diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /2090/CH16/EX16.10/Chapter16_example10.sce | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '2090/CH16/EX16.10/Chapter16_example10.sce')
-rwxr-xr-x | 2090/CH16/EX16.10/Chapter16_example10.sce | 55 |
1 files changed, 55 insertions, 0 deletions
diff --git a/2090/CH16/EX16.10/Chapter16_example10.sce b/2090/CH16/EX16.10/Chapter16_example10.sce new file mode 100755 index 000000000..1391d26d8 --- /dev/null +++ b/2090/CH16/EX16.10/Chapter16_example10.sce @@ -0,0 +1,55 @@ +clc
+clear
+//Input data
+d=0.18;//The diameter of the cylinder in m
+pi=3.141;//Mathematical constant of pi
+L=0.24;//The length of the stroke in m
+t=30;//Duration trail in min
+N=9000;//Number of revolutions
+Ne=4450;//Total number of explosions
+pmi=5.35;//Gross imep in bar
+pp=0.35;//Pumping imep in bar
+W=40;//Net load on brake wheel in kg
+dd=0.96;//Diameter of the brake wheel drum in m
+dr=0.04;//Diameter of the rope in m
+V=2.6;//Volume of gas used in m^3
+pg=136;//pressure of gas in mmof Hg
+dg=0.655;//The density of gas in kg/m^3
+T=290;//The ambient temperature of air in K
+CV=19000;//The calorific value of the fuel in kJ/m^3
+ta=40;//Total air used in m^3
+p=720;//Pressure of air in mm of Hg
+Te=340;//Temperature of exhaust gas in degree centigrade
+Cpg=1.1;//Specific heat of gas in kJ/kgK
+C=80;//Cooling water circulated in kg
+Tr=30;//Rise in temperature of cooling water in degree centigrade
+R=287;//Real gas constant in J/kgK
+
+//Calculations
+ip=(pmi-pp)*10^5*L*(pi/4)*d^2*(Ne/(30*60))*(1/1000);//The indicated power in kW
+bp=(pi*(N/(30*60))*W*9.81*(dd+dr)*(1/1000));//The brake power in kW
+pgs=760+(pg/13.6);//Pressure of gas supplied in mm of Hg
+Vg=((pgs*V)/290)*(273/760);//The volume of gas in m^3
+Q=(Vg*CV)/30;//Heat supplied by gas used at NTP in kJ/min
+Qbp=bp*60;//Heat equivalent of bp in kJ/min
+Qc=(C/t)*4.18*Tr;//Heat lost to cooling medium in kJ/min
+Va=[((p*ta)/T)*(273/760)]/30;//Volume of air used in kg/min
+da=(1.013*10^5)/(R*273);//The density of air in kg/m^3
+ma=Va*da;//Mass of air used in kg/min
+mg=(Vg/30)*dg;//Mass of gas at NTP in kg/min
+me=ma+mg;//Total mass of exhaust gas in kg/min
+Qe=me*Cpg*(Te-(T-273));//Heat loss to exhaust gas in kJ/min
+Qu=Q-(Qe+Qc+Qbp);//Unaccounted heat loss in kJ/min
+nm=(bp/ip)*100;//Mechanical efficiency in percent
+ni=((ip*60)/Q)*100;//Indicated thermal efficiency in percent
+x=((Qbp/1571)*100);//percentage heat in bp
+y=((Qc/1571)*100);//Percent heat lost to cooling water
+z=((Qe/1571)*100);//Percent heat to exhaust gases
+k=((Qu/1571)*100);//Percent heat unaccounted
+
+//Output
+printf('--------------------------------------------------------------------------------------------\n Heatinput kJ/min percent Heat expenditure kJ/min percent \n ----------------------------------------------------------------------------------------- \n Heat \n supplied 1571 100 (a) Heat in bp %3.1f %3.1f \n (b) Heat loss to cooling water %3.1f %3.1f \n (c) Heat to exhaust gas %3.1f %3.1f \n (d) Unaccounted heat %3.1f %3.1f \n ----------------------------------------------------------------------------------------- \n The mechanical efficiency = %3.2f percent \n The Indicated thermal efficiency = %3.1f percent ',Qbp,x,Qc,y,Qe,z,Qu,k,nm,ni)
+
+
+
+
|