From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 2657/CH18/EX18.12/Ex18_12.sce | 46 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 46 insertions(+) create mode 100755 2657/CH18/EX18.12/Ex18_12.sce (limited to '2657/CH18/EX18.12') diff --git a/2657/CH18/EX18.12/Ex18_12.sce b/2657/CH18/EX18.12/Ex18_12.sce new file mode 100755 index 000000000..46218c083 --- /dev/null +++ b/2657/CH18/EX18.12/Ex18_12.sce @@ -0,0 +1,46 @@ +//Calculations on diesel engine +clc,clear +//Given: +n=6 //Number of cylinders +bp=110 //Brake power in kW +N=1600 //Engine speed in rpm +CV=43100 //Calorific value in kJ/kg +pC=86.2/100,pH2=13.5/100,pNC=0.3/100 //Composition of Carbon, Hydrogen and non combustibles in fuel +eta_v=78 //Volumetric efficiency in percent +eta_it=38 //Indicated thermal efficiency in percent +eta_m=80 //Mechanical efficiency in percent +MS=110 //Mixture strength in percent +l_d=1.5 //Stroke bore ratio (l/d) +v_a=0.772 //Specific volume of air in m^3/kg +p_m=23.1/100,p_v=20.8/100 //Composition of Oxygen in air by mass and volume +//Solution: +C=12 //Atomic mass of Carbon(C) +H=1 //Atomic mass of Hydrogen(H) +O=16 //Atomic mass of Oxygen(O) +N2=14 //Atomic mass of Nitrogen(N) +A_F_s=(pC*2*O/C+pH2*O/(2*H))/p_m //Stoichiometric air fuel ratio +A_F_act=(1+MS/100)*A_F_s //Actual air fuel ratio +Ma=(p_m*2*O)+((1-p_m)*2*N2) //Molecular mass of air per mole air in kg/mole +//Stoichiometric equation of combustion of fuel (petrol) +// 0.862/12[C] + 0.135/2[H2] + [p_v[O2] + (1-p_v)[N2]]*x = a[CO2] + b[H2O] + c[O2] + d[N2] +//Equating coefficients +a=pC/C,b=pH2/(2*H) //On balancing C and H +x=A_F_act/Ma //Moles of air +c=p_v*x-a-b/2 //On balancing O +d=(1-p_v)*x //On balancing N +pCO2=a/(a+c+d),pO2=c/(a+c+d),pN2=d/(a+c+d) //Composition of Carbon di oxide, Oxygen, Nitrogen in dry exhaust +ip=bp/eta_m*100 //Indicated power in kW +m_f=ip/(eta_it/100*CV)*60 //Mass of fuel in kg/min +m_a=m_f*A_F_act //Mass of air in kg/min +V_a=m_a*v_a //Volume of air in m^3/min +V_s=V_a/eta_v*100 //Swept volume in m^3/min +V_s=V_s/(n*N/2) //Swept volume in m^3 +function y=f(d) //Defining a function, f of unknown bore, d + l=l_d*d //Stroke in terms of bore + y=%pi/4*d^2*l-V_s +endfunction +d=fsolve(1,f) //Function f solve for zero, bore in m +l=l_d*d //Stroke in m +//Results: +printf("\n The volumetric composition of dry exhaust gas,\n\tCO2 = %.2f percent\n\tO2 = %.2f percent\n\tN2 = %.2f percent",pCO2*100,pO2*100,pN2*100) +printf("\n The bore of the engine, d = %.2f cm\n The stroke of the engine, l = %.2f cm\n\n",d*100,l*100) -- cgit