From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 2090/CH16/EX16.10/Chapter16_example10.sce | 55 +++++++++++++++++++++++++++++++ 1 file changed, 55 insertions(+) create mode 100755 2090/CH16/EX16.10/Chapter16_example10.sce (limited to '2090/CH16/EX16.10/Chapter16_example10.sce') diff --git a/2090/CH16/EX16.10/Chapter16_example10.sce b/2090/CH16/EX16.10/Chapter16_example10.sce new file mode 100755 index 000000000..1391d26d8 --- /dev/null +++ b/2090/CH16/EX16.10/Chapter16_example10.sce @@ -0,0 +1,55 @@ +clc +clear +//Input data +d=0.18;//The diameter of the cylinder in m +pi=3.141;//Mathematical constant of pi +L=0.24;//The length of the stroke in m +t=30;//Duration trail in min +N=9000;//Number of revolutions +Ne=4450;//Total number of explosions +pmi=5.35;//Gross imep in bar +pp=0.35;//Pumping imep in bar +W=40;//Net load on brake wheel in kg +dd=0.96;//Diameter of the brake wheel drum in m +dr=0.04;//Diameter of the rope in m +V=2.6;//Volume of gas used in m^3 +pg=136;//pressure of gas in mmof Hg +dg=0.655;//The density of gas in kg/m^3 +T=290;//The ambient temperature of air in K +CV=19000;//The calorific value of the fuel in kJ/m^3 +ta=40;//Total air used in m^3 +p=720;//Pressure of air in mm of Hg +Te=340;//Temperature of exhaust gas in degree centigrade +Cpg=1.1;//Specific heat of gas in kJ/kgK +C=80;//Cooling water circulated in kg +Tr=30;//Rise in temperature of cooling water in degree centigrade +R=287;//Real gas constant in J/kgK + +//Calculations +ip=(pmi-pp)*10^5*L*(pi/4)*d^2*(Ne/(30*60))*(1/1000);//The indicated power in kW +bp=(pi*(N/(30*60))*W*9.81*(dd+dr)*(1/1000));//The brake power in kW +pgs=760+(pg/13.6);//Pressure of gas supplied in mm of Hg +Vg=((pgs*V)/290)*(273/760);//The volume of gas in m^3 +Q=(Vg*CV)/30;//Heat supplied by gas used at NTP in kJ/min +Qbp=bp*60;//Heat equivalent of bp in kJ/min +Qc=(C/t)*4.18*Tr;//Heat lost to cooling medium in kJ/min +Va=[((p*ta)/T)*(273/760)]/30;//Volume of air used in kg/min +da=(1.013*10^5)/(R*273);//The density of air in kg/m^3 +ma=Va*da;//Mass of air used in kg/min +mg=(Vg/30)*dg;//Mass of gas at NTP in kg/min +me=ma+mg;//Total mass of exhaust gas in kg/min +Qe=me*Cpg*(Te-(T-273));//Heat loss to exhaust gas in kJ/min +Qu=Q-(Qe+Qc+Qbp);//Unaccounted heat loss in kJ/min +nm=(bp/ip)*100;//Mechanical efficiency in percent +ni=((ip*60)/Q)*100;//Indicated thermal efficiency in percent +x=((Qbp/1571)*100);//percentage heat in bp +y=((Qc/1571)*100);//Percent heat lost to cooling water +z=((Qe/1571)*100);//Percent heat to exhaust gases +k=((Qu/1571)*100);//Percent heat unaccounted + +//Output +printf('--------------------------------------------------------------------------------------------\n Heatinput kJ/min percent Heat expenditure kJ/min percent \n ----------------------------------------------------------------------------------------- \n Heat \n supplied 1571 100 (a) Heat in bp %3.1f %3.1f \n (b) Heat loss to cooling water %3.1f %3.1f \n (c) Heat to exhaust gas %3.1f %3.1f \n (d) Unaccounted heat %3.1f %3.1f \n ----------------------------------------------------------------------------------------- \n The mechanical efficiency = %3.2f percent \n The Indicated thermal efficiency = %3.1f percent ',Qbp,x,Qc,y,Qe,z,Qu,k,nm,ni) + + + + -- cgit