summaryrefslogtreecommitdiff
path: root/2825/CH4
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /2825/CH4
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '2825/CH4')
-rwxr-xr-x2825/CH4/EX4.1/Ex4_1.sce20
-rwxr-xr-x2825/CH4/EX4.10/Ex4_10.sce23
-rwxr-xr-x2825/CH4/EX4.11/Ex4_11.sce22
-rwxr-xr-x2825/CH4/EX4.12/Ex4_12.sce15
-rwxr-xr-x2825/CH4/EX4.13/Ex4_13.sce41
-rwxr-xr-x2825/CH4/EX4.14/Ex4_14.sce13
-rwxr-xr-x2825/CH4/EX4.15/Ex4_15.sce25
-rwxr-xr-x2825/CH4/EX4.2/Ex4_2.sce13
-rwxr-xr-x2825/CH4/EX4.3/Ex4_3.sce9
-rwxr-xr-x2825/CH4/EX4.4/Ex4_4.sce29
-rwxr-xr-x2825/CH4/EX4.5/Ex4_5.sce19
-rwxr-xr-x2825/CH4/EX4.6/Ex4_6.sce32
-rwxr-xr-x2825/CH4/EX4.7/Ex4_7.sce27
-rwxr-xr-x2825/CH4/EX4.8/Ex4_8.sce20
-rwxr-xr-x2825/CH4/EX4.9/Ex4_9.sce19
15 files changed, 327 insertions, 0 deletions
diff --git a/2825/CH4/EX4.1/Ex4_1.sce b/2825/CH4/EX4.1/Ex4_1.sce
new file mode 100755
index 000000000..95946077e
--- /dev/null
+++ b/2825/CH4/EX4.1/Ex4_1.sce
@@ -0,0 +1,20 @@
+//Ex4_1 Pg-213
+clc
+
+Vrms=110 //rms volatage in V
+Vm=Vrms/0.707 //peak source voltage
+printf("Peak source voltage=%.1f V",Vm) //textbook answer wrong
+
+disp("(a) With an ideal diode ")
+Vpout=Vm //peak output voltage
+printf("\n Peak output voltage=%.1f V",Vpout)
+Vdc=Vm/%pi //Dc load voltage
+printf("\n DC load voltage=%.2f V \n",Vdc) //textbook answer wrong
+
+disp("(b) With second approximation")
+Vpin=Vm //peak input voltage
+Vpout=Vpin-0.7
+printf("\n Peak output voltage=%.1f V",Vpout)
+Vdc=Vpout/%pi //Dc load voltage
+printf("\n DC load voltage=%.1f V \n",Vdc) //textbook answer wrong
+
diff --git a/2825/CH4/EX4.10/Ex4_10.sce b/2825/CH4/EX4.10/Ex4_10.sce
new file mode 100755
index 000000000..a6ec9ea75
--- /dev/null
+++ b/2825/CH4/EX4.10/Ex4_10.sce
@@ -0,0 +1,23 @@
+//Ex4_10 Pg-238
+clc
+
+f=60 //frequency in Hz
+C=100*10^(-6) //capacitance in F
+Rl=1*10^3 //load resistance
+
+disp("Since the transformer is center tapped ,the rms value of voltage across half the secondary coil")
+Vct=12.6 //voltage of center tapped transformer
+Vrms=Vct/2 //rms voltage
+
+disp("Peak voltage")
+Vm=Vrms*sqrt(2) //peak voltage
+printf(" = %.2f V\n ",Vm)
+
+disp("(b) DC output voltage")
+Vdc=Vm/(1+(1/(4*f*C*Rl))) //DC output voltage
+printf(" = %.2f V \n ",Vdc)
+
+disp("Ripple factor in case of capacitor filter ")
+disp(" =2410/C*Rl")
+r=2410/(100*Rl)*100 //ripple factor
+printf("\n = %.1f %%\n ",r)
diff --git a/2825/CH4/EX4.11/Ex4_11.sce b/2825/CH4/EX4.11/Ex4_11.sce
new file mode 100755
index 000000000..8a07c838f
--- /dev/null
+++ b/2825/CH4/EX4.11/Ex4_11.sce
@@ -0,0 +1,22 @@
+//Ex4_11 Pg-238
+clc
+Vdc=9 //dc voltage
+Idc=100*10^(-3) //dc load current
+disp("Ripple factor with an L-C filter,r=(0.83/LC)")
+disp(" where L-> Henry,C->microFarad")
+gamm=0.02 //maximum ripple
+LC=0.83/gamm
+printf(" LC = %.1f \n ",LC) //let LC=42
+
+disp("LOad connected to the filter,")
+RL=Vdc/Idc //load resistance in ohm
+printf(" RL = %.0f ohm\n ",RL)
+
+disp("Critical value of inductor,")
+Lk=RL/900 //Critical value of inductor
+printf(" Lk = %.1f \n ",Lk)
+
+disp("Capacitance")
+LC=42 //rounding of 41.5 to 42
+C=LC/Lk //capacitance in microFarad
+printf(" C = %.0f uF\n ",C)
diff --git a/2825/CH4/EX4.12/Ex4_12.sce b/2825/CH4/EX4.12/Ex4_12.sce
new file mode 100755
index 000000000..ce38d33e8
--- /dev/null
+++ b/2825/CH4/EX4.12/Ex4_12.sce
@@ -0,0 +1,15 @@
+//Ex4_12 Pg-245
+clc
+
+V=20 //source voltage
+Vz=12 //zener voltage
+Vr=V-Vz //voltage across resistor
+Rs=330 //series resistance
+ disp("Voltage across resistor ")
+printf(" = %.0f V \n ",Vr)
+
+disp("Current through series resistor")
+Iser=Vr/Rs //Current through series resistor
+printf(" = %.1f mA \n ",Iser*10^3)
+
+disp("Since Zener diode is in series with resistor, current through it is equal to current flowing through resistor,i.e 24.2mA ")
diff --git a/2825/CH4/EX4.13/Ex4_13.sce b/2825/CH4/EX4.13/Ex4_13.sce
new file mode 100755
index 000000000..b4973df75
--- /dev/null
+++ b/2825/CH4/EX4.13/Ex4_13.sce
@@ -0,0 +1,41 @@
+//Ex4_13 Pg-245
+clc
+
+V=20 //source voltage in V
+Vz=12 //zener voltage in V
+Vs=V-Vz //voltage across resistor in V
+Rs=330 //series resistance in ohm
+RL=1.5*10^3 //load resistance in ohm
+ disp("Voltage across resistor ")
+printf(" = %.0f V \n ",Vr)
+
+disp("(1) Current through series resistor Is")
+Is=Vr/Rs //Current through series resistor
+printf(" Is = %.1f mA \n ",Is*10^3)
+
+disp("(2) Current through series load Il")
+VL=Vz //voltage across load
+IL=VL/RL //Current through series load
+printf(" IL = %.0f mA \n ",IL*10^3)
+
+disp("(3)Current through zener diode")
+Iz=Is-IL //Current through zener diode
+printf(" IL = %.1f mA \n ",Iz*10^3)
+
+disp("(4)Respective wattage of elements used")
+disp("(a) Series resistor -> W=Is*Vs")
+W=Vs*Is //wattage of series resistor
+printf(" = %.1f mW \n ",W*10^3)
+
+disp("(b) Zener diode -> W=Iz*Vz")
+W=Vz*Iz //wattage of zener diode
+printf(" = %.1f mW \n ",W*10^3)
+
+
+disp("(b) Load resistor -> W=IL*VL")
+W=VL*IL //wattage of zener diode
+printf(" = %.0f mW \n ",W*10^3)
+
+
+
+
diff --git a/2825/CH4/EX4.14/Ex4_14.sce b/2825/CH4/EX4.14/Ex4_14.sce
new file mode 100755
index 000000000..180a060f3
--- /dev/null
+++ b/2825/CH4/EX4.14/Ex4_14.sce
@@ -0,0 +1,13 @@
+//Ex4_14 Pg-246
+clc
+
+RL=1*10^3 //load resistance in ohm
+Rs=270 //series resistor in ohm
+Vs=18 //supply voltage in V
+vz=10 //xener voltage
+
+disp("Applying Thevenin''s theorem, Thevenin voltage across the zener diode")
+Vth=(RL/(RL+Rs))*Vs //Thevenin voltage
+printf("\n Vth = %.1f V \n ",Vth)
+
+disp("Thus Vth is greater than Vz(zener voltage),i.e 14.2 >10. So Zener diode is operating in the breakdown voltage.")
diff --git a/2825/CH4/EX4.15/Ex4_15.sce b/2825/CH4/EX4.15/Ex4_15.sce
new file mode 100755
index 000000000..0d241971e
--- /dev/null
+++ b/2825/CH4/EX4.15/Ex4_15.sce
@@ -0,0 +1,25 @@
+//Ex4_15 Pg-246
+clc
+
+IL1=10*10^(-3)
+IL2=20*10^(-3) //IL1,IL2 range of load current in A
+Vin=20 //supply voltage in V
+Izt=6*10^(-3) //zener current in A
+Vz=15 //zener voltage in V
+
+disp("Average load current")
+IL=(IL1+IL2)/2 // Average load current
+printf("\n IL = %.0f mA \n ",IL*10^3)
+
+disp("Total current entering the circuit")
+Is=IL+Izt //current entering the circuit
+printf("\n Is = %.0f mA \n ",Is*10^3)
+
+disp("Series resistor")
+Rs=(Vin-Vz)/Is //Series resistor in ohm
+printf("\n Rs = %.0f ohm \n ",Rs)
+
+disp("Power rating of resistor")
+Vs=Vin-Vz
+P=(Vs^2)/Rs //Power rating of resistor
+printf("\n P = %.1f W \n ",P)
diff --git a/2825/CH4/EX4.2/Ex4_2.sce b/2825/CH4/EX4.2/Ex4_2.sce
new file mode 100755
index 000000000..1e43dc286
--- /dev/null
+++ b/2825/CH4/EX4.2/Ex4_2.sce
@@ -0,0 +1,13 @@
+//Ex4_2 Pg-214
+clc
+
+disp(" VR = (V_NoLoad - V_FullLoad)/V_FullLoad*100%")
+disp("(a) VR = 0%")
+V_FullLoad=20 //full load voltage
+V_NoLoad=V_FullLoad//no load voltage
+printf("\n V_FullLoad = V_NoLoad= %.0f V \n",V_NoLoad)
+
+disp("(b) VR = 100%")
+VR=100 //voltage regulation in %
+V_NoLoad=(VR*V_FullLoad)/(100)+V_FullLoad
+printf("\n V_NoLoad= %.0f V \n",V_NoLoad)
diff --git a/2825/CH4/EX4.3/Ex4_3.sce b/2825/CH4/EX4.3/Ex4_3.sce
new file mode 100755
index 000000000..3aced56b1
--- /dev/null
+++ b/2825/CH4/EX4.3/Ex4_3.sce
@@ -0,0 +1,9 @@
+//Ex4_3 Pg-214
+clc
+
+disp(" Ratio of rectification or efficiency of halfwave rectifier,")
+disp(" n = 0.406 = DC power deliverd to the load/AC input powerfrom transformer secondary ")
+DC_power=500 //ddc power deliverd to the load
+n=0.406 //efficiency
+AC_in_power=DC_power/n //AC input powerfrom transformer secondary
+printf("\n AC input powerfrom transformer secondary =%.0f Watt",AC_in_power)
diff --git a/2825/CH4/EX4.4/Ex4_4.sce b/2825/CH4/EX4.4/Ex4_4.sce
new file mode 100755
index 000000000..be161488b
--- /dev/null
+++ b/2825/CH4/EX4.4/Ex4_4.sce
@@ -0,0 +1,29 @@
+//Ex4_4 Pg-220
+clc
+
+Rl=3.5*10^(3) //resistance in k-ohm
+rF=800 //secondary resistance in k-ohm
+Vm=240 // input voltage
+disp("(1)(a) Peak value of current flowing")
+Im=Vm/(rF+Rl) //peak current
+printf(" Im = %.2f mA\n ",Im*10^3)
+
+disp("(b) Average or DC current flowing")
+Idc=Im/%pi //DC current
+printf(" Idc = %.2f mA\n ",Idc*10^3)
+
+disp("(c) R.M.S value of current flowing")
+Irms=Im/2 //rms current
+printf(" Irms = %.2f mA\n ",Irms*10^3)
+
+disp("(2) DC output power")
+Pdc=(Idc)^2*Rl //dc output power
+printf(" Pdc = %.1f Watt\n ",Pdc)
+
+disp("(3) AC input power")
+Pac=(Irms)^2*(rF+Rl)
+printf(" Pac = %.2f Watt\n ",Pac)
+
+disp("(4)Efficiency of rectifier")
+n=(Pdc/Pac)*100 //efficiency
+printf(" n = %.2f %%\n ",n)
diff --git a/2825/CH4/EX4.5/Ex4_5.sce b/2825/CH4/EX4.5/Ex4_5.sce
new file mode 100755
index 000000000..02d9af525
--- /dev/null
+++ b/2825/CH4/EX4.5/Ex4_5.sce
@@ -0,0 +1,19 @@
+//Ex4_5 Pg-221
+clc
+
+Vr=0.7 //diodes voltage drop
+Rl=820 //load resistor in ohm
+Vin=40 //input voltage in V
+
+disp("(1) Peak output volatge: Current flows through load only when two diodes conduct. While conducting, there is voltage drop across the diode.")
+V_drop_2=2*Vr //voltage drop across 2 diodes
+Vm=Vin-V_drop_2 //peak voltage
+printf("\n Vm = %.2f V\n ",Vm)
+
+disp("(2) Average output current")
+Idc=(2*Vm/%pi)/Rl //average output current
+printf(" Idc = %.0f mA\n ",Idc*10^3)
+
+disp("(3) Diode dissipation")
+DD=Idc*Vr //Diode dissipation
+printf(" = %.0f mW\n ",DD*10^3)
diff --git a/2825/CH4/EX4.6/Ex4_6.sce b/2825/CH4/EX4.6/Ex4_6.sce
new file mode 100755
index 000000000..eb99f7dd7
--- /dev/null
+++ b/2825/CH4/EX4.6/Ex4_6.sce
@@ -0,0 +1,32 @@
+//Ex4_6 Pg-222
+clc
+
+Vr=0.7 //voltage drop
+Vi=120 //input voltage
+disp("RMS value of secondary voltage")
+V_sec=Vi/5 //RMS value of secondary voltage
+printf(" = %.0f V\n ",V_sec)
+
+disp("Peak secondary voltage")
+Vm=V_sec*sqrt(2) //Peak secondary voltage
+printf(" = %.0f V\n ",Vm)
+
+disp("Peak inverse voltage of diode")
+Vinv=-(Vm) //Peak inverse voltage of diode
+printf(" = %.0f V\n ",Vinv)
+
+printf("\n Peak load voltage =%.0f V\n ",Vm)
+
+disp("DC load voltage")
+Vdc=Vm/%pi //DC load voltage
+printf(" = %.1f V\n ",Vdc)
+
+disp("Assuming second approximation")
+disp("Vm'' = Vm - Vr ")
+disp("Peak load voltage")
+Vm_dash=Vm-Vr //Peak load voltage
+printf(" = %.1f V\n ",Vm_dash)
+
+disp("DC load voltage")
+Vdc=Vm_dash/%pi //DC load voltage
+printf(" = %.1f V\n ",Vdc)
diff --git a/2825/CH4/EX4.7/Ex4_7.sce b/2825/CH4/EX4.7/Ex4_7.sce
new file mode 100755
index 000000000..b38bfbff8
--- /dev/null
+++ b/2825/CH4/EX4.7/Ex4_7.sce
@@ -0,0 +1,27 @@
+//Ex4_7 Pg-222
+clc
+
+Vi=120 //supply voltage n V
+Rl=5*10^3 //load resistance
+
+disp("Secondary RMS voltage")
+Vrms=Vi/5 //Secondary RMS voltage
+printf(" = %.0f V\n ",Vrms)
+
+disp("Secondary pek voltage")
+Vm=Vrms*sqrt(2) //Secondary pek voltage
+printf(" = %.0f V\n ",Vm)
+
+disp(" Half of the secondary voltage is input to the half section.")
+disp("So input to the half section")
+in=Vm/2 //input to the half section
+printf(" = %.0f V\n ",in)
+
+disp("Peak voltage across load")
+printf(" = %.0f V\n ",in)
+
+disp(" DC voltage across load = 17V. Since the capacitor gets changed up to peak value,")
+disp("DC load current")
+Vdc=in
+Idc=Vdc/Rl //DC load current
+printf(" = %.1f mA\n ",Idc*10^3)
diff --git a/2825/CH4/EX4.8/Ex4_8.sce b/2825/CH4/EX4.8/Ex4_8.sce
new file mode 100755
index 000000000..867df273b
--- /dev/null
+++ b/2825/CH4/EX4.8/Ex4_8.sce
@@ -0,0 +1,20 @@
+//Ex4_8 Pg-227
+clc
+
+f=50 //frequency in Hz
+C=100*10^(-6) //capacitance in F
+Rl=2*10^3 //load resistance
+Vrms=40 //rms secondary voltage
+
+disp("(a) Ripple factor for a full wave rectifier")
+r=1/(4*sqrt(3)*f*C*Rl) //Ripple factor for a full wave rectifier
+printf(" = %.3f \n ",r)
+
+disp("(b) DC output voltage")
+Vm=Vrms*sqrt(2)
+Vdc=Vm/(1+(1/(4*f*C*Rl))) //DC output voltage
+printf(" = %.1f V \n ",Vdc)
+
+disp("(c) Percentage voltage regulation")
+per=100/(4*f*C*Rl) //Percentage voltage regulation
+printf(" = %.1f %%\n ",per)
diff --git a/2825/CH4/EX4.9/Ex4_9.sce b/2825/CH4/EX4.9/Ex4_9.sce
new file mode 100755
index 000000000..5c931d38b
--- /dev/null
+++ b/2825/CH4/EX4.9/Ex4_9.sce
@@ -0,0 +1,19 @@
+//Ex4_9 Pg-237
+clc
+
+Vrms=300 //rms voltage in V
+f=60 //frequency
+Idc=0.2 //load current
+C=10 //shunt capacitor in microFarad
+
+Vm=Vrms*sqrt(2) //peak voltage
+Vdc=(2*Vm)/%pi //Dc voltage
+
+disp("Connected load")
+Rl=Vdc/Idc //Connected load
+printf(" Rl = %.0f ohm = (955.6)*sqrt(2) ohm\n",Rl)
+
+disp("Ripple factor in case of shunt capacitor filter ")
+disp(" =2410/C*Rl")
+r=2410/(C*Rl) //ripple factor
+printf("\n = %.2f \n ",r)