures at some reference line")
+disp("P1+RHOw*g*h1+RHOo*g*h2 = Patm+RHOm*g*h3")
+disp("so P1 = Patm+RHOm*g*h3-RHOw*g*h1-RHOo*g*h2")
+disp("air pressure(P1)in kpa")
+P1=(Patm+RHOm*g*h3-RHOw*g*h1-RHOo*g*h2)/1000
diff --git a/2873/CH1/EX1.12/Ex1_12.sce b/2873/CH1/EX1.12/Ex1_12.sce
new file mode 100755
index 000000000..8f4faee0a
--- /dev/null
+++ b/2873/CH1/EX1.12/Ex1_12.sce
@@ -0,0 +1,16 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Engineering Thermodynamics by Onkar Singh,Chapter 1,Example 12")
+v=750;//relative velocity of object with respect to earth in m/sec
+F=4000;//gravitational force in N
+g=8;//acceleration due to gravity in m/s^2
+disp("mass of object(m)in kg")
+disp("m=F/g")
+m=F/g
+disp("kinetic energy(E)in J is given by")
+disp("E=m*v^2/2")
+E=m*v^2/2
diff --git a/2873/CH1/EX1.13/Ex1_13.sce b/2873/CH1/EX1.13/Ex1_13.sce
new file mode 100755
index 000000000..c57507e65
--- /dev/null
+++ b/2873/CH1/EX1.13/Ex1_13.sce
@@ -0,0 +1,15 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Engineering Thermodynamics by Onkar Singh,Chapter 1,Example 13")
+Cp=2.286;//specific heat at constant pressure in kJ/kg k
+Cv=1.786;//specific heat at constant volume in kJ/kg k
+R1=8.3143;//universal gas constant in kJ/kg k
+disp("characteristics gas constant(R2)in kJ/kg k")
+R2=Cp-Cv
+disp("molecular weight of gas(m)in kg/kg mol")
+m=R1/R2
+disp("NOTE=>Their is some calculation mistake while calaulating gas constant in book,which is corrected above hence answer may vary.")
diff --git a/2873/CH1/EX1.14/Ex1_14.sce b/2873/CH1/EX1.14/Ex1_14.sce
new file mode 100755
index 000000000..3b381696c
--- /dev/null
+++ b/2873/CH1/EX1.14/Ex1_14.sce
@@ -0,0 +1,19 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Engineering Thermodynamics by Onkar Singh,Chapter 1,Example 14")
+P1=750*10^3;//initial pressure of gas in pa
+V1=0.2;//initial volume of gas in m^3
+T1=600;//initial temperature of gas in k
+P2=2*10^5;//final pressure of gas i pa
+V2=0.5;//final volume of gas in m^3
+disp("using perfect gas equation")
+disp("P1*V1/T1 = P2*V2/T2")
+disp("=>T2=(P2*V2*T1)/(P1*V1)")
+disp("so final temperature of gas(T2)in k")
+T2=(P2*V2*T1)/(P1*V1)
+disp("or final temperature of gas(T2)in degree celcius")
+T2=T2-273
diff --git a/2873/CH1/EX1.15/Ex1_15.sce b/2873/CH1/EX1.15/Ex1_15.sce
new file mode 100755
index 000000000..a69712208
--- /dev/null
+++ b/2873/CH1/EX1.15/Ex1_15.sce
@@ -0,0 +1,23 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Engineering Thermodynamics by Onkar Singh,Chapter 1,Example 15")
+P1=100*10^3;//initial pressure of air in pa
+V1=5;//initial volume of air in m^3
+T1=300;//initial temperature of gas in k
+P2=50*10^3;//final pressure of air in pa
+V2=5;//final volume of air in m^3
+T2=(7+273);//final temperature of air in K
+R=287;//gas constant on J/kg k
+disp("from perfect gas equation we get")
+disp("initial mass of air(m1 in kg)=(P1*V1)/(R*T1)")
+m1=(P1*V1)/(R*T1)
+disp("final mass of air(m2 in kg)=(P2*V2)/(R*T2)")
+m2=(P2*V2)/(R*T2)
+disp("mass of air removed(m)in kg")
+m=m1-m2
+disp("volume of this mass of air(V) at initial states in m^3")
+V=m*R*T1/P1
diff --git a/2873/CH1/EX1.16/Ex1_16.sce b/2873/CH1/EX1.16/Ex1_16.sce
new file mode 100755
index 000000000..3fb59d2ac
--- /dev/null
+++ b/2873/CH1/EX1.16/Ex1_16.sce
@@ -0,0 +1,30 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Engineering Thermodynamics by Onkar Singh,Chapter 1,Example 16")
+d=1;//diameter of cylinder in m
+l=4;//length of cylinder in m
+P1=100*10^3;//initial pressureof hydrogen gas in pa
+T1=(27+273);//initial temperature of hydrogen gas in k
+P2=125*10^3;//final pressureof hydrogen gas in pa
+Cp=14.307;//specific heat at constant pressure in KJ/kg k
+Cv=10.183;//specific heat at constant volume in KJ/kg k
+disp("here V1=V2")
+disp("so P1/T1=P2/T2")
+disp("final temperature of hydrogen gas(T2)in k")
+disp("=>T2=P2*T1/P1")
+T2=P2*T1/P1
+disp("now R=(Cp-Cv) in KJ/kg k")
+R=Cp-Cv
+disp("And volume of cylinder(V1)in m^3")
+disp("V1=(%pi*d^2*l)/4")
+V1=(%pi*d^2*l)/4
+disp("mass of hydrogen gas(m)in kg")
+disp("m=(P1*V1)/(1000*R*T1)")
+m=(P1*V1)/(1000*R*T1)
+disp("now heat supplied(Q)in KJ")
+disp("Q=m*Cv*(T2-T1)")
+Q=m*Cv*(T2-T1)
diff --git a/2873/CH1/EX1.17/Ex1_17.sce b/2873/CH1/EX1.17/Ex1_17.sce
new file mode 100755
index 000000000..7dd9bdb87
--- /dev/null
+++ b/2873/CH1/EX1.17/Ex1_17.sce
@@ -0,0 +1,23 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Engineering Thermodynamics by Onkar Singh,Chapter 1,Example 17")
+V1=2;//volume of first cylinder in m^3
+V2=2;//volume of second cylinder in m^3
+T=(27+273);//temperature of system in k
+m1=20;//mass of air in first vessel in kg
+m2=4;//mass of air in second vessel in kg
+R=287;//gas constant J/kg k
+disp("final total volume(V)in m^3")
+disp("V=V1*V2")
+V=V1*V2
+disp("total mass of air(m)in kg")
+disp("m=m1+m2")
+m=m1+m2
+disp("final pressure of air(P)in kpa")
+disp("using perfect gas equation")
+disp("P=(m*R*T)/(1000*V)")
+P=(m*R*T)/(1000*V)
diff --git a/2873/CH1/EX1.18/Ex1_18.sce b/2873/CH1/EX1.18/Ex1_18.sce
new file mode 100755
index 000000000..141999864
--- /dev/null
+++ b/2873/CH1/EX1.18/Ex1_18.sce
@@ -0,0 +1,34 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Engineering Thermodynamics by Onkar Singh,Chapter 1,Example 18")
+m=5;//mass of CO2 in kg
+V=2;//volume of vesssel in m^3
+T=(27+273);//temperature of vessel in k
+R=8.314*10^3;//universal gas constant in J/kg k
+M=44.01;//molecular weight of CO2
+disp("1.By considering it as a PERFECT GAS")
+disp("gas constant for CO2(Rco2)")
+disp("Rco2=R/M")
+Rco2=R/M
+disp("Also P*V=M*Rco2*T")
+disp("pressure of CO2 as perfect ga(P)in N/m^2")
+disp("P=(m*Rco2*T)/V ")
+P=(m*Rco2*T)/V
+disp("2.By considering as a REAL GAS")
+disp("values of vanderwaal constants a,b can be seen from the table which are")
+disp("a=3628.5*10^2 N m^4/(kg mol)^2 ")
+disp("b=3.14*10^-2 m^3/kg mol")
+a=3628.5*10^2;//vanderwall constant in N m^4/(kg mol)^2
+b=3.14*10^-2;// vanderwall constant in m^3/kg mol
+disp("now specific volume(v)in m^3/kg mol")
+disp("v=V*M/m")
+v=V*M/m
+disp("now substituting the value of all variables in vanderwaal equation")
+disp("(P+(a/v^2))*(v-b)=R*T")
+disp("pressure of CO2 as real gas(P)in N/m^2")
+disp("P=((R*T)/(v-b))-(a/v^2)")
+P=((R*T)/(v-b))-(a/v^2)
diff --git a/2873/CH1/EX1.19/Ex1_19.sce b/2873/CH1/EX1.19/Ex1_19.sce
new file mode 100755
index 000000000..6ab1aad09
--- /dev/null
+++ b/2873/CH1/EX1.19/Ex1_19.sce
@@ -0,0 +1,29 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Engineering Thermodynamics by Onkar Singh,Chapter 1,Example 19")
+P=17672;//pressure of steam on kpa
+T=712;//temperature of steam in k
+Pc=22.09;//critical pressure of steam in Mpa
+Tc=647.3;//critical temperature of steam in k
+R=0.4615;//gas constant for steam in KJ/kg k
+disp("1.considering as perfect gas")
+disp("specific volume(V)in m^3/kg")
+disp("V=R*T/P")
+V=R*T/P
+disp("2.considering compressibility effects")
+disp("reduced pressure(P)in pa")
+disp("p=P/(Pc*1000)")
+p=P/(Pc*1000)
+disp("reduced temperature(t)in k")
+disp("t=T/Tc")
+t=T/Tc
+disp("from generalised compressibility chart,compressibility factor(Z)can be seen for reduced pressure and reduced temperatures of 0.8 and 1.1")
+disp("we get Z=0.785")
+Z=0.785;//compressibility factor
+disp("now actual specific volume(v)in m^3/kg")
+disp("v=Z*V")
+v=Z*V
diff --git a/2873/CH1/EX1.2/Ex1_2.sce b/2873/CH1/EX1.2/Ex1_2.sce
new file mode 100755
index 000000000..bf0041fcc
--- /dev/null
+++ b/2873/CH1/EX1.2/Ex1_2.sce
@@ -0,0 +1,14 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Engineering Thermodynamics by Onkar Singh,Chapter 1,Example 2")
+d=30*10^-2;//diameter of cylindrical vessel in m
+h=76*10^-2;//atmospheric pressure in m of mercury
+g=9.78;//acceleration due to gravity in m/s^2
+rho=13550;//density of mercury at room temperature in kg/m^3
+disp("effort required for lifting the lid(E)in N")
+disp("E=(rho*g*h)*(3.14*d^2)/4")
+E=(rho*g*h)*(3.14*d^2)/4
diff --git a/2873/CH1/EX1.20/Ex1_20.sce b/2873/CH1/EX1.20/Ex1_20.sce
new file mode 100755
index 000000000..9bca4f9eb
--- /dev/null
+++ b/2873/CH1/EX1.20/Ex1_20.sce
@@ -0,0 +1,33 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Engineering Thermodynamics by Onkar Singh,Chapter 1,Example 20")
+d=5;//diameter of ballon in m
+T1=(27+273);//temperature of hydrogen in k
+P=1.013*10^5;//atmospheric pressure in pa
+T2=(17+273);//temperature of surrounding air in k
+R=8.314*10^3;//gas constant in J/kg k
+disp("volume of ballon(V1)in m^3")
+disp("V1=(4/3)*%pi*(d/2)^3")
+V1=(4/3)*%pi*(d/2)^3
+disp("molecular mass of hydrogen(M)")
+disp("M=2")
+M=2;//molecular mass of hydrogen
+disp("gas constant for H2(R1)in J/kg k")
+disp("R1=R/M")
+R1=R/M
+disp("mass of H2 in ballon(m1)in kg")
+disp("m1=(P*V1)/(R1*T1)")
+m1=(P*V1)/(R1*T1)
+disp("volume of air displaced(V2)=volume of ballon(V1)")
+disp("mass of air displaced(m2)in kg")
+disp("m2=(P*V1)/(R2*T2)")
+disp("gas constant for air(R2)=0.287 KJ/kg k")
+R2=0.287*1000;//gas constant for air in J/kg k
+m2=(P*V1)/(R2*T2)
+disp("load lifting capacity due to buoyant force(m)in kg")
+disp("m=m2-m1")
+m=m2-m1
diff --git a/2873/CH1/EX1.21/Ex1_21.sce b/2873/CH1/EX1.21/Ex1_21.sce
new file mode 100755
index 000000000..323ef89f2
--- /dev/null
+++ b/2873/CH1/EX1.21/Ex1_21.sce
@@ -0,0 +1,19 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Engineering Thermodynamics by Onkar Singh,Chapter 1,Example 21")
+v=0.25;//volume sucking rate of pump in m^3/min
+V=20;//volume of air vessel in m^3
+disp("let initial receiver pressure(p1)=1 in pa")
+p1=1;//initial receiver pressure in pa
+disp("so final receiver pressure(p2)=p1/4 in pa")
+p2=p1/4
+disp("perfect gas equation,p*V*m=m*R*T")
+disp("differentiating and then integrating equation w.r.t to time(t) ")
+disp("we get t=-(V/v)*log(p2/p1)")
+disp("so time(t)in min")
+t=-(V/v)*log(p2/p1)
+
diff --git a/2873/CH1/EX1.22/Ex1_22.sce b/2873/CH1/EX1.22/Ex1_22.sce
new file mode 100755
index 000000000..92afd2d25
--- /dev/null
+++ b/2873/CH1/EX1.22/Ex1_22.sce
@@ -0,0 +1,77 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Engineering Thermodynamics by Onkar Singh,Chapter 1,Example 22")
+m=5;//mass of mixture of gas in kg
+P=1.013*10^5;//pressure of mixture in pa
+T=300;//temperature of mixture in k
+M1=28;//molecular weight of nitrogen(N2)
+M2=32;//molecular weight of oxygen(O2)
+M3=44;//molecular weight of carbon dioxide(CO2)
+f1=0.8;//fraction of N2 in mixture
+f2=0.18;//fraction of O2 in mixture
+f3=0.02;//fraction of CO2 in mixture
+k1=1.4;//ratio of specific heat capacities for N2
+k2=1.4;//ratio of specific heat capacities for O2
+k3=1.3;//ratio of specific heat capacities for CO2
+R=8314;//universal gas constant in J/kg k
+disp("first calculate gas constants for different gases in j/kg k")
+disp("for nitrogen,R1=R/M1")
+R1=R/M1
+disp("for oxygen,R2=R/M2")
+R2=R/M2
+disp("for carbon dioxide,R3=R/M3")
+R3=R/M3
+disp("so the gas constant for mixture(Rm)in j/kg k")
+disp("Rm=f1*R1+f2*R2+f3*R3")
+Rm=f1*R1+f2*R2+f3*R3
+disp("now the specific heat at constant pressure for constituent gases in KJ/kg k")
+disp("for nitrogen,Cp1=((k1/(k1-1))*R1)/1000")
+Cp1=((k1/(k1-1))*R1)/1000
+disp("for oxygen,Cp2=((k2/(k2-1))*R2)/1000")
+Cp2=((k2/(k2-1))*R2)/1000
+disp("for carbon dioxide,Cp3=((k3/(k3-1))*R3)/1000")
+Cp3=((k3/(k3-1))*R3)/1000
+disp("so the specific heat at constant pressure for mixture(Cpm)in KJ/kg k")
+disp("Cpm=f1*Cp1+f2*Cp2+f3*Cp3")
+Cpm=f1*Cp1+f2*Cp2+f3*Cp3
+disp("now no. of moles of constituents gases")
+disp("for nitrogen,n1=m1/M1 in mol,where m1=f1*m in kg")
+m1=f1*m
+n1=m1/M1
+disp("for oxygen,n2=m2/M2 in mol,where m2=f2*m in kg")
+m2=f2*m
+n2=m2/M2
+disp("for carbon dioxide,n=m3/M3 in mol,where m3=f3*m in kg")
+m3=f3*m
+n3=m3/M3
+disp("total no. of moles in mixture in mol")
+disp("n=n1+n2+n3")
+n=n1+n2+n3
+disp("now mole fraction of constituent gases")
+disp("for nitrogen,x1=n1/n")
+x1=n1/n
+disp("for oxygen,x2=n2/n")
+x2=n2/n
+disp("for carbon dioxide,x3=n3/n")
+x3=n3/n
+disp("now the molecular weight of mixture(Mm)in kg/kmol")
+disp("Mm=M1*x1+M2*x2+M3*x3")
+Mm=M1*x1+M2*x2+M3*x3
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/2873/CH1/EX1.23/Ex1_23.sce b/2873/CH1/EX1.23/Ex1_23.sce
new file mode 100755
index 000000000..6f26c88e7
--- /dev/null
+++ b/2873/CH1/EX1.23/Ex1_23.sce
@@ -0,0 +1,67 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Engineering Thermodynamics by Onkar Singh,Chapter 1,Example 23")
+V1=0.18;//volume fraction of O2 in m^3
+V2=0.75;//volume fraction of N2 in m^3
+V3=0.07;//volume fraction of CO2 in m^3
+P=0.5;//pressure of mixture in Mpa
+T=(107+273);//temperature of mixture in k
+M1=32;//molar mass of O2
+M2=28;//molar mass of N2
+M3=44;//molar mass of CO2
+disp("mole fraction of constituent gases")
+disp("x=(ni/n)=(Vi/V)")
+disp("take volume of mixture(V)=1 m^3")
+V=1;// volume of mixture in m^3
+disp("mole fraction of O2(x1)")
+disp("x1=V1/V")
+x1=V1/V
+disp("mole fraction of N2(x2)")
+disp("x2=V2/V")
+x2=V2/V
+disp("mole fraction of CO2(x3)")
+disp("x3=V3/V")
+x3=V3/V
+disp("now molecular weight of mixture = molar mass(m)")
+disp("m=x1*M1+x2*M2+x3*M3")
+m=x1*M1+x2*M2+x3*M3
+disp("now gravimetric analysis refers to the mass fraction analysis")
+disp("mass fraction of constituents")
+disp("y=xi*Mi/m")
+disp("mole fraction of O2")
+disp("y1=x1*M1/m")
+y1=x1*M1/m
+disp("mole fraction of N2")
+disp("y2=x2*M2/m")
+y2=x2*M2/m
+disp("mole fraction of CO2")
+disp("y3=x3*M3/m")
+y3=x3*M3/m
+disp("now partial pressure of constituents = volume fraction * pressure of mixture")
+disp("Pi=xi*P")
+disp("partial pressure of O2(P1)in Mpa")
+disp("P1=x1*P")
+p1=x1*P
+disp("partial pressure of N2(P2)in Mpa")
+disp("P2=x2*P")
+P2=x2*P
+disp("partial pressure of CO2(P3)in Mpa")
+disp("P3=x3*P")
+P3=x3*P
+disp("NOTE=>Their is some calculation mistake for partial pressure of CO2(i.e 0.35Mpa)which is given wrong in book so it is corrected above hence answers may vary.")
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/2873/CH1/EX1.24/Ex1_24.sce b/2873/CH1/EX1.24/Ex1_24.sce
new file mode 100755
index 000000000..37c3c2f45
--- /dev/null
+++ b/2873/CH1/EX1.24/Ex1_24.sce
@@ -0,0 +1,72 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Engineering Thermodynamics by Onkar Singh,Chapter 1,Example 24")
+V=6;//volume of tank in m^3
+P1=800*10^3;//pressure of N2 gas tank in pa
+T1=480;//temperature of N2 gas tank in k
+P2=400*10^3;//pressure of CO2 gas tank in pa
+T2=390;//temperature of CO2 gas tank in k
+k1=1.4;//ratio of specific heat capacity for N2
+k2=1.3;//ratio of specific heat capacity for CO2
+R=8314;//universal gas constant in J/kg k
+M1=28;//molecular weight of N2
+M2=44;//molecular weight of CO2
+disp("volume of tank of N2(V1) in m^3")
+V1=V/2
+disp("volume of tank of CO2(V2) in m^3")
+V2=V/2
+disp("taking the adiabatic condition")
+disp("no. of moles of N2(n1)")
+disp("n1=(P1*V1)/(R*T1)")
+n1=(P1*V1)/(R*T1)
+disp("no. of moles of CO2(n2)")
+disp("n2=(P2*V2)/(R*T2)")
+n2=(P2*V2)/(R*T2)
+disp("total no. of moles of mixture(n)in mol")
+disp("n=n1+n2")
+n=n1+n2
+disp("gas constant for N2(R1)in J/kg k")
+disp("R1=R/M1")
+R1=R/M1
+disp("gas constant for CO2(R2)in J/kg k")
+disp("R2=R/M2")
+R2=R/M2
+disp("specific heat of N2 at constant volume (Cv1) in J/kg k")
+disp("Cv1=R1/(k1-1)")
+Cv1=R1/(k1-1)
+disp("specific heat of CO2 at constant volume (Cv2) in J/kg k")
+disp("Cv2=R2/(k2-1)")
+Cv2=R2/(k2-1)
+disp("mass of N2(m1)in kg")
+disp("m1=n1*M1")
+m1=n1*M1
+disp("mass of CO2(m2)in kg")
+disp("m2=n2*M2")
+m2=n2*M2
+disp("let us consider the equilibrium temperature of mixture after adiabatic mixing at T")
+disp("applying energy conservation principle")
+disp("m1*Cv1*(T-T1) = m2*Cv2*(T-T2)")
+disp("equlibrium temperature(T)in k")
+disp("=>T=((m1*Cv1*T1)+(m2*Cv2*T2))/((m1*Cv1)+(m2*Cv2))")
+T=((m1*Cv1*T1)+(m2*Cv2*T2))/((m1*Cv1)+(m2*Cv2))
+disp("so the equlibrium pressure(P)in kpa")
+disp("P=(n*R*T)/(1000*V)")
+P=(n*R*T)/(1000*V)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/2873/CH1/EX1.25/Ex1_25.sce b/2873/CH1/EX1.25/Ex1_25.sce
new file mode 100755
index 000000000..d0760dd80
--- /dev/null
+++ b/2873/CH1/EX1.25/Ex1_25.sce
@@ -0,0 +1,16 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Engineering Thermodynamics by Onkar Singh,Chapter 1,Example 25")
+m1=2;//mass of H2 in kg
+m2=3;//mass of He in kg
+T=100;//temperature of container in k
+Cp1=11.23;//specific heat at constant pressure for H2 in KJ/kg k
+Cp2=5.193;//specific heat at constant pressure for He in KJ/kg k
+disp("since two gases are non reacting therefore specific heat of final mixture(Cp)in KJ/kg k can be obtained by following for adiabatic mixing")
+disp("so the specific heat at constant pressure(Cp)in KJ/kg k")
+disp("Cp=((Cp1*m1)+Cp2*m2)/(m1+m2)")
+Cp=((Cp1*m1)+Cp2*m2)/(m1+m2)
diff --git a/2873/CH1/EX1.26/Ex1_26.sce b/2873/CH1/EX1.26/Ex1_26.sce
new file mode 100755
index 000000000..12f28c77a
--- /dev/null
+++ b/2873/CH1/EX1.26/Ex1_26.sce
@@ -0,0 +1,55 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Engineering Thermodynamics by Onkar Singh,Chapter 1,Example 26")
+m1=18;//mass of hydrogen(H2) in kg
+m2=10;//mass of nitrogen(N2) in kg
+m3=2;//mass of carbon dioxide(CO2) in kg
+R=8.314;//universal gas constant in KJ/kg k
+Pi=101.325;//atmospheric pressure in kpa
+T=(27+273.15);//ambient temperature in k
+M1=2;//molar mass of H2
+M2=28;//molar mass of N2
+M3=44;//molar mass of CO2
+disp("gas constant for H2(R1)in KJ/kg k")
+disp("R1=R/M1")
+R1=R/M1
+disp("gas constant for N2(R2)in KJ/kg k")
+disp("R2=R/M2")
+R2=R/M2
+disp("gas constant for CO2(R3)in KJ/kg k")
+disp("R3=R/M3")
+R3=R/M3
+disp("so now gas constant for mixture(Rm)in KJ/kg k")
+disp("Rm=(m1*R1+m2*R2+m3*R3)/(m1+m2+m3)")
+Rm=(m1*R1+m2*R2+m3*R3)/(m1+m2+m3)
+disp("considering gas to be perfect gas")
+disp("total mass of mixture(m)in kg")
+disp("m=m1+m2+m3")
+m=m1+m2+m3
+disp("capacity of vessel(V)in m^3")
+disp("V=(m*Rm*T)/Pi")
+V=(m*Rm*T)/Pi
+disp("now final temperature(Tf) is twice of initial temperature(Ti)")
+disp("so take k=Tf/Ti=2")
+k=2;//ratio of initial to final temperature
+disp("for constant volume heating,final pressure(Pf)in kpa shall be")
+disp("Pf=Pi*k")
+Pf=Pi*k
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/2873/CH1/EX1.27/Ex1_27.sce b/2873/CH1/EX1.27/Ex1_27.sce
new file mode 100755
index 000000000..2cb489df8
--- /dev/null
+++ b/2873/CH1/EX1.27/Ex1_27.sce
@@ -0,0 +1,20 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Engineering Thermodynamics by Onkar Singh,Chapter 1,Example 27")
+T1=(27+273);//initial temperature of air in k
+T2=500;//final temperature of air in k
+disp("let inlet state be 1 and exit state be 2")
+disp("by charles law volume and temperature can be related as")
+disp("(V1/T1)=(V2/T2)")
+disp("(V2/V1)=(T2/T1)")
+disp("or (((%pi*D2^2)/4)*V2)/(((%pi*D1^2)/4)*V1)=T2/T1")
+disp("since Δ K.E=0")
+disp("so (D2^2/D1^2)=T2/T1")
+disp("D2/D1=sqrt(T2/T1)")
+disp("say(D2/D1)=k")
+disp("so exit to inlet diameter ratio(k)")
+k=sqrt(T2/T1)
diff --git a/2873/CH1/EX1.28/Ex1_28.sce b/2873/CH1/EX1.28/Ex1_28.sce
new file mode 100755
index 000000000..6a7a267e7
--- /dev/null
+++ b/2873/CH1/EX1.28/Ex1_28.sce
@@ -0,0 +1,35 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Engineering Thermodynamics by Onkar Singh,Chapter 1,Example 29")
+V=2;//volume of vessel in m^3
+P1=76;//initial pressure or atmospheric pressure in cm of Hg
+T=(27+273.15);//temperature of vessel in k
+p=70;//final pressure in cm of Hg vaccum
+R=8.314;//universal gas constant in KJ/kg k
+M=2;//molecular weight of H2
+disp("gas constant for H2(R1)in KJ/kg k")
+disp("R1=R/M")
+R1=R/M
+disp("say initial and final ststes are given by 1 and 2")
+disp("mass of hydrogen pumped out shall be difference of initial and final mass inside vessel")
+disp("final pressure of hydrogen(P2)in cm of Hg")
+disp("P2=P1-p")
+P2=P1-p
+disp("therefore pressure difference(P)in kpa")
+disp("P=((P1-P2)*101.325)/76")
+P=((P1-P2)*101.325)/76
+disp("mass pumped out(m)in kg")
+disp("m=((P1*V1)/(R1*T1))-((P2*V2)/(R1*T2))")
+disp("here V1=V2=V and T1=T2=T")
+disp("so m=(V*(P1-P2))/(R1*T)")
+m=(V*P)/(R1*T)
+disp("now during cooling upto 10 degree celcius,the process may be consider as constant volume process")
+disp("say state before and after cooling are denoted by suffix 2 and 3")
+T3=(10+273.15);//final temperature after cooling in k
+disp("final pressure after cooling(P3)in kpa")
+disp("P3=(T3/T)*P2*(101.325/76)")
+P3=(T3/T)*P2*(101.325/76)
diff --git a/2873/CH1/EX1.3/Ex1_3.sce b/2873/CH1/EX1.3/Ex1_3.sce
new file mode 100755
index 000000000..419f85982
--- /dev/null
+++ b/2873/CH1/EX1.3/Ex1_3.sce
@@ -0,0 +1,17 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Engineering Thermodynamics by Onkar Singh,Chapter 1,Example 3")
+h=30*10^-2;// pressure of compressed air in m of mercury
+Patm=101*10^3;//atmospheric pressure in pa
+g=9.78;//acceleration due to gravity in m/s^2
+rho=13550;//density of mercury at room temperature in kg/m^3
+disp("pressure measured by manometer is gauge pressure(Pg)in kpa")
+disp("Pg=rho*g*h/10^3")
+Pg=rho*g*h/10^3
+disp("actual pressure of the air(P)in kpa")
+disp("P=Pg+Patm/10^3")
+P=Pg+Patm/10^3
diff --git a/2873/CH1/EX1.4/Ex1_4.sce b/2873/CH1/EX1.4/Ex1_4.sce
new file mode 100755
index 000000000..c557bf266
--- /dev/null
+++ b/2873/CH1/EX1.4/Ex1_4.sce
@@ -0,0 +1,17 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Engineering Thermodynamics by Onkar Singh,Chapter 1,Example 4")
+h=1;//depth of oil tank in m
+sg=0.8;//specific gravity of oil
+RHOw=1000;//density of water in kg/m^3
+g=9.81;//acceleration due to gravity in m/s^2
+disp("density of oil(RHOoil)in kg/m^3")
+disp("RHOoil=sg*RHOw")
+RHOoil=sg*RHOw
+disp("gauge pressure(Pg)in kpa")
+disp("Pg=RHOoil*g*h/10^3")
+Pg=RHOoil*g*h/10^3
diff --git a/2873/CH1/EX1.5/Ex1_5.jpg b/2873/CH1/EX1.5/Ex1_5.jpg
new file mode 100755
index 000000000..42dea48dc
--- /dev/null
+++ b/2873/CH1/EX1.5/Ex1_5.jpg
Binary files differ
diff --git a/2873/CH1/EX1.5/Ex1_5.sce b/2873/CH1/EX1.5/Ex1_5.sce
new file mode 100755
index 000000000..72ed123fe
--- /dev/null
+++ b/2873/CH1/EX1.5/Ex1_5.sce
@@ -0,0 +1,21 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Engineering Thermodynamics by Onkar Singh,Chapter 1,Example 5")
+rho=13.6*10^3;//density of mercury in kg/m^3
+g=9.81;//acceleration due to gravity in m/s^2
+h1=40*10^-2;//difference of height in mercury column in m as shown in figure
+h2=76*10^-2;//barometer reading of mercury in m
+disp("atmospheric pressure(Patm)in kpa")
+disp("Patm=rho*g*h2/10^3")
+Patm=rho*g*h2/10^3
+disp("pressure due to mercury column at AB(Pab)in kpa")
+disp("Pab=rho*g*h1/10^3")
+Pab=rho*g*h1/10^3
+disp("pressure exerted by gas(Pgas)in kpa")
+disp("Pgas=Patm+Pab")
+Pgas=Patm+Pab
+
diff --git a/2873/CH1/EX1.6/Ex1_6.sce b/2873/CH1/EX1.6/Ex1_6.sce
new file mode 100755
index 000000000..246b69049
--- /dev/null
+++ b/2873/CH1/EX1.6/Ex1_6.sce
@@ -0,0 +1,18 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Engineering Thermodynamics by Onkar Singh,Chapter 1,Example 6")
+m=1;//mass of water in kg
+h=1000;//height from which water fall in m
+Cp=1;//specific heat of water in kcal/kg k
+g=9.81;//acceleration due to gravity in m/s^2
+disp("by law of conservation of energy")
+disp("potential energy(m*g*h)in joule = heat required for heating water(m*Cp*deltaT*1000*4.18)in joule")
+disp("so m*g*h = m*Cp*deltaT*4.18*1000")
+disp("change in temperature of water(deltaT) in degree celcius")
+disp("deltaT=(g*h)/(4.18*1000*Cp)")
+deltaT=(g*h)/(4.18*1000*Cp)
+
diff --git a/2873/CH1/EX1.7/Ex1_7.sce b/2873/CH1/EX1.7/Ex1_7.sce
new file mode 100755
index 000000000..5c31ec972
--- /dev/null
+++ b/2873/CH1/EX1.7/Ex1_7.sce
@@ -0,0 +1,16 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Engineering Thermodynamics by Onkar Singh,Chapter 1,Example 7")
+w1=100;//weight of object at standard gravitational acceleration in N
+g1=9.81;//acceleration due to gravity in m/s^2
+g2=8.5;//gravitational acceleration at some location
+disp("mass of object(m)in kg")
+disp("m=w1/g1")
+m=w1/g1
+disp("spring balance reading=gravitational force in mass(F)in N")
+disp("F=m*g2")
+F=m*g2
diff --git a/2873/CH1/EX1.8/Ex1_8.jpg b/2873/CH1/EX1.8/Ex1_8.jpg
new file mode 100755
index 000000000..3882192df
--- /dev/null
+++ b/2873/CH1/EX1.8/Ex1_8.jpg
Binary files differ
diff --git a/2873/CH1/EX1.8/Ex1_8.sce b/2873/CH1/EX1.8/Ex1_8.sce
new file mode 100755
index 000000000..fa542d8f7
--- /dev/null
+++ b/2873/CH1/EX1.8/Ex1_8.sce
@@ -0,0 +1,18 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Engineering Thermodynamics by Onkar Singh,Chapter 1,Example 8")
+d=15*10^-2;//diameter of cylinder in m
+h=12*10^-2;//manometer height difference in m of mercury
+rho=13.6*10^3;//density of mercury in kg/m^3
+g=9.81;//acceleration due to gravity in m/s^2
+disp("pressure measured by manometer(P) in pa")
+disp("p=rho*g*h")
+p=rho*g*h
+disp("now weight of piston(m*g) = upward thrust by gas(p*%pi*d^2/4)")
+disp("mass of piston(m)in kg")
+disp("so m=(p*%pi*d^2)/(4*g)")
+m=(p*%pi*d^2)/(4*g)
diff --git a/2873/CH1/EX1.9/Ex1_9.jpg b/2873/CH1/EX1.9/Ex1_9.jpg
new file mode 100755
index 000000000..f32334da3
--- /dev/null
+++ b/2873/CH1/EX1.9/Ex1_9.jpg
Binary files differ
diff --git a/2873/CH1/EX1.9/Ex1_9.sce b/2873/CH1/EX1.9/Ex1_9.sce
new file mode 100755
index 000000000..7f638b4f9
--- /dev/null
+++ b/2873/CH1/EX1.9/Ex1_9.sce
@@ -0,0 +1,29 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Engineering Thermodynamics by Onkar Singh,Chapter 1,Example 9")
+RHOm=13.6*10^3;//density of mercury in kg/m^3
+RHOw=1000;//density of water in kg/m^3
+h1=76*10^-2;//barometer reading in m of mercury
+h2=2*10^-2;//height raised by water in manometer tube in m
+h3=10*10^-2;//height raised by mercury in manometer tube in m
+g=9.81;//acceleration due to gravity in m/s^2
+disp("balancing pressure at plane BC in figure we get")
+disp("Psteam+Pwater=Patm+Pmercury")
+disp("now 1.atmospheric pressure(Patm)in pa")
+disp("Patm=RHOm*g*h1")
+Patm=RHOm*g*h1
+disp("2.pressure due to water(Pwater)in pa")
+disp("Pwater=RHOw*g*h2")
+Pwater=RHOw*g*h2
+disp("3.pressure due to mercury(Pmercury)in pa")
+disp("Pmercury=RHOm*g*h3")
+Pmercury=RHOm*g*h3
+disp("using balancing equation")
+disp("Psteam=Patm+Pmercury-Pwater")
+disp("so pressure of steam(Psteam)in kpa")
+disp("Psteam=(Patm+Pmercury-Pwater)/1000")
+Psteam=(Patm+Pmercury-Pwater)/1000