diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /2309/CH4 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '2309/CH4')
-rwxr-xr-x | 2309/CH4/EX4.1/Ex4_1.sce | 23 | ||||
-rwxr-xr-x | 2309/CH4/EX4.10/Ex4_10.sce | 26 | ||||
-rwxr-xr-x | 2309/CH4/EX4.11/Ex4_11.sce | 19 | ||||
-rwxr-xr-x | 2309/CH4/EX4.12/Ex4_12.sce | 23 | ||||
-rwxr-xr-x | 2309/CH4/EX4.13/Ex4_13.sce | 19 | ||||
-rwxr-xr-x | 2309/CH4/EX4.14/Ex4_14.sce | 19 | ||||
-rwxr-xr-x | 2309/CH4/EX4.2/Ex4_2.sce | 20 | ||||
-rwxr-xr-x | 2309/CH4/EX4.3/Ex4_3.sce | 22 | ||||
-rwxr-xr-x | 2309/CH4/EX4.4/Ex4_4.sce | 18 | ||||
-rwxr-xr-x | 2309/CH4/EX4.5/Ex4_5.sce | 18 | ||||
-rwxr-xr-x | 2309/CH4/EX4.6/Ex4_6.sce | 19 | ||||
-rwxr-xr-x | 2309/CH4/EX4.7/Ex4_7.sce | 18 | ||||
-rwxr-xr-x | 2309/CH4/EX4.8/Ex4_8.sce | 18 | ||||
-rwxr-xr-x | 2309/CH4/EX4.a.1/A_Ex4_1.sce | 19 | ||||
-rwxr-xr-x | 2309/CH4/EX4.a.10/A_Ex4_10.sce | 19 | ||||
-rwxr-xr-x | 2309/CH4/EX4.a.11/A_Ex4_11.sce | 17 | ||||
-rwxr-xr-x | 2309/CH4/EX4.a.2/A_Ex4_2.sce | 23 | ||||
-rwxr-xr-x | 2309/CH4/EX4.a.3/A_Ex4_3.sce | 28 | ||||
-rwxr-xr-x | 2309/CH4/EX4.a.4/A_Ex4_4.sce | 23 | ||||
-rwxr-xr-x | 2309/CH4/EX4.a.5/A_Ex4_5.sce | 18 | ||||
-rwxr-xr-x | 2309/CH4/EX4.a.6/A_Ex4_6.sce | 18 | ||||
-rwxr-xr-x | 2309/CH4/EX4.a.7/A_Ex4_7.sce | 17 | ||||
-rwxr-xr-x | 2309/CH4/EX4.a.8/A_Ex4_8.sce | 23 | ||||
-rwxr-xr-x | 2309/CH4/EX4.a.9/A_Ex4_9.sce | 26 |
24 files changed, 493 insertions, 0 deletions
diff --git a/2309/CH4/EX4.1/Ex4_1.sce b/2309/CH4/EX4.1/Ex4_1.sce new file mode 100755 index 000000000..c89c85d1c --- /dev/null +++ b/2309/CH4/EX4.1/Ex4_1.sce @@ -0,0 +1,23 @@ +// Chapter 4 Example 1
+//==============================================================================
+clc;
+clear;
+
+// input data
+
+lamda = 3*10^-10; // wavelength of incident photons in m
+theta = 60; // viewing angle in degrees
+h = 6.625*10^-34 // plancks constant
+mo = 9.11*10^-31 // mass in Kg
+c = 3*10^8; // vel. of light
+
+// Calculatioms
+// from Compton theory ,Compton shift is given by
+// lamda' - lamda = (h/(mo*c))*(1-cosθ)
+
+theta_r = theta*%pi/180; // degree to radian conversion
+lamda1 = lamda+( (h/(mo*c))*(1-cos(theta_r))) // wavelength of scattered photons
+
+// Output
+mprintf('Wavelength of Scattered photons = %3.4f Å',lamda1*10^10);
+//==============================================================================
diff --git a/2309/CH4/EX4.10/Ex4_10.sce b/2309/CH4/EX4.10/Ex4_10.sce new file mode 100755 index 000000000..46656e18a --- /dev/null +++ b/2309/CH4/EX4.10/Ex4_10.sce @@ -0,0 +1,26 @@ +// Chapter 4 Example 10
+//==============================================================================
+clc;
+clear;
+
+// input data
+l = 0.1*10^-9; // side of cubical box
+h = 6.625*10^-34 // plancks constant in Jsec
+m = 9.11*10^-31 // mass of electron in Kg
+Kb = 1.38*10^-23 // Boltzmann constant
+
+// Calculations
+// for cubical box the energy eigen value is Enx ny nz = (h^2/(8*m*l^2))*(nx^2 + ny^2 +nz^2)
+// For the next energy level to the lowest energy level nx = 1 , ny = 1 and nz = 2
+nx = 1
+ny = 1
+nz = 2
+E112 = (h^2/(8*m*l^2))*( nx^2 + ny^2 + nz^2);
+
+// we know the average energy of molecules of aperfect gas = (3/2)*(Kb*T)
+T = (2*E112)/(3*Kb); // Temperature in kelvin
+
+// Output
+mprintf('E112 = %3.4e Joules\n Temperature of the molecules T = %3.4e K',E112,T);
+//==============================================================================
+
diff --git a/2309/CH4/EX4.11/Ex4_11.sce b/2309/CH4/EX4.11/Ex4_11.sce new file mode 100755 index 000000000..33cb71fb2 --- /dev/null +++ b/2309/CH4/EX4.11/Ex4_11.sce @@ -0,0 +1,19 @@ +// Chapter 4 Example 11
+//==============================================================================
+clc;
+clear;
+
+// input data
+l = 4*10^-9; // width of infinitely deep potential
+h = 6.625*10^-34 // plancks constant in Jsec
+m = 9.11*10^-31 // mass of electron in Kg
+n = 1; // minimum energy
+e = 1.6*10^-19 // charge of electron in columbs
+
+// Calculations
+E = (h^2 * n^2)/(8*m*l^2) // Energy of electron in an infinitely deep potential well
+E1 = E/e // energy conversion from joules to eV
+
+// Output
+mprintf('Minimum energy of an electron = %3.4f eV',E1);
+//==============================================================================
diff --git a/2309/CH4/EX4.12/Ex4_12.sce b/2309/CH4/EX4.12/Ex4_12.sce new file mode 100755 index 000000000..dd61e285a --- /dev/null +++ b/2309/CH4/EX4.12/Ex4_12.sce @@ -0,0 +1,23 @@ +// Chapter 4 Example 12
+//==============================================================================
+clc;
+clear;
+
+// input data
+l = 0.1*10^-9; // length of one dimensional box
+h = 6.625*10^-34 // plancks constant in Jsec
+m = 9.11*10^-31 // mass of electron in Kg
+n = 1; // for ground state
+n5 = 6; // n value for fifth excited state
+e = 1.6*10^-19 // charge of electron in columbs
+
+// Calculations
+Eg = (h^2 * n^2)/(8*m*l^2 *e ) // Energy in ground state in eV
+Ee = (h^2 * n5^2)/(8*m*l^2 * e) // Energy in excited state in eV
+E = Ee - Eg; // energy req to excite electrons from ground state to fift excited state
+
+// Output
+mprintf('Energy required to excite an electron from ground state to fifth excited state = %3.2f eV',E);
+//==============================================================================
+
+
diff --git a/2309/CH4/EX4.13/Ex4_13.sce b/2309/CH4/EX4.13/Ex4_13.sce new file mode 100755 index 000000000..ed7fdd777 --- /dev/null +++ b/2309/CH4/EX4.13/Ex4_13.sce @@ -0,0 +1,19 @@ +// Chapter 4 Example 13
+//==============================================================================
+clc;
+clear;
+
+// input data
+l = 0.1*10^-9; // length of one dimensional box
+h = 6.625*10^-34 // plancks constant in Jsec
+m = 9.11*10^-31 // mass of electron in Kg
+n = 1; // for ground state
+e = 1.6*10^-19 // charge of electron in columbs
+
+// Calculations
+E = (h^2 * n^2)/(8*m*l^2 *e ) // Energy of electron in eV
+// Output
+mprintf('Energy of an electron = %3.3f eV',E);
+//==============================================================================
+
+
diff --git a/2309/CH4/EX4.14/Ex4_14.sce b/2309/CH4/EX4.14/Ex4_14.sce new file mode 100755 index 000000000..1c954e4c4 --- /dev/null +++ b/2309/CH4/EX4.14/Ex4_14.sce @@ -0,0 +1,19 @@ +// Chapter 4 Example 14
+//==============================================================================
+clc;
+clear;
+
+// input data
+l = 0.5*10^-9; // width of one dimensional box in m
+h = 6.625*10^-34 // plancks constant in Jsec
+m = 9.11*10^-31 // mass of electron in Kg
+n = 1; // for ground state
+e = 1.6*10^-19 // charge of electron in columbs
+
+// Calculations
+E = (h^2 * n^2)/(8*m*l^2 *e ) // Energy of electron in eV
+// Output
+mprintf('Least Energy of an electron = %3.4f eV',E);
+//==============================================================================
+
+
diff --git a/2309/CH4/EX4.2/Ex4_2.sce b/2309/CH4/EX4.2/Ex4_2.sce new file mode 100755 index 000000000..9b8a1f981 --- /dev/null +++ b/2309/CH4/EX4.2/Ex4_2.sce @@ -0,0 +1,20 @@ +// Chapter 4 Example 2
+//==============================================================================
+clc;
+clear;
+
+// input data
+theta = 135; // angle in degrees
+h = 6.625*10^-34 // plancks constant
+mo = 9.1*10^-31 // mass in Kg
+c = 3*10^8; // vel. of light in m/s
+
+// Calculatioms
+// from Compton theory ,Compton shift is given by
+// lamda' - lamda = (h/(mo*c))*(1-cosθ)
+theta_r = theta*%pi/180; // degree to radian conversion
+c_lamda = ( (h/(mo*c))*(1-cos(theta_r))) // Change in wavelength in m
+
+// Output
+mprintf('Change in Wavelength = %3.5f Å',c_lamda*10^10);
+//==============================================================================
diff --git a/2309/CH4/EX4.3/Ex4_3.sce b/2309/CH4/EX4.3/Ex4_3.sce new file mode 100755 index 000000000..329bbcda0 --- /dev/null +++ b/2309/CH4/EX4.3/Ex4_3.sce @@ -0,0 +1,22 @@ +// Chapter 4 Example 3
+//==============================================================================
+clc;
+clear;
+
+// input data
+
+lamda = 0.1*10^-9; // wavelength of X-rays in m
+theta = 90; // angle with incident beam in degrees
+h = 6.625*10^-34 // plancks constant
+mo = 9.11*10^-31 // mass in Kg
+c = 3*10^8; // vel. of light
+
+// Calculatioms
+// from Compton theory ,Compton shift is given by
+// lamda' - lamda = (h/(mo*c))*(1-cosθ)
+theta_r = theta*%pi/180; // degree to radian conversion
+lamda1 = lamda+( (h/(mo*c))*(1-cos(theta_r))) // wavelength of scattered beam
+
+// Output
+mprintf('Wavelength of Scattered beam = %3.4f Å',lamda1*10^10);
+//==============================================================================
diff --git a/2309/CH4/EX4.4/Ex4_4.sce b/2309/CH4/EX4.4/Ex4_4.sce new file mode 100755 index 000000000..283ebbb75 --- /dev/null +++ b/2309/CH4/EX4.4/Ex4_4.sce @@ -0,0 +1,18 @@ +// Chapter 4 Example 4
+//==============================================================================
+clc;
+clear;
+
+// input data
+h = 6.625*10^-34 // plancks constant
+m = 9.11*10^-31 // mass of electron in Kg
+e = 1.6*10^-19 // charge of electron
+V = 150; // potential difference in volts
+
+// Calculations
+
+lamda = h/(sqrt(2*m*e*V)) // de Broglie wavelength
+
+// Output
+mprintf('The de-Broglie wavelength = %d Å',lamda*10^10);
+//==============================================================================
diff --git a/2309/CH4/EX4.5/Ex4_5.sce b/2309/CH4/EX4.5/Ex4_5.sce new file mode 100755 index 000000000..4bedfbd3a --- /dev/null +++ b/2309/CH4/EX4.5/Ex4_5.sce @@ -0,0 +1,18 @@ +// Chapter 4 Example 5
+//==============================================================================
+clc;
+clear;
+
+// input data
+h = 6.625*10^-34 // plancks constant
+m = 9.11*10^-31 // mass of electron in Kg
+e = 1.6*10^-19 // charge of electron
+V = 5000; // potential in volts
+
+// Calculations
+
+lamda = h/(sqrt(2*m*e*V)) // de Broglie wavelength
+
+// Output
+mprintf('The de-Broglie wavelength of electron = %3.5f Å',lamda*10^10);
+//==============================================================================
diff --git a/2309/CH4/EX4.6/Ex4_6.sce b/2309/CH4/EX4.6/Ex4_6.sce new file mode 100755 index 000000000..ec66d53db --- /dev/null +++ b/2309/CH4/EX4.6/Ex4_6.sce @@ -0,0 +1,19 @@ +// Chapter 4 Example 6
+//==============================================================================
+clc;
+clear;
+
+// input data
+E = 100 // Energy of electron in eV
+h = 6.625*10^-34 // plancks constant
+m = 9.11*10^-31 // mass of electron in Kg
+e = 1.6*10^-19 // Charge of electron in Columbs
+
+// Calculations
+
+E1 = E*e // Energy conversion from eV to Joule
+lamda = h/(sqrt(2*m*E1)) // de Broglie wavelength
+
+// Output
+mprintf('The de-Broglie wavelength = %3.3f Å',lamda*10^10);
+//==============================================================================
diff --git a/2309/CH4/EX4.7/Ex4_7.sce b/2309/CH4/EX4.7/Ex4_7.sce new file mode 100755 index 000000000..15bfefeaf --- /dev/null +++ b/2309/CH4/EX4.7/Ex4_7.sce @@ -0,0 +1,18 @@ +// Chapter 4 Example 7
+//==============================================================================
+clc;
+clear;
+
+// input data
+m = 1.675*10^-27; // Mass of proton in kg
+c = 3*10^8; // velocity of light in m/s
+h = 6.625*10^-34 // plancks constant
+
+// Calculations
+
+vp = c/20; // velocity of proton in m/s
+lamda = h/(m*vp) // de-Broglie wavelength in m
+
+// Output
+mprintf('de-Broglie wavelength = %e m',lamda);
+//==============================================================================
diff --git a/2309/CH4/EX4.8/Ex4_8.sce b/2309/CH4/EX4.8/Ex4_8.sce new file mode 100755 index 000000000..0ef4d59a9 --- /dev/null +++ b/2309/CH4/EX4.8/Ex4_8.sce @@ -0,0 +1,18 @@ +// Chapter 4 Example 8
+//==============================================================================
+clc;
+clear;
+
+// input data
+E = 10000 // Energy of neutron in eV
+h = 6.625*10^-34 // plancks constant
+m = 1.675*10^-27 // mass of neutron in Kg
+e = 1.6*10^-19
+// Calculations
+
+E1 = E*e // Energy conversion from eV to Joule
+lamda = h/(sqrt(2*m*E1)) // de Broglie wavelength
+
+// Output
+mprintf('The de-Broglie wavelength of neutron = %3.3e m',lamda);
+//==============================================================================
diff --git a/2309/CH4/EX4.a.1/A_Ex4_1.sce b/2309/CH4/EX4.a.1/A_Ex4_1.sce new file mode 100755 index 000000000..2bd406a7e --- /dev/null +++ b/2309/CH4/EX4.a.1/A_Ex4_1.sce @@ -0,0 +1,19 @@ +// Chapter 4 Addutional Example 1
+//==============================================================================
+clc;
+clear;
+
+// input data
+h = 6.625*10^-34 // plancks constant
+c = 3*10^8; // vel. of light
+lamda = 5893*10^-10; // wavelength in m
+P = 100 // power of sodium vapour lamp
+
+// Calculations
+E = (h*c)/lamda; // Energy in joules
+N = P/E // Number of photons emitted
+
+// Output
+mprintf('Number of Photons emitted = %3.4e per second',N);
+//==============================================================================
+
diff --git a/2309/CH4/EX4.a.10/A_Ex4_10.sce b/2309/CH4/EX4.a.10/A_Ex4_10.sce new file mode 100755 index 000000000..59da6ee51 --- /dev/null +++ b/2309/CH4/EX4.a.10/A_Ex4_10.sce @@ -0,0 +1,19 @@ +// Chapter 4 Additional Example 10
+//==============================================================================
+clc;
+clear;
+
+// input data
+l = 10^-10 ; // length of one dimensional box in m
+h = 6.625*10^-34 // plancks constant in Jsec
+m = 9.11*10^-31 // mass of electron in Kg
+n = 1; // for ground state
+e = 1.6*10^-19 // charge of electron in columbs
+
+// Calculations
+E = 2*(h^2 * n^2)/(8*m*l^2 *e ) // Energy of system having two electrons
+// Output
+mprintf('Energy of the system having two electrons = %3.4f eV',E);
+//==============================================================================
+
+
diff --git a/2309/CH4/EX4.a.11/A_Ex4_11.sce b/2309/CH4/EX4.a.11/A_Ex4_11.sce new file mode 100755 index 000000000..d53b12988 --- /dev/null +++ b/2309/CH4/EX4.a.11/A_Ex4_11.sce @@ -0,0 +1,17 @@ +// Chapter 4 Additional Example 10
+//==============================================================================
+clc;
+clear;
+
+// input data
+b = 40; // angle subtended by final images at eye in degrees
+a = 10 // angle subtended by the object at the eye kept at near point in degrees
+
+// Calculations
+b_r = b*%pi/180; // degree to radian conversion
+a_r = a*%pi/180; // degree to radian conversion
+M = tan(b_r)/tan(a_r); // magnifying power
+
+// Output
+mprintf('Magnifying power = %3.3f',M);
+//==============================================================================
diff --git a/2309/CH4/EX4.a.2/A_Ex4_2.sce b/2309/CH4/EX4.a.2/A_Ex4_2.sce new file mode 100755 index 000000000..bd7b126d2 --- /dev/null +++ b/2309/CH4/EX4.a.2/A_Ex4_2.sce @@ -0,0 +1,23 @@ +// Chapter 4 AdditionalExample 2
+//==============================================================================
+clc;
+clear;
+
+// input data
+
+lamda1 = 0.022*10^-10; // wavelength of scatterd X-rays in m
+theta = 45; // scatterring angle in degrees
+h = 6.625*10^-34 // plancks constant
+mo = 9.11*10^-31 // mass in Kg
+c = 3*10^8; // vel. of light
+
+// Calculatioms
+// from Compton theory ,Compton shift is given by
+// lamda' - lamda = (h/(mo*c))*(1-cosθ)
+
+theta_r = theta*%pi/180; // degree to radian conversion
+lamda = lamda1-( (h/(mo*c))*(1-cos(theta_r))) // incident Wavelength
+
+// Output
+mprintf('Wavelength of incident beam = %3.4f Å',lamda*10^10);
+//==============================================================================
diff --git a/2309/CH4/EX4.a.3/A_Ex4_3.sce b/2309/CH4/EX4.a.3/A_Ex4_3.sce new file mode 100755 index 000000000..9966e5263 --- /dev/null +++ b/2309/CH4/EX4.a.3/A_Ex4_3.sce @@ -0,0 +1,28 @@ +// Chapter 4 Additional Example 3
+//==============================================================================
+clc;
+clear;
+
+// input data
+Ei = 1.02*10^6 // photon energy in eV
+theta = 90; // scattered angle in degrees
+h = 6.625*10^-34 // plancks constant
+mo = 9.1*10^-31 // mass of electron in Kg
+e = 1.6*10^-19 // charge of electron
+c = 3*10^8; // vel. of light in m/s
+
+// Calculatioms
+// from Compton theory ,Compton shift is given by
+// lamda' - lamda = (h/(mo*c))*(1-cosθ)
+theta_r = theta*%pi/180; // degree to radian conversion
+c_lamda = ( (h/(mo*c))*(1-cos(theta_r))) // Change in wavelength in m
+dv = c/c_lamda; // change in frequency of the scattered photon
+dE = (h*dv)/e // change in energy of scattered photon in eV
+// This change in energy is transferred as the KE of the recoil electron
+Er = dE; // Energy of recoil electron
+Es = Ei - Er // Energy of scattered photon
+
+
+// Output
+mprintf('Energy of the recoil electron = %3.4f MeV\n Energy of the Scattered photon = %3.4f MeV',Er*10^-6,Es*10^-6);
+//==============================================================================
diff --git a/2309/CH4/EX4.a.4/A_Ex4_4.sce b/2309/CH4/EX4.a.4/A_Ex4_4.sce new file mode 100755 index 000000000..c082a7395 --- /dev/null +++ b/2309/CH4/EX4.a.4/A_Ex4_4.sce @@ -0,0 +1,23 @@ +// Chapter 4 Additional Example 4
+//==============================================================================
+clc;
+clear;
+
+// input data
+
+lamda = 0.124*10^-10; // wavelength of X-rays in m
+theta = 180; // Scattering angle in degrees
+h = 6.625*10^-34 // plancks constant
+mo = 9.11*10^-31 // mass in Kg
+c = 3*10^8; // vel. of light
+
+// Calculatioms
+// from Compton theory ,Compton shift is given by
+// lamda' - lamda = (h/(mo*c))*(1-cosθ)
+
+theta_r = theta*%pi/180; // degree to radian conversion
+lamda1 = lamda+( (h/(mo*c))*(1-cos(theta_r))) // wavelength of scattered X-rays
+
+// Output
+mprintf('Wavelength of Scattered X-rays = %3.4f Å',lamda1*10^10);
+//==============================================================================
diff --git a/2309/CH4/EX4.a.5/A_Ex4_5.sce b/2309/CH4/EX4.a.5/A_Ex4_5.sce new file mode 100755 index 000000000..b495574e5 --- /dev/null +++ b/2309/CH4/EX4.a.5/A_Ex4_5.sce @@ -0,0 +1,18 @@ +// Chapter 4 Additional Example 5
+//==============================================================================
+clc;
+clear;
+
+// input data
+h = 6.625*10^-34 // plancks constant
+m = 9.11*10^-31 // mass of electron in Kg
+e = 1.6*10^-19 // charge of electron
+V = 2000; // potential in volts
+
+// Calculations
+
+lamda = h/(sqrt(2*m*e*V)) // de Broglie wavelength
+
+// Output
+mprintf('The de-Broglie wavelength of electron = %3.4f Å',lamda*10^10);
+//==============================================================================
diff --git a/2309/CH4/EX4.a.6/A_Ex4_6.sce b/2309/CH4/EX4.a.6/A_Ex4_6.sce new file mode 100755 index 000000000..42c7a12b4 --- /dev/null +++ b/2309/CH4/EX4.a.6/A_Ex4_6.sce @@ -0,0 +1,18 @@ +// Chapter 4 Additional Example 6
+//==============================================================================
+clc;
+clear;
+
+// input data
+h = 6.625*10^-34 // plancks constant
+m = 1.678*10^-27 // mass of proton in Kg
+e = 1.6*10^-19 // charge of electron
+Kb = 1.38*10^-23; // boltzmann constant
+T = 300 // Temperature in kelvin
+// Calculations
+
+lamda = h/(sqrt(3*m*Kb*T)) // de Broglie wavelength
+
+// Output
+mprintf('The de-Broglie wavelength = %3.4f Å',lamda*10^10);
+//==============================================================================
diff --git a/2309/CH4/EX4.a.7/A_Ex4_7.sce b/2309/CH4/EX4.a.7/A_Ex4_7.sce new file mode 100755 index 000000000..16baedcf7 --- /dev/null +++ b/2309/CH4/EX4.a.7/A_Ex4_7.sce @@ -0,0 +1,17 @@ +// Chapter 4 Additional Example 7
+//==============================================================================
+clc;
+clear;
+// input data
+h = 6.625*10^-34 // plancks constant
+m = 9.11*10^-31 // mass of electron in Kg
+lamda = 3*10^-2; // wavelength of electron wave
+e = 1.6*10^-19; // charge of electron
+// Calculations
+
+E = (h^2)/(2*m*lamda^2); // Energy in Joules
+E1 = E/e;
+// Output
+mprintf('Energy of the electron E = %3.4e eV\n',E1);
+mprintf(' Note: Calculation mistake in textbook')
+//==============================================================================
diff --git a/2309/CH4/EX4.a.8/A_Ex4_8.sce b/2309/CH4/EX4.a.8/A_Ex4_8.sce new file mode 100755 index 000000000..a62841469 --- /dev/null +++ b/2309/CH4/EX4.a.8/A_Ex4_8.sce @@ -0,0 +1,23 @@ +// Chapter 4 Additional Example 8
+//==============================================================================
+clc;
+clear;
+// input data
+h = 6.625*10^-34 // plancks constant
+m = 9.11*10^-31 // mass of electron in Kg
+c = 3*10^8; // velocity of light in m/s
+
+// Calculations
+ve = 0.7071*c // velocity of electron
+lamda = h/(m*ve*sqrt(1-(ve/c)^2)) // de Broglie wavelength
+
+// we know Compton wavelength ,lamda' - lamda = (h/(mo*c))*(1-cosθ)
+// maximum shift θ = 180
+theta = 180
+theta1 = theta*%pi/180;
+d_lamda = (h/(m*c))*(1-cos(theta1))
+mprintf('de Broglie wavelength = %e m\n',lamda);
+mprintf(' compton wavelength = %e m\n',d_lamda)
+mprintf(' The de-Broglie wacelength is equal to the compton wavelength');
+//==============================================================================
+
diff --git a/2309/CH4/EX4.a.9/A_Ex4_9.sce b/2309/CH4/EX4.a.9/A_Ex4_9.sce new file mode 100755 index 000000000..43c17276a --- /dev/null +++ b/2309/CH4/EX4.a.9/A_Ex4_9.sce @@ -0,0 +1,26 @@ +// Chapter 4 Additional Example 9
+//==============================================================================
+clc;
+clear;
+
+// input data
+l = 10^-10; // side of one dimensional box
+h = 6.625*10^-34 // plancks constant in Jsec
+m = 9.11*10^-31 // mass of electron in Kg
+n1 = 1; // for 1st eigen value
+n2 = 2; // for 2nd eigen value
+n3 = 3; // for 3rd eigen value
+n4 = 4; // for 4th eigen value
+e = 1.6*10^-19 // charge of electron in columbs
+
+// Calculations
+E1 = (h^2 * n1^2)/(8*m*l^2 *e ) // first Eigen value
+E2 = (h^2 * n2^2)/(8*m*l^2 *e ) // second Eigen value
+E3 = (h^2 * n3^2)/(8*m*l^2 *e ) // third Eigen value
+E4 = (h^2 * n4^2)/(8*m*l^2 *e ) // fourth Eigen value
+
+// Output
+mprintf('1st Eigen value = %3.1f eV\n 2nd Eigen value = %3.1f eV\n 3rd Eigen value = %3.1f eV\n 4th Eigen value = %3.1f eV\n',E1,E2,E3,E4);
+//==============================================================================
+
+
|