summaryrefslogtreecommitdiff
path: root/2549
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /2549
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '2549')
-rw-r--r--2549/CH2/EX2.7.1/Ex2_7_1.sce13
-rw-r--r--2549/CH2/EX2.7.2/Ex2_7_2.sce14
-rw-r--r--2549/CH2/EX2.7.3/Ex2_7_3.sce13
-rw-r--r--2549/CH2/EX2.7.4/Ex2_7_4.sce17
-rw-r--r--2549/CH2/EX2.7.5/Ex2_7_5.sce20
-rw-r--r--2549/CH2/EX2.7.6/Ex2_7_6.sce20
-rw-r--r--2549/CH2/EX2.8.1/Ex2_8_1.sce21
-rw-r--r--2549/CH2/EX2.8.2/Ex2_8_2.sce15
-rw-r--r--2549/CH2/EX2.9.1/Ex2_9_1.sce16
-rw-r--r--2549/CH2/EX2.9.2/Ex2_9_2.sce16
-rw-r--r--2549/CH3/EX3.4.2/Ex3_4_2.sce35
-rw-r--r--2549/CH3/EX3.5.2/Ex3_5_2.sce27
-rw-r--r--2549/CH3/EX3.5.3/Ex3_5_3.sce28
-rw-r--r--2549/CH3/EX3.5.4/Ex3_5_4.sce28
-rw-r--r--2549/CH3/EX3.5.5/Ex3_5_5.sce14
-rw-r--r--2549/CH3/EX3.6.1/Ex3_6_1.sce11
-rw-r--r--2549/CH3/EX3.6.3/Ex3_6_3.sce23
17 files changed, 331 insertions, 0 deletions
diff --git a/2549/CH2/EX2.7.1/Ex2_7_1.sce b/2549/CH2/EX2.7.1/Ex2_7_1.sce
new file mode 100644
index 000000000..107725364
--- /dev/null
+++ b/2549/CH2/EX2.7.1/Ex2_7_1.sce
@@ -0,0 +1,13 @@
+//Ex2.7.1
+//reverse saturation current =?
+clc;
+clear;
+If=10*10^-3;
+Vf=0.75;
+T=27;//temp in celsius
+T=T+273;//temp in kelvin
+n=2;//n is emission coefficient for si =2
+k=8.62*10^-5;// boltzmann's constant
+Vt=T*k;//voltage equivalent at given T
+Io=If/(%e^(Vf/(n*Vt))-1);
+disp( 'nA',Io*10^9,'reverse saturation current is :')
diff --git a/2549/CH2/EX2.7.2/Ex2_7_2.sce b/2549/CH2/EX2.7.2/Ex2_7_2.sce
new file mode 100644
index 000000000..7d51595e6
--- /dev/null
+++ b/2549/CH2/EX2.7.2/Ex2_7_2.sce
@@ -0,0 +1,14 @@
+//Ex2.7.2
+//reverse saturation current =?
+clc;
+clear;
+If=10*10^-3;
+Vf=0.3;
+T=27;//temp in celsius
+T=T+273;//temp in kelvin
+n=1//n is emission coefficient for Ge =1
+k=8.62*10^-5;// boltzmann's constant
+Vt=T*k;//voltage equivalent at given T
+Io=If/(%e^(Vf/(n*Vt))-1)//diode current equation
+disp( 'nA',Io*10^9,'reverse saturation current is :')
+
diff --git a/2549/CH2/EX2.7.3/Ex2_7_3.sce b/2549/CH2/EX2.7.3/Ex2_7_3.sce
new file mode 100644
index 000000000..c9bb8f7f0
--- /dev/null
+++ b/2549/CH2/EX2.7.3/Ex2_7_3.sce
@@ -0,0 +1,13 @@
+//Ex2.7.3
+//forward diode current =?
+clc
+clear
+Io=1*10^-9;
+Vf=0.3;
+T=27;//temp in celsius
+T=T+273;//temp in kelvin
+n=1;//n is emission coefficient for Ge =1
+k=8.62*10^-5;// boltzmann's constant
+Vt=T*k;//voltage equivalent at given T
+If=Io*(exp(Vf/(n*Vt))-1)
+disp( 'mA',If*10^3,'forward diode current is :')
diff --git a/2549/CH2/EX2.7.4/Ex2_7_4.sce b/2549/CH2/EX2.7.4/Ex2_7_4.sce
new file mode 100644
index 000000000..270ff53f1
--- /dev/null
+++ b/2549/CH2/EX2.7.4/Ex2_7_4.sce
@@ -0,0 +1,17 @@
+//Ex2.7.4
+//reverse saturation current =?
+clc;
+clear;
+//given
+If=1*10^-3;
+Vf=0.15;//forward breakdown voltage of diode
+T=27;//temp in celsius
+T=T+273;//temp in kelvin
+n=1//n is emission coefficient for Ge =1
+k=8.62*10^-5;// boltzmann's constant
+Vt=T*k;//voltage equivalent at given T
+//expression for reverse saturation current
+Io=If/(%e^(Vf/(n*Vt))-1)//diode current equation
+disp( 'uA',Io*10^6,'reverse saturation current is :')
+
+
diff --git a/2549/CH2/EX2.7.5/Ex2_7_5.sce b/2549/CH2/EX2.7.5/Ex2_7_5.sce
new file mode 100644
index 000000000..19460c9f4
--- /dev/null
+++ b/2549/CH2/EX2.7.5/Ex2_7_5.sce
@@ -0,0 +1,20 @@
+//Ex2.7.5
+//calculation of voltage across diode connected in parallel.
+clc;
+clear;
+//given
+Io1=1*10^-12;//reverse saturation current for diode1
+Io2=1*10^-10;//reverse saturation current for diode2
+I=2*10^-3;//total current
+//room temperature
+T=27;//temp in celsius
+T=T+273;//temp in kelvin
+n=1//n is emission coefficient
+k=8.62*10^-5;// boltzmann's constant
+Vt=T*k;//voltage equivalent at given T
+
+//diode current equation If=Ioexp(V/n*Vt-1)
+//arranging diode eq for I=I1+I2 and getting exp for V
+V=n*Vt*log(I/(Io1+Io2));
+disp( 'volt',V,'voltage across diode connected in parallel is :')
+
diff --git a/2549/CH2/EX2.7.6/Ex2_7_6.sce b/2549/CH2/EX2.7.6/Ex2_7_6.sce
new file mode 100644
index 000000000..3fac4f56a
--- /dev/null
+++ b/2549/CH2/EX2.7.6/Ex2_7_6.sce
@@ -0,0 +1,20 @@
+//Ex2.7.6
+//calculation of source current connected in parallel.
+clc;
+clear;
+//given
+Io=10*10^-9;//reverse saturation current for diode1 and diode2
+V=0.2;// assuming
+T=25;//temp in celsius
+T=T+273;//temp in kelvin
+n=1.1;//n is emission coefficient
+k=8.62*10^-5;// boltzmann's constant
+Vt=T*k;//voltage equivalent at given T
+//diode current equation I=Ioexp(V/n*Vt-1)
+I1=Io*(exp(V/(n*Vt))-1);
+disp('uA',I1*10^6,'current across diode1 is ;')
+I2=Io*(exp(V/(n*Vt))-1);
+disp('uA',I2*10^6,'current across diode2 is ;')
+I=I1+I2;//total current
+disp( 'uA',I*10^6,'total current on diode1 and diode2 or source current is :')
+
diff --git a/2549/CH2/EX2.8.1/Ex2_8_1.sce b/2549/CH2/EX2.8.1/Ex2_8_1.sce
new file mode 100644
index 000000000..5692397ff
--- /dev/null
+++ b/2549/CH2/EX2.8.1/Ex2_8_1.sce
@@ -0,0 +1,21 @@
+//Ex2.8.1
+//calculation of the reverse and forward dynamic resistance.
+clc;
+clear;
+//given
+Io=1*10^-6;//reverse saturation current for diode
+Vr=-0.52;//reversed voltage
+Vf=0.52;//forward voltage
+//room temperature
+T=27;//temp in celsius
+T=T+273;//temp in kelvin
+n=1//n is emission coefficient
+k=8.62*10^-5;// boltzmann's constant
+Vt=T*k;//voltage equivalent at given T
+Rf=n*Vt/(Io*exp(Vf/(n*Vt)));//dynamic resistance in forward biased condition
+disp('ohm',Rf,'dynamic resistance in forward biased condition is :')
+Rr=n*Vt/(Io*exp(Vr/(n*Vt)));//dynamic resistance in reverse biased condition
+disp('ohm',Rr,'dynamic resistance in reverse biased condition is :')
+
+
+
diff --git a/2549/CH2/EX2.8.2/Ex2_8_2.sce b/2549/CH2/EX2.8.2/Ex2_8_2.sce
new file mode 100644
index 000000000..d1ddd960f
--- /dev/null
+++ b/2549/CH2/EX2.8.2/Ex2_8_2.sce
@@ -0,0 +1,15 @@
+//Ex2.8.2
+//dynamic forward resistance r=?
+
+clc;
+clear;
+Io=0;// negligible
+I=1*10^-3;//dc current
+//at room temperature
+T=27;//temp in celsius
+T=T+273;//temp in kelvin
+n=2;//n is emission coefficient for Si
+k=8.62*10^-5;// boltzmann's constant
+Vt=T*k;//voltage equivalent at given T
+R=n*Vt/(I+Io);// exp for dynamic resistance of diode
+disp( 'ohm',R,'forward dynamic resistance is :')
diff --git a/2549/CH2/EX2.9.1/Ex2_9_1.sce b/2549/CH2/EX2.9.1/Ex2_9_1.sce
new file mode 100644
index 000000000..5f13c389f
--- /dev/null
+++ b/2549/CH2/EX2.9.1/Ex2_9_1.sce
@@ -0,0 +1,16 @@
+//Ex2.9.1
+//calculation of the width of depletion layer
+clc;
+clear;
+Na=4*10^20;//accepter impurity atom concentration per m3
+Vj=0.2;//contact potential
+V=-1;//applied reverse voltage
+V1=-5;
+epslnR=16;//for Ge
+epslnO=8.854*10^-12;//permittivity of free space
+epsln=epslnR*epslnO;//permittivity of semiconductor
+q=1.6*10^-19;//charge
+W=sqrt((2*epsln*(Vj-V))/(q*Na))//expression for width of depletion layer
+disp('um',W*10^6,'width of depletion layer is when V=-1')
+W=sqrt((2*epsln*(Vj-V1))/(q*Na))
+disp('um',W*10^6,'width of depletion layer is when V=-5')
diff --git a/2549/CH2/EX2.9.2/Ex2_9_2.sce b/2549/CH2/EX2.9.2/Ex2_9_2.sce
new file mode 100644
index 000000000..1c26a5975
--- /dev/null
+++ b/2549/CH2/EX2.9.2/Ex2_9_2.sce
@@ -0,0 +1,16 @@
+// Ex2.9.2
+//calculation of transition capacitance
+clc;
+clear;
+//given
+W=2.38*10^-6; //width of depletion layer for V=-1
+W1=4.8*10^-6;//width of depletion layer for V=-5
+A=0.8*10^-6;//area of junction
+epslnR=16;//for Ge
+epslnO=8.854*10^-12;//permittivity of free space
+epsln=epslnR*epslnO;//permittivity of semiconductor
+Ct=(epsln*A)/W;
+disp('pf',Ct*10^12,'transition capacitance Ct for V=-1 is:')
+Ct1=(epsln*A)/W1;
+disp('pf',Ct1*10^12,'transition capacitance Ct1 for V=-5 is:')
+disp('The answer shows that Transition Capacitance Ct decrease with increase in Reverse Voltage')
diff --git a/2549/CH3/EX3.4.2/Ex3_4_2.sce b/2549/CH3/EX3.4.2/Ex3_4_2.sce
new file mode 100644
index 000000000..46f2a378a
--- /dev/null
+++ b/2549/CH3/EX3.4.2/Ex3_4_2.sce
@@ -0,0 +1,35 @@
+//Ex3.4.2
+//calculation of parameter for half wave rectifier ckt
+clc;
+clear;
+//given
+Rs=5;//resistance of transformer secondary winding
+Rf=50;//forward resistance of diode
+Rl=1000;//load resistance
+N=1/4;//ratio of no. of turns secondary to primary winding (Ns/Np)
+V=240;//input ac voltage
+Vs_rms=N*V;//rms secondary voltage
+Vm=sqrt(2)*Vs_rms;//peak secondary voltage
+Im=Vm/(Rs+Rf+Rl);//peak load current
+Il_dc=Im/%pi;//avg load current
+Vl_dc=Il_dc*Rl;//avg load voltage
+disp('Part(1)');
+disp('Ampere',Il_dc,'Average load Current is :');
+disp('Volt',Vl_dc,'Average load Voltage is :');
+Il_rms=Im/2;//rms load current
+Vl_rms=Il_rms*Rl;//rms load voltage
+disp('Part(2)');
+disp('Ampere',Il_rms,'rms load Current is :');
+disp('Volt',Vl_rms,'rms load Voltage is :');
+Pl_dc=(Il_dc^2)*Rl;//dc load power
+Is_rms=Il_rms;//Is_rms is secondary rms current
+Pac=(Is_rms^2)*(Rs+Rf+Rl);//ac input power
+disp('Part(3)');
+disp('Watt',Pl_dc,'DC load Power is :');
+disp('Watt',Pac,'AC input Power is :');
+n=(Pl_dc/Pac)*100;//rectification efficiency
+disp('Part(4)');
+disp('%',n,'Rectification Efficiency is :')
+TUF=(Pl_dc/(Vs_rms*Is_rms))*100;
+disp('Part(5)')
+disp('%',TUF,'Tranformer Utilization Factor is:')
diff --git a/2549/CH3/EX3.5.2/Ex3_5_2.sce b/2549/CH3/EX3.5.2/Ex3_5_2.sce
new file mode 100644
index 000000000..9d06a4790
--- /dev/null
+++ b/2549/CH3/EX3.5.2/Ex3_5_2.sce
@@ -0,0 +1,27 @@
+//Ex3.5.2
+//calculation of parameter for full wave rectifier ckt
+clc;
+clear;
+//given
+Rs=10;//resistance of transformer secondary winding
+Rf=5;//forward resistance of diode
+Rl=100;//load resistance
+N=1/2;//ratio of no. of turns secondary to primary winding (Ns/Np)
+V=240;//input ac voltage
+Vs_rms=N*V;//rms secondary voltage
+Vm=sqrt(2)*Vs_rms;//peak secondary voltage
+Il_dc=2*Vm/(%pi*(Rs+Rf+Rl));//avg load current
+Vnl=2*Vm/%pi;//avg load voltage at no load
+disp('****Part(1)');
+disp('mA',Il_dc*10^3,'Average load Current is :');
+disp('****Part(2)');
+disp('Volt',Vnl,'Average load Voltage at No Load is :');
+Vfl=Il_dc*Rl;//Average Load Voltage at Full load
+disp('****Part(3)');
+disp('Volt',Vfl,'Average load Voltage at Full Load is :');
+%LR=((Vnl-Vfl)/Vfl)*100;//load regulation
+disp('****Part(4)');
+disp('%',%LR,'% Load Regulation is :');
+n=(8/%pi^2)*(Rl/(Rs+Rf+Rl))*100;//rectification efficiency
+disp('****Part(5)');
+disp('%',n,'Rectification Efficiency is :')
diff --git a/2549/CH3/EX3.5.3/Ex3_5_3.sce b/2549/CH3/EX3.5.3/Ex3_5_3.sce
new file mode 100644
index 000000000..0880dcc01
--- /dev/null
+++ b/2549/CH3/EX3.5.3/Ex3_5_3.sce
@@ -0,0 +1,28 @@
+//Ex3.5.3
+//calculation of parameter for full wave rectifier ckt
+clc;
+clear;
+//given
+Rs=1;//resistance of transformer secondary winding
+Rf=0.5;//forward resistance of diode
+Rl=20;//load resistance
+Il_dc=100*10^-3;//dc current
+Im=(%pi*Il_dc)/2;//peak current
+Vm=Im*(Rs+Rf+Rl);//peak voltage
+Vs_rms=Vm/sqrt(2);//rms secondary voltage
+disp('***Part(1)');
+disp('Volt',Vs_rms,'rms secondary Voltage is :');
+Pl_dc=(Il_dc^2)*Rl;//dc load power
+disp('***Part(2)');
+disp('Watt',Pl_dc,'dc power supplied to Load is :');
+PIV=2*Vm;
+disp('***Part(3)');
+disp('Volt',PIV,'Peak Inverse Voltage of each diode is :');
+Pac=Vm^2/(2*(Rs+Rf+Rl));
+disp('***Part(4)');
+disp('Watt',Pac,'AC Input Power is :');
+n=(Pl_dc/Pac)*100;
+disp('***Part(5)');
+disp('%',n,'Conversion efficiency is :');
+
+
diff --git a/2549/CH3/EX3.5.4/Ex3_5_4.sce b/2549/CH3/EX3.5.4/Ex3_5_4.sce
new file mode 100644
index 000000000..8c3922c78
--- /dev/null
+++ b/2549/CH3/EX3.5.4/Ex3_5_4.sce
@@ -0,0 +1,28 @@
+//Ex3.5.4
+//calculation of parameter for full wave rectifier ckt
+clc;
+clear;
+//given
+Pl_dc=100;// dc load power in watt
+Vl_dc=10;//dc Voltage
+Vs=230;//supply voltage
+Il_dc=Pl_dc/Vl_dc;
+disp('***Part(1)');
+disp('Ampere',Il_dc,'dc load current is :');
+Vm=(%pi*Vl_dc)/2;//peak Voltage
+Vs_rms=Vm/sqrt(2);//rms secondary voltage
+disp('***Part(2)');
+disp('Volt',Vs_rms,'rms secondary Voltage is :');
+Im=(Il_dc*%pi)/2;//peak current
+Is_rms=Im/sqrt(2);
+disp('***Part(3)');
+disp('Watt',Is_rms,'rms secondary current is :');
+TUF=Pl_dc/(Is_rms*Vs_rms)*100;
+disp('***Part(4)');
+disp('%',TUF,'Transformer Utilization Factor is :');
+n=Vs/Vs_rms;//n=N1/N2 turns ratio primary to secondary
+disp('***Part(5)');
+disp('Watt',n,'Turns ratio is :');
+
+
+
diff --git a/2549/CH3/EX3.5.5/Ex3_5_5.sce b/2549/CH3/EX3.5.5/Ex3_5_5.sce
new file mode 100644
index 000000000..7bb865f77
--- /dev/null
+++ b/2549/CH3/EX3.5.5/Ex3_5_5.sce
@@ -0,0 +1,14 @@
+//Ex3.5.5
+//calculation of necessary ac input power for HWR and FWR
+clc;
+clear;
+//given
+Pl_dc=500;//dc load power
+n_HWR=0.4;//efficiency for half wave rectifier
+n_FWR=0.812// efficiency for full wave rectifier
+Pac_HWR=Pl_dc/n_HWR;
+disp('**** half wave rectifier ****')
+disp('Watt',Pac_HWR,'necessary ac input power is :')
+Pac_FWR=Pl_dc/n_FWR;
+disp('**** full wave rectifier ****')
+disp('Watt',Pac_FWR,'necessary ac input power is :')
diff --git a/2549/CH3/EX3.6.1/Ex3_6_1.sce b/2549/CH3/EX3.6.1/Ex3_6_1.sce
new file mode 100644
index 000000000..01e7ec979
--- /dev/null
+++ b/2549/CH3/EX3.6.1/Ex3_6_1.sce
@@ -0,0 +1,11 @@
+//Ex3.6.1
+//calculation of average load voltge bridge rectifier ckt
+clc;
+clear;
+//given
+N=1/2;//ratio of no. of turns secondary to primary winding (Ns/Np)
+V=230;//input ac voltage
+Vs_rms=N*V;//rms secondary voltage
+Vm=sqrt(2)*Vs_rms;//peak secondary voltage
+Vl_dc=(1/%pi)*integrate('(Vm-1.4)*sin(Wt)','Wt',0,%pi);//(Vm-1.4) (voltage drop across two diode by 1.4V)
+disp('Volt',Vl_dc,'Average load voltage is :')
diff --git a/2549/CH3/EX3.6.3/Ex3_6_3.sce b/2549/CH3/EX3.6.3/Ex3_6_3.sce
new file mode 100644
index 000000000..2ce3f7524
--- /dev/null
+++ b/2549/CH3/EX3.6.3/Ex3_6_3.sce
@@ -0,0 +1,23 @@
+//Ex3.6.3
+//calculation of parameter for bridge rectifier ckt
+clc;
+clear;
+//given
+N=1/4;//ratio of no. of turns secondary to primary winding (Ns/Np)
+V=220;//input ac voltage
+f=50;// frequency
+Rl=10^3;//load resistance
+Vs_rms=N*V;//rms secondary voltage
+Vm=sqrt(2)*Vs_rms;//peak secondary voltage
+Vl_dc=2*Vm/%pi;//avg output voltage
+disp('***Part(1)***');
+disp('Volt',Vl_dc,'Average output Voltage is :');
+Pl_dc=Vl_dc^2/Rl;//dc load power
+disp('***Part(2)***');
+disp('Watt',Pl_dc,'DC load Power is :');
+PIV=Vm;
+disp('***Part(3)***');
+disp('Volts',PIV,'Peak Inverse Voltage is :');
+f0=2*50;
+disp('***Part(4)***');
+disp('Hz',f0,'Output frequency is :')