summaryrefslogtreecommitdiff
path: root/2657/CH18/EX18.12
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /2657/CH18/EX18.12
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '2657/CH18/EX18.12')
-rwxr-xr-x2657/CH18/EX18.12/Ex18_12.sce46
1 files changed, 46 insertions, 0 deletions
diff --git a/2657/CH18/EX18.12/Ex18_12.sce b/2657/CH18/EX18.12/Ex18_12.sce
new file mode 100755
index 000000000..46218c083
--- /dev/null
+++ b/2657/CH18/EX18.12/Ex18_12.sce
@@ -0,0 +1,46 @@
+//Calculations on diesel engine
+clc,clear
+//Given:
+n=6 //Number of cylinders
+bp=110 //Brake power in kW
+N=1600 //Engine speed in rpm
+CV=43100 //Calorific value in kJ/kg
+pC=86.2/100,pH2=13.5/100,pNC=0.3/100 //Composition of Carbon, Hydrogen and non combustibles in fuel
+eta_v=78 //Volumetric efficiency in percent
+eta_it=38 //Indicated thermal efficiency in percent
+eta_m=80 //Mechanical efficiency in percent
+MS=110 //Mixture strength in percent
+l_d=1.5 //Stroke bore ratio (l/d)
+v_a=0.772 //Specific volume of air in m^3/kg
+p_m=23.1/100,p_v=20.8/100 //Composition of Oxygen in air by mass and volume
+//Solution:
+C=12 //Atomic mass of Carbon(C)
+H=1 //Atomic mass of Hydrogen(H)
+O=16 //Atomic mass of Oxygen(O)
+N2=14 //Atomic mass of Nitrogen(N)
+A_F_s=(pC*2*O/C+pH2*O/(2*H))/p_m //Stoichiometric air fuel ratio
+A_F_act=(1+MS/100)*A_F_s //Actual air fuel ratio
+Ma=(p_m*2*O)+((1-p_m)*2*N2) //Molecular mass of air per mole air in kg/mole
+//Stoichiometric equation of combustion of fuel (petrol)
+// 0.862/12[C] + 0.135/2[H2] + [p_v[O2] + (1-p_v)[N2]]*x = a[CO2] + b[H2O] + c[O2] + d[N2]
+//Equating coefficients
+a=pC/C,b=pH2/(2*H) //On balancing C and H
+x=A_F_act/Ma //Moles of air
+c=p_v*x-a-b/2 //On balancing O
+d=(1-p_v)*x //On balancing N
+pCO2=a/(a+c+d),pO2=c/(a+c+d),pN2=d/(a+c+d) //Composition of Carbon di oxide, Oxygen, Nitrogen in dry exhaust
+ip=bp/eta_m*100 //Indicated power in kW
+m_f=ip/(eta_it/100*CV)*60 //Mass of fuel in kg/min
+m_a=m_f*A_F_act //Mass of air in kg/min
+V_a=m_a*v_a //Volume of air in m^3/min
+V_s=V_a/eta_v*100 //Swept volume in m^3/min
+V_s=V_s/(n*N/2) //Swept volume in m^3
+function y=f(d) //Defining a function, f of unknown bore, d
+ l=l_d*d //Stroke in terms of bore
+ y=%pi/4*d^2*l-V_s
+endfunction
+d=fsolve(1,f) //Function f solve for zero, bore in m
+l=l_d*d //Stroke in m
+//Results:
+printf("\n The volumetric composition of dry exhaust gas,\n\tCO2 = %.2f percent\n\tO2 = %.2f percent\n\tN2 = %.2f percent",pCO2*100,pO2*100,pN2*100)
+printf("\n The bore of the engine, d = %.2f cm\n The stroke of the engine, l = %.2f cm\n\n",d*100,l*100)