summaryrefslogtreecommitdiff
path: root/2240/CH26
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /2240/CH26
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '2240/CH26')
-rwxr-xr-x2240/CH26/EX25.1/EX25_1.sce14
-rwxr-xr-x2240/CH26/EX25.10/EX25_10.sce22
-rwxr-xr-x2240/CH26/EX25.2/EX25_2.sce15
-rwxr-xr-x2240/CH26/EX25.3/EX25_3.sce17
-rwxr-xr-x2240/CH26/EX25.4/EX25_4.sce17
-rwxr-xr-x2240/CH26/EX25.5/EX25_5.sce15
-rwxr-xr-x2240/CH26/EX25.6/EX25_6.sce19
-rwxr-xr-x2240/CH26/EX25.7/EX25_7.sce21
-rwxr-xr-x2240/CH26/EX25.8/EX25_8.sce16
-rwxr-xr-x2240/CH26/EX25.9/EX25_9.sce22
10 files changed, 178 insertions, 0 deletions
diff --git a/2240/CH26/EX25.1/EX25_1.sce b/2240/CH26/EX25.1/EX25_1.sce
new file mode 100755
index 000000000..79b441e9b
--- /dev/null
+++ b/2240/CH26/EX25.1/EX25_1.sce
@@ -0,0 +1,14 @@
+// Grob's Basic Electronics 11e
+// Chapter No. 25
+// Example No. 25_1
+clc; clear;
+// Calculate the resonant frequency for an 8-H inductance and a 20-uF capacitance.
+
+// Given data
+
+L = 8; // L=8 Henry
+C = 20*10^-6; // C=20 uFarad
+
+fr = 1/(2*%pi*sqrt(L*C));
+disp (fr,'The resonant frequency in Hertz')
+disp ('Appox 12.6 Hertz')
diff --git a/2240/CH26/EX25.10/EX25_10.sce b/2240/CH26/EX25.10/EX25_10.sce
new file mode 100755
index 000000000..04cb1e893
--- /dev/null
+++ b/2240/CH26/EX25.10/EX25_10.sce
@@ -0,0 +1,22 @@
+// Grob's Basic Electronics 11e
+// Chapter No. 25
+// Example No. 25_10
+clc; clear;
+// An LC circuit resonant at 6000 kHz has a Q of 100. Find the total bandwidth delta f and the edge frequencies f1 and f2.
+
+// Given data
+
+fr = 6000*10^3; // Resonant frequency=6000 kHertz
+Q = 100; // Magnification factor=100
+
+Bw = fr/Q;
+disp (Bw,'The Bandwidth BW or Delta f in Hertz')
+disp ('i.e 60 kHz')
+
+f1 = fr-Bw/2;
+disp (f1,'The Edge Frequency f1 in Hertz')
+disp ('i.e 5970 kHz')
+
+f2 = fr+Bw/2;
+disp (f2,'The Edge Frequency f2 in Hertz')
+disp ('i.e 6030 kHz')
diff --git a/2240/CH26/EX25.2/EX25_2.sce b/2240/CH26/EX25.2/EX25_2.sce
new file mode 100755
index 000000000..af9f476f6
--- /dev/null
+++ b/2240/CH26/EX25.2/EX25_2.sce
@@ -0,0 +1,15 @@
+// Grob's Basic Electronics 11e
+// Chapter No. 25
+// Example No. 25_2
+clc; clear;
+// Calculate the resonant frequency for a 2-uH inductance and a 3-pF capacitance.
+
+// Given data
+
+L = 2*10^-6; // Inductor=2 uHenry
+C = 3*10^-12; // Capacitor=3 pFarad
+pi = 3.14;
+
+fr = 1/(2*pi*sqrt(L*C));
+disp (fr,'The resonant frequency in Hertz')
+disp ('i.e 65 MHz')
diff --git a/2240/CH26/EX25.3/EX25_3.sce b/2240/CH26/EX25.3/EX25_3.sce
new file mode 100755
index 000000000..2a3d5994e
--- /dev/null
+++ b/2240/CH26/EX25.3/EX25_3.sce
@@ -0,0 +1,17 @@
+// Grob's Basic Electronics 11e
+// Chapter No. 25
+// Example No. 25_3
+clc; clear;
+// What value of C resonates with a 239-uH L at 1000 kHz?
+
+// Given data
+
+L = 239*10^-6; // Inductor=239 uHenry
+fr = 1000*10^3; // Resonant frequency=1000 kHertz
+
+A = %pi*%pi; // pi square
+B = fr*fr; // Resonant frequency square
+
+C = 1/(4*A*B*L);
+disp (C,'The value of Capacitor in Farads')
+disp ('i.e 106 pF')
diff --git a/2240/CH26/EX25.4/EX25_4.sce b/2240/CH26/EX25.4/EX25_4.sce
new file mode 100755
index 000000000..988f735ba
--- /dev/null
+++ b/2240/CH26/EX25.4/EX25_4.sce
@@ -0,0 +1,17 @@
+// Grob's Basic Electronics 11e
+// Chapter No. 25
+// Example No. 25_4
+clc; clear;
+// What value of L resonates with a 106-pF C at 1000 kHz, equal to 1 MHz?
+
+// Given data
+
+C = 106*10^-12; // Capacitor=106 pFarad
+fr = 1*10^6; // Resonant frequency=1 MHertz
+
+A = %pi*%pi; // pi square
+B = fr*fr; // Resonant frequency square
+
+C = 1/(4*A*B*C);
+disp (C,'The value of Inductor in Henry')
+disp ('i.e 239 uF')
diff --git a/2240/CH26/EX25.5/EX25_5.sce b/2240/CH26/EX25.5/EX25_5.sce
new file mode 100755
index 000000000..6e463b213
--- /dev/null
+++ b/2240/CH26/EX25.5/EX25_5.sce
@@ -0,0 +1,15 @@
+// Grob's Basic Electronics 11e
+// Chapter No. 25
+// Example No. 25_5
+clc;clear;
+// A series circuit resonant at 0.4 MHz develops 100 mV across a 250-uH L with a 2-mV input. Calculate Q .
+
+// Given data
+
+Vo = 100*10^-3; // Output voltage=100 mVolts
+Vi = 2*10^-3; // Input voltage=2 mVolts
+L = 250*10^-6; // Inductor=250 uHenry
+f = 0.4*10^6; // Frequency=0.4 MHertz
+
+Q = Vo/Vi;
+disp (Q,'The Magnification factor Q is')
diff --git a/2240/CH26/EX25.6/EX25_6.sce b/2240/CH26/EX25.6/EX25_6.sce
new file mode 100755
index 000000000..55b57d698
--- /dev/null
+++ b/2240/CH26/EX25.6/EX25_6.sce
@@ -0,0 +1,19 @@
+// Grob's Basic Electronics 11e
+// Chapter No. 25
+// Example No. 25_6
+clc; clear;
+// What is the ac resistance of the coil in A series circuit resonant at 0.4 MHz develops 100 mV across a 250-uH L with a 2-mV input.
+
+// Given data
+
+Vo = 100*10^-3; // Output voltage=100 mVolts
+Vi = 2*10^-3; // Input voltage=2 mVolts
+L = 250*10^-6; // Inductor=250 uHenry
+f = 0.4*10^6; // Frequency=0.4 MHertz
+pi = 3.14;
+
+Q = Vo/Vi;
+Xl = 2*pi*f*L;
+
+rs = Xl/Q;
+disp (rs,'The Ac Resistance of Coil in Ohms')
diff --git a/2240/CH26/EX25.7/EX25_7.sce b/2240/CH26/EX25.7/EX25_7.sce
new file mode 100755
index 000000000..7a3056cc7
--- /dev/null
+++ b/2240/CH26/EX25.7/EX25_7.sce
@@ -0,0 +1,21 @@
+// Grob's Basic Electronics 11e
+// Chapter No. 25
+// Example No. 25_7
+clc; clear;
+// In Fig. 25–9, assume that with a 4-mVac input signal for VT, the voltage across R1 is 2 mV when R1 is 225-kOhms. Determine Zeq and Q.
+
+// Given data
+
+vin = 4*10^-3; // Input AC signal=4 mVac
+R1 = 225*10^3; // Resistance1=225 kOhms
+vR1 = 2*10^-3; // Voltage across Resistor1=2 mVac
+xl = 1.5*10^3; // Inductive Reactance=1.5 kOhms
+
+disp ('Because they divide Vt equally')
+
+Zeq = R1;
+disp (Zeq,'The Equivalent Impedence in Ohms')
+disp ('i.e 225 kOhms')
+
+Q = Zeq/xl;
+disp (Q,'The Q is')
diff --git a/2240/CH26/EX25.8/EX25_8.sce b/2240/CH26/EX25.8/EX25_8.sce
new file mode 100755
index 000000000..7fd5025ff
--- /dev/null
+++ b/2240/CH26/EX25.8/EX25_8.sce
@@ -0,0 +1,16 @@
+// Grob's Basic Electronics 11e
+// Chapter No. 25
+// Example No. 25_8
+clc; clear;
+// A parallel LC circuit tuned to 200 kHz with a 350-uH L has a measured ZEQ of 17,600. Calculate Q.
+
+// Given data
+
+L = 350*10^-6; // Inductor=350 uHenry
+f = 200*10^3; // Frequency=200 kHertz
+Zeq = 17600; // Equivalent Impedence=17600 Ohms
+
+Xl = 2*%pi*f*L;
+
+Q = Zeq/Xl;
+disp (Q,'The Magnification factor Q is')
diff --git a/2240/CH26/EX25.9/EX25_9.sce b/2240/CH26/EX25.9/EX25_9.sce
new file mode 100755
index 000000000..7ce31edcb
--- /dev/null
+++ b/2240/CH26/EX25.9/EX25_9.sce
@@ -0,0 +1,22 @@
+// Grob's Basic Electronics 11e
+// Chapter No. 25
+// Example No. 25_9
+clc; clear;
+// An LC circuit resonant at 2000 kHz has a Q of 100. Find the total bandwidth delta f and the edge frequencies f1 and f2.
+
+// Given data
+
+fr = 2000*10^3; // Resonant frequency=2000 kHertz
+Q = 100; // Magnification factor=100
+
+Bw = fr/Q;
+disp (Bw,'The Bandwidth BW or Delta f in Hertz')
+disp ('i.e 20 kHz')
+
+f1 = fr-Bw/2;
+disp (f1,'The Edge Frequency f1 in Hertz')
+disp ('i.e 1990 kHz')
+
+f2 = fr+Bw/2;
+disp (f2,'The Edge Frequency f2 in Hertz')
+disp ('i.e 2010 kHz')