diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /2223/CH3/EX3.2/Ex3_2.sce | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '2223/CH3/EX3.2/Ex3_2.sce')
-rwxr-xr-x | 2223/CH3/EX3.2/Ex3_2.sce | 38 |
1 files changed, 38 insertions, 0 deletions
diff --git a/2223/CH3/EX3.2/Ex3_2.sce b/2223/CH3/EX3.2/Ex3_2.sce new file mode 100755 index 000000000..d76388239 --- /dev/null +++ b/2223/CH3/EX3.2/Ex3_2.sce @@ -0,0 +1,38 @@ +// scilab Code Exa 3.2 Gas Turbine Plant with an exhaust HE
+T1=300; // Minimum cycle Temperature in Kelvin
+funcprot(0);
+pr=10; // pressure ratio of the turbine and compressor
+T3=1500; // Maximum cycle Temperature in Kelvin
+m=10; // mass flow rate through the turbine and compressor in kg/s
+e(1)=0.8; // thermal ratio of the heat exchanger
+e(2)=1;
+n_c=0.82; // Compressor Efficiency
+n_t=0.85; // Turbine Efficiency
+gamma=1.4; // Specific Heat Ratio
+cp=1.005; // Specific Heat at Constant Pressure in kJ/(kgK)
+beeta=T3/T1;
+T2s=T1*(pr^((gamma-1)/gamma));
+T2=T1+((T2s-T1)/n_c);
+T4s=T3*(pr^(-((gamma-1)/gamma)));
+T4=T3-((T3-T4s)*n_t);
+
+for i=1:2
+T5=T2+e(i)*(T4-T2);
+T6=T4-(T5-T2);
+Q_s=cp*(T3-T5);
+Q_r=cp*(T6-T1);
+// part(a) Determining power developed
+w_p=Q_s-Q_r;
+P=m*w_p;
+printf("for effectiveness=%f, \n (a)the power developed is %f kW",e(i),P)
+
+// part(b) Determining thermal efficiency of the plant
+n_th=1-(Q_r/Q_s);
+disp ("%",n_th*100,"(b)thermal efficiency of the plant is")
+end
+
+// part(c) Determining efficiencies of the ideal Joules cycle
+n_Joule=1-(pr^((gamma-1)/gamma)/beeta);
+disp("%",n_Joule*100,"(c)efficiency of the ideal Joules cycle with perfect heat exchange is")
+n_Carnot=1-(T1/T3);
+disp("%",n_Carnot*100,"and the Carnot cycle efficiency is")
|