summaryrefslogtreecommitdiff
path: root/2258/CH6
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /2258/CH6
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '2258/CH6')
-rwxr-xr-x2258/CH6/EX6.1/6_1.sce13
-rwxr-xr-x2258/CH6/EX6.10/6_10.sce29
-rwxr-xr-x2258/CH6/EX6.2/6_2.sce21
-rwxr-xr-x2258/CH6/EX6.3/6_3.sce8
-rwxr-xr-x2258/CH6/EX6.4/6_4.sce9
-rwxr-xr-x2258/CH6/EX6.5/6_5.sce15
-rwxr-xr-x2258/CH6/EX6.6/6_6.sce12
-rwxr-xr-x2258/CH6/EX6.7/6_7.sce13
-rwxr-xr-x2258/CH6/EX6.8/6_8.sce13
-rwxr-xr-x2258/CH6/EX6.9/6_9.sce18
10 files changed, 151 insertions, 0 deletions
diff --git a/2258/CH6/EX6.1/6_1.sce b/2258/CH6/EX6.1/6_1.sce
new file mode 100755
index 000000000..9c924e34d
--- /dev/null
+++ b/2258/CH6/EX6.1/6_1.sce
@@ -0,0 +1,13 @@
+clc();
+clear;
+// To calculate the energy stored in the condenser and polarizing the dielectric
+C=2; //capacitance in micro farad
+C=C*10^-6; //capacitance in farad
+V=1000; //voltage in Volts
+epsilon_r=100;
+W=(C*(V^2))/2;
+C0=C/epsilon_r;
+W0=(C0*(V^2))/2;
+W_0=1-W0;
+printf("energy stored in the condenser is %f Joule",W);
+printf("energy stored in the dielectric is %f Joule",W_0);
diff --git a/2258/CH6/EX6.10/6_10.sce b/2258/CH6/EX6.10/6_10.sce
new file mode 100755
index 000000000..219e0f514
--- /dev/null
+++ b/2258/CH6/EX6.10/6_10.sce
@@ -0,0 +1,29 @@
+clc();
+clear;
+// To calculate the complex polarisability of material
+epsilonr=4.36; //dielectric constant
+t=2.8*10^-2;
+N=4*10^28;
+epsilon0=8.84*10^-12;
+epsilon_r=epsilonr*t;
+//epsilonstar=epsilonr-(j*epsilon_r)
+//by substituting values epsilonstar = 4.36-(j*0.12208)
+//by taking out 4.36 common we get epsilonstar = 4.36(1-(j*0.028))
+//(epsilonstar-1)/(epsilonstar+2) = (N*alphastar/(3*epsilon0))
+// (4.36(1-(j*0.028))-1)/(4.36(1-(j*0.028))+2) = (N*alphastar/(3*epsilon0))
+//consider real part in numerator of LHS be A and in denominator be B
+A=4.36-1;
+B=4.36+2;
+C=N/(3*epsilon0);
+//therefore alpastar = (1/C)*((3.36-0.12208j)/(6.36-0.12208j))
+//by rationalising the denominatore we get
+//((3.36-0.12208j)/(6.36-0.12208j))*((6.36+0.12208j)/(6.36+0.12208j))
+//after simplifuing let real part ne X and imaginary part be Y
+X=((3.36*6.36)+(0.12208*0.12208))/((6.36^2)+(0.12208^2));
+Y=((3.36*0.12208)-(6.36*0.12208))/((6.36^2)+(0.12208^2));
+//alphastar=(1/C)*(X+jY) = ((1/C)*X)+((1/C)*jY)
+R=(1/C)*X;
+I=(1/C)*Y;
+printf("the complex polarizability in F-m^2 is");
+disp('j',I,R);
+//by taking 10^-40 common we get alphastar = (3.5-j0.06)*10^-40 F-m^2
diff --git a/2258/CH6/EX6.2/6_2.sce b/2258/CH6/EX6.2/6_2.sce
new file mode 100755
index 000000000..5ce7289ab
--- /dev/null
+++ b/2258/CH6/EX6.2/6_2.sce
@@ -0,0 +1,21 @@
+clc();
+clear;
+// To calculate the ratio between electronic and ionic polarizability
+epsilon_r=4.94;
+N=2.69; //let n^2 be N
+//(epsilon_r-1)/(epsilon_r+2) = (N*alpha)/(3*epsilon_0)
+//alpha = alpha_e+alpha_i
+//therefore (epsilon_r-1)/(epsilon_r+2) = (N*(alpha_e+alpha_i))/(3*epsilon_0)
+//let (N*(alpha_e+alpha_i))/(3*epsilon_0) be X
+X=(epsilon_r-1)/(epsilon_r+2);
+//Ez=n^2
+//therefore (N-1)/(N+2) = (N*alpha_e)/(3*epsilon_0)
+//let (N*alpha_e)/(3*epsilon_0) be Y
+Y=(N-1)/(N+2);
+//dividing X/Y = (N*(alpha_e+alpha_i))/(N*alpha_e)
+//therefore X/Y = 1+(alpha_i/alpha_e)
+//let alpha_i/alpha_e be A
+R=(X/Y)-1;
+printf("ratio between electronic and ionic polarizability is %f",R);
+
+//answer given in the book is wrong in the second part
diff --git a/2258/CH6/EX6.3/6_3.sce b/2258/CH6/EX6.3/6_3.sce
new file mode 100755
index 000000000..aa6431c7e
--- /dev/null
+++ b/2258/CH6/EX6.3/6_3.sce
@@ -0,0 +1,8 @@
+clc();
+clear;
+// To calculate the dielectric constant of the material
+N=3*10^28; //atoms per m^3
+alpha_e=10^-40; //farad m^2
+epsilon_0=8.854*10^-12; //f/m
+epsilon_r=1+(N*alpha_e/epsilon_0);
+printf("dielectric constant of the material is %f",epsilon_r);
diff --git a/2258/CH6/EX6.4/6_4.sce b/2258/CH6/EX6.4/6_4.sce
new file mode 100755
index 000000000..54875e9db
--- /dev/null
+++ b/2258/CH6/EX6.4/6_4.sce
@@ -0,0 +1,9 @@
+clc();
+clear;
+// To calculate the electronic polarizability of He atoms
+epsilon_0=8.854*10^-12; //f/m
+epsilon_r=1.0000684;
+N=2.7*10^25; //atoms per m^3
+alpha_e=(epsilon_0*(epsilon_r-1))/N;
+printf("electronic polarizability of He atoms in Fm^2 is");
+disp(alpha_e);
diff --git a/2258/CH6/EX6.5/6_5.sce b/2258/CH6/EX6.5/6_5.sce
new file mode 100755
index 000000000..c15fd6c30
--- /dev/null
+++ b/2258/CH6/EX6.5/6_5.sce
@@ -0,0 +1,15 @@
+clc();
+clear;
+// To calculate the capacitance and charge
+epsilon_0=8.854*10^-12; //f/m
+A=100; //area in cm^2
+A=A*10^-4; //area in m^2
+V=100; //potential in V
+d=1; //plate seperation in cm
+d=d*10^-2; //plate seperation in m
+C=(epsilon_0*A)/d;
+Q=C*V;
+printf("charge on the plates in F is");
+disp(C);
+printf("charge on the capacitor in coulomb is");
+disp(Q);
diff --git a/2258/CH6/EX6.6/6_6.sce b/2258/CH6/EX6.6/6_6.sce
new file mode 100755
index 000000000..3a5defed8
--- /dev/null
+++ b/2258/CH6/EX6.6/6_6.sce
@@ -0,0 +1,12 @@
+clc();
+clear;
+// To calculate the resultant voltage across the capacitors
+Q=2*10^-10; //charge in coulomb
+d=4; //plate seperation in mm
+d=d*10^-3; //plate seperation in m
+epsilon_r=3.5;
+epsilon_0=8.85*10^-12; //f/m
+A=650; //area in mm^2
+A=A*10^-6; //area in m^2
+V=(Q*d)/(epsilon_0*epsilon_r*A);
+printf("voltage across the capacitor is %f Volts",V);
diff --git a/2258/CH6/EX6.7/6_7.sce b/2258/CH6/EX6.7/6_7.sce
new file mode 100755
index 000000000..54c9c9042
--- /dev/null
+++ b/2258/CH6/EX6.7/6_7.sce
@@ -0,0 +1,13 @@
+clc();
+clear;
+// To calculate the dielectric displacement
+V=10; //potential in volts
+d=2*10^-3; //plate seperation in m
+epsilon_r=6; //dielectric constant
+epsilon_0=8.85*10^-12; //f/m
+E=V/d;
+D=epsilon_0*epsilon_r*E;
+printf("dielectric displacement in cm^-2 is");
+disp(D);
+
+//answer given in the book is wrong in the 7th decimal point
diff --git a/2258/CH6/EX6.8/6_8.sce b/2258/CH6/EX6.8/6_8.sce
new file mode 100755
index 000000000..327148eed
--- /dev/null
+++ b/2258/CH6/EX6.8/6_8.sce
@@ -0,0 +1,13 @@
+clc();
+clear;
+// To calculate the polarizability and relative permittivity of He
+R=0.55; //radius of He atom in angstrom
+R=R*10^-10; //radius of He atom in m
+epsilon_0=8.84*10^-12; //f/m
+N=2.7*10^25;
+alpha_e=4*%pi*epsilon_0*R^3;
+epsilon_r=(N*alpha_e/epsilon_0)+1;
+printf("polarizability in farad m^2 is");
+disp(alpha_e);
+printf("relative permitivity is");
+disp(epsilon_r);
diff --git a/2258/CH6/EX6.9/6_9.sce b/2258/CH6/EX6.9/6_9.sce
new file mode 100755
index 000000000..363f0f141
--- /dev/null
+++ b/2258/CH6/EX6.9/6_9.sce
@@ -0,0 +1,18 @@
+clc();
+clear;
+// To calculate the field strength and total dipole moment
+V=15; //potential difference in volts
+C=6; //capacity in micro farad
+C=C*10^-6; //capacity in farad
+epsilon_0=8.84*10^-12; //f/m
+epsilon_r=8;
+A=360; //surface area in cm^2
+A=A*10^-4; //surface area in m^2
+E=(V*C)/(epsilon_0*epsilon_r*A);
+d=epsilon_0*(epsilon_r-1)*V*A;
+printf("field strength in V/m is");
+disp(E);
+printf("total dipole moment in cm is");
+disp(d);
+
+//answer for field strength E given in the book is wrong