diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /278/CH6 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '278/CH6')
-rwxr-xr-x | 278/CH6/EX6.1/ex_6_2_1.sce | 14 | ||||
-rwxr-xr-x | 278/CH6/EX6.10/ex_6_10.sce | 34 | ||||
-rwxr-xr-x | 278/CH6/EX6.11/ex_6_11.sce | 33 | ||||
-rwxr-xr-x | 278/CH6/EX6.12/ex_6_12.sce | 60 | ||||
-rwxr-xr-x | 278/CH6/EX6.13/ex_6_13.sce | 40 | ||||
-rwxr-xr-x | 278/CH6/EX6.14/ex_6_14.sce | 48 | ||||
-rwxr-xr-x | 278/CH6/EX6.2/ex_6_2_2.sce | 14 | ||||
-rwxr-xr-x | 278/CH6/EX6.3/ex_6_3.sce | 21 | ||||
-rwxr-xr-x | 278/CH6/EX6.4/ex_6_4.sce | 18 | ||||
-rwxr-xr-x | 278/CH6/EX6.5/ex_6_5.sce | 17 | ||||
-rwxr-xr-x | 278/CH6/EX6.6/ex_6_6.sce | 18 | ||||
-rwxr-xr-x | 278/CH6/EX6.7/ex_6_7.sce | 22 | ||||
-rwxr-xr-x | 278/CH6/EX6.8/ex_6_8.sce | 29 | ||||
-rwxr-xr-x | 278/CH6/EX6.9/ex_6_9.sce | 20 |
14 files changed, 388 insertions, 0 deletions
diff --git a/278/CH6/EX6.1/ex_6_2_1.sce b/278/CH6/EX6.1/ex_6_2_1.sce new file mode 100755 index 000000000..93a32248b --- /dev/null +++ b/278/CH6/EX6.1/ex_6_2_1.sce @@ -0,0 +1,14 @@ +//to find the maximum stress induced
+b=60// b=60mm
+t=10//t=10mm
+d=12//d=12mm
+A=(b-d)*t
+disp(A,"Area=")
+W=12000//W=12kN
+Ns=W/A
+disp(Ns,"Nominal Stress=")
+x=d/b//ratio of diameter of hole to plate width
+// for d/b=0.2, Kt=2.5
+Kt=2.5
+Ms=Kt*Ns
+disp(Ms,"Maximum stress=")
diff --git a/278/CH6/EX6.10/ex_6_10.sce b/278/CH6/EX6.10/ex_6_10.sce new file mode 100755 index 000000000..3bd3bde18 --- /dev/null +++ b/278/CH6/EX6.10/ex_6_10.sce @@ -0,0 +1,34 @@ +syms F
+Wmin=-F
+Wmax=3*F
+d=13
+FS=2
+q=0.9
+Kt=1.42
+Ksz=0.85
+Ksur=0.89
+Kf=1.378
+sigmau=550
+sigmay=470
+sigmae=275
+Mmax=Wmax*125
+disp(Mmax,"Maximum bending moment=")
+Mmin=Wmin*125
+disp(Mmin,"Minimum bending moment=")
+Mm=(Mmax+Mmin)/2
+disp(Mm,"Mean bending moment=")
+Mv=(Mmax-Mmin)/2
+disp(Mv,"Variable bending moment=")
+syms d
+Z=(%pi/32)*d^3
+disp(Z,"Section modulus=")
+sigmam=Mm/Z
+disp(sigmam,"Mean bending stress=")
+sigmav=Mv/Z
+disp(sigmav,"Variable bending stress=")
+0=(sigmam/sigmay)-((sigmav*Kf)/(sigmae*Ksur*Ksz)-(1/FS)//according to Soderberg's relation
+F=1/(2*0.00891)
+disp(F,"According to soderbergs formula, F=")
+0=(sigmam/sigmau)-((sigmav*Kf)/(sigmae*Ksur*Ksz)-(1/FS)//according to goodman's relation
+F=1/(2*0.00873)
+disp(F,"According to Goodman formula, F=")
\ No newline at end of file diff --git a/278/CH6/EX6.11/ex_6_11.sce b/278/CH6/EX6.11/ex_6_11.sce new file mode 100755 index 000000000..b30077281 --- /dev/null +++ b/278/CH6/EX6.11/ex_6_11.sce @@ -0,0 +1,33 @@ +syms P
+Wmin=P
+Wmax=4*P
+l=500
+d=60
+FS=1.3
+Ksz=0.85
+Ksur=0.9
+
+sigmau=700
+sigmay=500
+sigmae=330
+Mmax=(Wmax*l)/4
+disp(Mmax,"Maximum bending moment=")
+Mmin=(Wmin*l)/4
+disp(Mmin,"Minimum bending moment=")
+Mm=(Mmax+Mmin)/2
+disp(Mm,"Mean bending moment=")
+Mv=(Mmax-Mmin)/2
+disp(Mv,"Variable bending moment=")
+syms d
+Z=(%pi/32)*d^3
+disp(Z,"Section modulus=")
+sigmam=Mm/Z
+disp(sigmam,"Mean bending stress=")
+sigmav=Mv/Z
+disp(sigmav,"Variable bending stress=")
+0=(sigmam/sigmay)-((sigmav*Kf)/(sigmae*Ksur*Ksz)-(1/FS)//according to Soderberg's relation
+P=11982
+disp(F,"According to soderbergs formula, F=")
+0=(sigmam/sigmau)-((sigmav*Kf)/(sigmae*Ksur*Ksz)-(1/FS)//according to goodman's relation
+P=13785
+disp(F,"According to Goodman formula, F=")
\ No newline at end of file diff --git a/278/CH6/EX6.12/ex_6_12.sce b/278/CH6/EX6.12/ex_6_12.sce new file mode 100755 index 000000000..72e23acd4 --- /dev/null +++ b/278/CH6/EX6.12/ex_6_12.sce @@ -0,0 +1,60 @@ +l=200
+Wamax=450
+Wamin=-150
+Wtmax=120
+Wtmin=-80
+FS=2
+sigmay=330
+sigmae=300
+Ka=0.7
+Kb=1
+Ktb=1.44
+Kta=1.64
+Ksz=0.85
+Ksur=0.90
+q=0.90
+//consider the reversed axial loading
+Wm=(Wamax+Wamin)/2
+disp(Wm,"Average axial load=")
+Wv=(Wamax-Wamin)/2
+disp(Wv,"Variable axial load=")
+syms d
+A=(%pi*d^2)/4
+sigmam=Wm/A
+disp(sigmam,"Average axial stress=")
+sigmav=Wv/A
+disp(sigmav,"Variable axial stress=")
+Kfa=1.576
+sigmaea=sigmae*Ka
+disp(sigmaea,"Endurance limit stress for reversed axial loading=")
+sigmanea=sigmam+(sigmav*sigmay*Kfa)/(sigmaea*Ksur*Ksz)
+Wm=(Wtmax+Wtmin)/2
+disp(Wm,"Mean bending load=")
+Wv=(Wtmax-Wtmin)/2
+disp(Wv,"Variable bending load=")
+Mm=Wm*(l-50)
+disp(Mm,"Mean bending moment at point A=")
+Mv=Wv*(l-50)
+disp(Mv,"Variable bending moment at point A=")
+Z=(%pi*d^3)/32
+disp(Z,"section modulus=")
+sigmam=Mm/Z
+disp(sigmam,"Mean bending stress=")
+sigmav=Mv/Z
+disp(sigmav,"Variable bending stress=")
+Kfb=1.396
+Kb=1
+sigmaeb=sigmae*Kb
+disp(sigmaeb,"Endurance limit for reverse bending load=")
+sigmaneb=sigmam+(sigmav*sigmay*Kfb)/(sigmaeb*Ksur*Ksz)
+sigmane=sigmanea+sigmaneb
+disp(sigmane,"Total equivalent normal stress at point A=")
+sigmane=sigmay/FS
+disp(sigmane,"Total equivalent normal stress at point A=")
+s=%s
+p=165*s^3-1428*s-337168
+x=roots(p)
+disp(x,"d=")
+//taking the real value of d
+d=12.9
+disp(d,"d=")
diff --git a/278/CH6/EX6.13/ex_6_13.sce b/278/CH6/EX6.13/ex_6_13.sce new file mode 100755 index 000000000..13404850d --- /dev/null +++ b/278/CH6/EX6.13/ex_6_13.sce @@ -0,0 +1,40 @@ +Mmax=440
+Mmin=-220
+sigmay=410*10^6
+sigmau=550*10^6
+sigmae=0.5*sigmau
+FS=2
+syms d
+Tmax=330
+Tmin=-110
+Tm=(Tmax+Tmin)/2
+taum=(16*Tm)/(%pi*d^3)
+disp(taum,"Mean shear stress=")
+Tv=(Tmax-Tmin)/2
+tauv=(16*Tv)/(%pi*d^3)
+disp(tauv,"Variable shear stress=")
+taue=0.55*sigmae
+Ksur=0.62
+Ksz=0.85
+Kfs=1
+tauy=o.5*sigmay//yield stress in shear loading is taken as one half of yield stress in reverse bending
+taues=taum+((tauv*tauy*Kfs)/(taue*Ksur*Ksz))
+Mm=(Mmax+Mmin)/2
+disp(Mm,"Mean bending moment=")
+Mv=(Mmax-Mmin)/2
+disp(Mv,"Variable bending moment=")
+syms d
+Z=(%pi/32)*d^3
+disp(Z,"Section modulus=")
+sigmam=Mm/Z
+disp(sigmam,"Mean bending stress=")
+sigmav=Mv/Z
+disp(sigmav,"Variable bending stress=")
+Kfb=1
+sigmaeb=sigmae
+sigmane=sigmam+((sigmav*sigmay*Kfb)/(sigmaeb*Ksur*Ksz))
+taues=(205*10^6)/2
+d=39.5
+disp(d,"d=")
+
+
diff --git a/278/CH6/EX6.14/ex_6_14.sce b/278/CH6/EX6.14/ex_6_14.sce new file mode 100755 index 000000000..7e522c963 --- /dev/null +++ b/278/CH6/EX6.14/ex_6_14.sce @@ -0,0 +1,48 @@ +sigmau=550
+sigmay=400
+Mmin=-150
+Mmax=400
+Tmin=-50
+
+Tmax=150
+Kfb=1.6
+Kfs=1.3
+FS=1.5
+Kb=1
+Ks=0.6
+Ksz=0.85
+Ksur=0.88
+Mm=(Mmax+Mmin)/2
+disp(Mm,"Mean bending moment=")
+Mv=(Mmax-Mmin)/2
+disp(Mv,"Variable bending moment=")
+syms d
+Z=(%pi/32)*d^3
+disp(Z,"Section modulus=")
+sigmam=(Mm*10^3)/Z
+disp(sigmam,"Mean bending stress=")
+sigmav=(Mv*10^3)/Z
+disp(sigmav,"Variable bending stress=")
+sigmaeb=sigmau/2
+sigmaneb=sigmam+(sigmav*sigmay*Kfb)/(sigmaeb*Ksur*Ksz)
+
+Tm=(Tmax+Tmin)/2
+taum=(16*Tm*10^3)/(%pi*d^3)
+disp(taum,"Mean shear stress=")
+Tv=(Tmax-Tmin)/2
+tauv=(16*Tv*10^3)/(%pi*d^3)
+disp(tauv,"Variable shear stress=")
+taue=sigmae*Ks
+disp(taue,"Endurance limit for reversed torsional loading=")
+tauy=0.5*sigmay
+disp(tauy,"Yield strength in shear=")
+//yield stress in shear loading is taken as one half of yield stress in reverse bending
+taues=taum+((tauv*tauy*Kfs)/(taue*Ksur*Ksz))
+d=33.84
+disp(d,"Diameter of shaft in mm is=")
+
+
+
+
+
+
diff --git a/278/CH6/EX6.2/ex_6_2_2.sce b/278/CH6/EX6.2/ex_6_2_2.sce new file mode 100755 index 000000000..171cb40af --- /dev/null +++ b/278/CH6/EX6.2/ex_6_2_2.sce @@ -0,0 +1,14 @@ +//to find the maximum stress induced
+D=50//D=50mm
+d=25//d=12mm
+r=5
+A=(%pi*d^2)/4
+disp(A,"Area=")
+W=12000//W=12kN
+Ns=W/A
+disp(Ns,"Nominal Stress=")
+x=D/d//ratio of maximum diameter to minimum diameter
+y=r/d//ratio of radius of fillet to minimum diameter
+Kt=1.64
+Ms=Kt*Ns
+disp(Ms,"Maximum stress=")
diff --git a/278/CH6/EX6.3/ex_6_3.sce b/278/CH6/EX6.3/ex_6_3.sce new file mode 100755 index 000000000..8e56c4457 --- /dev/null +++ b/278/CH6/EX6.3/ex_6_3.sce @@ -0,0 +1,21 @@ +//to determine value of minimum ultimate strength
+s=%s
+sigma1=300
+sigma2=-150
+sigmay=0.55*s
+sigmae=0.5*s
+FS=2
+sigmam=(sigma1+sigma2)/2
+sigmav=(sigma1-sigma2)/2
+disp(sigmam,"Mean stress=")
+disp(sigmav,"Variable stress=")
+p=s^2-900*s-22500
+sigmau=roots(p)
+sigmau1=924.35
+disp(sigmau1,"Minimum ultimate strength according to gerber equation=")
+0=(sigmam/s)+(sigmay/sigmae)-(1/FS)//Modified Goodman relation
+sigmau=2*525
+disp(sigmau,"Minimum ultimate strength according to Modified Goodman Relation is=")
+0=(sigmam/sigmay)+(sigmav/sigmae)-(1/FS)//Soderberg equation
+sigmau=2*586.36
+disp(sigmau,"Minimum ultimate strength according to Soderberg equation=")
\ No newline at end of file diff --git a/278/CH6/EX6.4/ex_6_4.sce b/278/CH6/EX6.4/ex_6_4.sce new file mode 100755 index 000000000..97b69c01f --- /dev/null +++ b/278/CH6/EX6.4/ex_6_4.sce @@ -0,0 +1,18 @@ +syms d
+Wmax=500
+Wmin=200
+sigmau=900
+sigmae=700
+FSu=3.5
+FSe=4
+Kf=1.65
+A=(%pi/4)*d^2
+Wm=(Wmax+Wmin)/2
+sigmam=(Wm*10^3)/A
+disp(sigmam,"Mean stress=")
+Wv=(Wmax-Wmin)/2
+sigmav=(Wv*10^3)/A
+disp(sigmav,"Variable stress=")
+0=1-((sigmam*Kf)/(sigmau/FSu))-(sigmav/(sigmae/FSe))//according to goodman relation
+d=sqrt(3960)
+disp(d,"d=")
diff --git a/278/CH6/EX6.5/ex_6_5.sce b/278/CH6/EX6.5/ex_6_5.sce new file mode 100755 index 000000000..81be14ebc --- /dev/null +++ b/278/CH6/EX6.5/ex_6_5.sce @@ -0,0 +1,17 @@ +syms t
+b=120
+Wmax=250
+Wmin=100
+sigmay=300
+sigmae=225
+FS=1.5
+A=b*t
+Wm=(Wmax+Wmin)/2
+sigmam=(Wm*10^3)/A
+disp(sigmam,"Mean stress=")
+Wv=(Wmax-Wmin)/2
+sigmav=(Wv*10^3)/A
+disp(sigmav,"Variable stress=")
+0=(sigmam/sigmay)-(sigmav/sigmae)-(1/FS)//according to Soderberg's relation
+t=7.64*FS
+disp(t,"t=")
\ No newline at end of file diff --git a/278/CH6/EX6.6/ex_6_6.sce b/278/CH6/EX6.6/ex_6_6.sce new file mode 100755 index 000000000..b507fe229 --- /dev/null +++ b/278/CH6/EX6.6/ex_6_6.sce @@ -0,0 +1,18 @@ +syms d
+Wmax=500
+Wmin=200
+sigmau=900
+sigmae=700
+FSu=3.5
+FSe=4
+Kf=1.65
+A=(%pi/4)*d^2
+Wm=(Wmax+Wmin)/2
+sigmam=(Wm*10^3)/A
+disp(sigmam,"Mean stress=")
+Wv=(Wmax-Wmin)/2
+sigmav=(Wv*10^3)/A
+disp(sigmav,"Variable stress=")
+0=1-((sigmam*Kf)/(sigmau/FSu))-(sigmav/(sigmae/FSe))//according to Soderberg's relation
+d=sqrt(3960)
+disp(d,"d=")
diff --git a/278/CH6/EX6.7/ex_6_7.sce b/278/CH6/EX6.7/ex_6_7.sce new file mode 100755 index 000000000..ec838c4f5 --- /dev/null +++ b/278/CH6/EX6.7/ex_6_7.sce @@ -0,0 +1,22 @@ +syms d
+Wmax=180
+Wmin=-180
+sigmau=1070
+sigmay=910
+sigmae=0.5*sigmau
+Ka=0.7
+Ksur=0.8
+Ksz=0.85
+Kf=1
+A=(%pi/4)*d^2
+Wm=(Wmax+Wmin)/2
+sigmam=(Wm)/A
+disp(sigmam,"Mean stress=")
+Wv=(Wmax-Wmin)/2
+sigmav=(Wv*10^3)/A
+disp(sigmav,"Variable stress=")
+sigmaea=sigmae*Ka
+disp(sigmaea,"Endurance limit in reverse axial loading=")
+0=(sigmam/sigmay)-((sigmav*Kf)/(sigmaea*Ksur*Ksz)-(1/FS)//according to Soderberg's relation
+d=sqrt(1800)
+disp(d,"d=")
diff --git a/278/CH6/EX6.8/ex_6_8.sce b/278/CH6/EX6.8/ex_6_8.sce new file mode 100755 index 000000000..fe6497fc9 --- /dev/null +++ b/278/CH6/EX6.8/ex_6_8.sce @@ -0,0 +1,29 @@ +Wmin=20*10^3
+Wmax=50*10^3
+l=500
+FS=1.5
+Kf=1
+Ksz=0.85
+Ksur=0.9
+sigmau=650
+sigmay=500
+sigmae=350
+Mmax=(Wmax*l)/4
+disp(Mmax,"Maximum bending moment=")
+Mmin=(Wmin*l)/4
+disp(Mmin,"Minimum bending moment=")
+Mm=(Mmax+Mmin)/2
+disp(Mm,"Mean bending moment=")
+Mv=(Mmax-Mmin)/2
+disp(Mv,"Variable bending moment=")
+syms d
+Z=(%pi/32)*d^3
+sigmam=Mm/Z
+0=(sigmam/sigmay)-((sigmav*Kf)/(sigmae*Ksur*Ksz)-(1/FS)//according to Soderberg's relation
+d=59.3
+disp(d,"According to soderbergs formula, d=")
+0=(sigmam/sigmau)-((sigmav*Kf)/(sigmae*Ksur*Ksz)-(1/FS)//according to Soderberg's relation
+d=62.1
+disp(d,"According to Goodmans formula, d=")
+printf("Taking larger of the two values, d=62.1mm")
+
diff --git a/278/CH6/EX6.9/ex_6_9.sce b/278/CH6/EX6.9/ex_6_9.sce new file mode 100755 index 000000000..03a8f9e9a --- /dev/null +++ b/278/CH6/EX6.9/ex_6_9.sce @@ -0,0 +1,20 @@ +d=50
+sigmau=630
+Tmax=2000
+Tmin=-800
+Tm=(Tmax+Tmin)/2
+taum=(16*Tm)/(%pi*d^3)
+disp(taum,"Mean shear stress=")
+Tv=(Tmax-Tmin)/2
+tauv=(16*Tv)/(%pi*d^3)
+taue=0.55*0.5*sigmau
+disp(taue,"Endurance limit=")
+sigmay=510
+Ksur=0.87
+Ksz=0.85
+Kf=1
+tauy=o.5*sigmay//yield stress in shear loading is taken as one half of yield stress in reverse bending
+0=(taum/tauy)-((tauv*Kf)/(taue*Ksur*Ksz)-(1/FS)//according to Soderberg's relation
+FS=1/0.541
+disp(FS,"Factor of safety=")
+
|