diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /2090/CH11 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '2090/CH11')
-rwxr-xr-x | 2090/CH11/EX11.1/Chapter11_example1.sce | 15 | ||||
-rwxr-xr-x | 2090/CH11/EX11.2/Chapter11_example2.sce | 25 | ||||
-rwxr-xr-x | 2090/CH11/EX11.3/Chapter11_example3.sce | 29 | ||||
-rwxr-xr-x | 2090/CH11/EX11.4/Chapter11_example4.sce | 33 | ||||
-rwxr-xr-x | 2090/CH11/EX11.5/Chapter11_example5.sce | 25 | ||||
-rwxr-xr-x | 2090/CH11/EX11.6/Chapter11_example6.sce | 27 |
6 files changed, 154 insertions, 0 deletions
diff --git a/2090/CH11/EX11.1/Chapter11_example1.sce b/2090/CH11/EX11.1/Chapter11_example1.sce new file mode 100755 index 000000000..0307b2e18 --- /dev/null +++ b/2090/CH11/EX11.1/Chapter11_example1.sce @@ -0,0 +1,15 @@ +clc
+clear
+//Input data
+nsc=75;//The scavenging efficiency of the two stroke engine in percent
+ns=20;//The scavenging efficiency is increased by in percent
+
+//Calculations
+Rsc=log(1/(1-(nsc/100)));//The scavenging ratio for normal efficiency
+nsc1=(nsc/100)+((nsc/100)*(ns/100));//For 20% increase in scavenging efficiency
+Rsc1=log(1/(1-(nsc1)));//The scavenging ratio for 20% more efficiency
+Rscr=[(Rsc1-Rsc)/Rsc]*100;//Percentage increase in scavenging ratio in persent
+
+//Output
+printf('The percentage change in the scavenging ratio = %3.1f percent ',Rscr)
+
diff --git a/2090/CH11/EX11.2/Chapter11_example2.sce b/2090/CH11/EX11.2/Chapter11_example2.sce new file mode 100755 index 000000000..c1ff0c70d --- /dev/null +++ b/2090/CH11/EX11.2/Chapter11_example2.sce @@ -0,0 +1,25 @@ +clc
+clear
+//Input data
+d=0.12;//The bore diameter of the engine in m
+l=0.15;//The stroke length of the engine in m
+r=16;//The compression ratio
+N=2000;//The speed of the engine in rpm
+mf=(240/60);//Actual air flow per min in kg/min
+T=300;//Air inlet temperature in K
+p=1.025;//Exhaust pressure in bar
+pi=3.141;//Mathematical constant of pi
+R=287;//Real gas constant in J/kg
+
+//Calculations
+da=(p*10^5)/(R*T);//The density of air in kg/m^3
+Vs=[(pi)*(d^2)*l]/4;//Swept volume in m^3
+V=(r/(r-1))*Vs;//Total cylinder volume in m^3
+m=da*V;//Ideal mass in total cylinder volume in kg per cycle
+m1=m*N;//Ideal mass per unit time in kg/min
+Rsc=mf/m1;//Scavenging ratio
+nsc=[(1-exp(-Rsc))*100];//Scavenging efficiency in percent
+ntr=[(nsc/100)/Rsc]*100;//Trapping efficiency in percent
+
+//Output
+printf('(a) The scavenging ratio = %3.3f \n (b) The scavenging efficiency = %3.1f percent \n (c) The trapping efficiency = %3.1f percent ',Rsc,nsc,ntr)
diff --git a/2090/CH11/EX11.3/Chapter11_example3.sce b/2090/CH11/EX11.3/Chapter11_example3.sce new file mode 100755 index 000000000..337ede508 --- /dev/null +++ b/2090/CH11/EX11.3/Chapter11_example3.sce @@ -0,0 +1,29 @@ +clc
+clear
+//Input data
+mf=6.5;//Mass flow rate of fuel in kg/h
+N=3000;//The speed of the engine in rpm
+a=15;//The air fuel ratio
+CV=44000;//The calorific value of the fuel in kJ/kg
+pm=9;//The mean piston speed in m/s
+pmi=4.8;//The mean pressure in bar
+nsc=85;//The scavenging efficiency in percent
+nm=80;//The mechanical efficiency in percent
+R=290;//Real gas constant in J/kgK
+p=1.03;//The pressure of the mixture in bar
+T=288;//The temperature of the mixture in K
+pi=3.141;//Mathematical constant
+
+//Calculations
+ma=a*mf;//Mass flow rate of air in kg/h
+L=[(pm*60)/(2*N)]*100;//The length of the stroke in cm
+mac=mf+ma;//Actual mass flow rate in kg/h
+mi=(mac)/(nsc/100);//Ideal mass flow rate in kg/h
+da=(p*10^5)/(R*T);//The density of the mixture in kg/m^3
+d=[[(mi/da)*(4/pi)*(1/(L/100))*(1/(60*N))]^(1/2)]*100;//The diameter of the bore in cm
+ip=(pmi*10^5*(L/100)*((pi/4)*(d/100)^2)*N)/(60*1000);//Power obtained in kW
+bp=ip*(nm/100);//Brake power in kW
+nth=(bp/((mf/3600)*CV))*100;//Thermal efficiency of the engine in percent
+
+//Output
+printf(' The diameter of the bore = %3.2f cm \n The length of the stroke = %3.0f cm \n The brake power = %3.2f kW \n The brake thermal efficiency = %3.1f percent ',d,L,bp,nth)
diff --git a/2090/CH11/EX11.4/Chapter11_example4.sce b/2090/CH11/EX11.4/Chapter11_example4.sce new file mode 100755 index 000000000..87c057a01 --- /dev/null +++ b/2090/CH11/EX11.4/Chapter11_example4.sce @@ -0,0 +1,33 @@ +clc
+clear
+//Input data
+d=0.08;//The diameter of the bore in m
+L=0.1;//The length of the stroke in m
+r=8;//The compression ratio
+o=60;//The exhaust port open before BDC in degrees
+v=60;//The exhaust port closes after BDC in degrees
+a=15;//Air fuel ratio
+T=300;//The temperature of the mixture entering into the engine in K
+p=1.05;//The pressure in the cylinder at the time of closing
+R=290;//Real gas constant in J/kgK
+ma=150;//Mass flow rate of air in kg/h
+N=4000;//The speed of the engine in rpm
+pi=3.1414;//Mathematical constant of pi
+
+//Calculations
+mf=ma/a;//Mass flow rate of fuel in kg/h
+mac=ma+mf;//Actual mass flow rate in kg/h
+r=(L*100)/2;//Half the length of the stroke in cm
+Le=(r+(r*sin (pi/6)))/100;//Effective stroke length in m
+Vse=(pi*d^2*Le)/4;//Swept volume corresponding to Le in m^3
+V=(r/(r-1))*Vse;//Total volume corresponding to m^3
+da=(p*10^5)/(R*T);//The density in kg/m^3
+m=V*da;//Mass of mixture per cycle in kg/cycle
+mi=m*60*N;//Ideal rate of mass flow in kg/h
+Rsc=mac/mi;//Scavenging ratio
+nsc=(1-(exp(-Rsc)))*100;//Scavenging efficiency in percent
+ntr=nsc/Rsc;//Trapping efficiency in percent
+
+//Output
+printf(' The scavenging ratio = %3.3f \n The scavenging efficiency = %3.2f percent \n The trapping efficiency = %3.2f percent ',Rsc,nsc,ntr)
+
diff --git a/2090/CH11/EX11.5/Chapter11_example5.sce b/2090/CH11/EX11.5/Chapter11_example5.sce new file mode 100755 index 000000000..0e9e75b6a --- /dev/null +++ b/2090/CH11/EX11.5/Chapter11_example5.sce @@ -0,0 +1,25 @@ +clc
+clear
+//Input data
+d=8.25;//The diameter of the bore in cm
+L=11.25;//The length of the stroke in cm
+r=8;//The compression ratio
+N=2500;//The speed of the engine in rpm
+ip=17;//Indicated power in kW
+a=0.08;//Fuel air ratio
+T=345;//Inlet temperature mixture in K
+p=1.02;//Exhaust pressure in bar
+CV=44000;//The calorific value of the fuel in kJ/kg
+nth=0.29;//Indicated thermal efficiency
+M=114;//Molar mass of fuel
+pi=3.141;//Mathematical constant
+R=8314;//Universal Gas constant in J/kgK
+
+//Calculations
+Vs=(pi*d^2*L)/4;//Displacement volume in cm^3
+V=(r/(r-1))*Vs;//Total cylinder volume in m^3
+ps=[(29*p*10^5)/(R*T)]*(1/(1+a*(29/M)));//The density of dry air in kg/m^3
+nsc=[(ip*1000)/((N/60)*V*10^-6*ps*a*CV*1000*nth)]*100;//The scavenging efficiency in percent
+
+//Output
+printf('The scavenging efficiency = %3.1f percent',nsc)
diff --git a/2090/CH11/EX11.6/Chapter11_example6.sce b/2090/CH11/EX11.6/Chapter11_example6.sce new file mode 100755 index 000000000..3b104790e --- /dev/null +++ b/2090/CH11/EX11.6/Chapter11_example6.sce @@ -0,0 +1,27 @@ +clc
+clear
+//Input data
+S=15;//The speed of the piston in m/s
+ps=0.35;//The scavenging pressure in bar
+pa=1.03;//Atmospheric pressure in bar
+r=18;//The compression ratio
+t=35;//The inlet temperature in degree centigrade
+Rsc=0.9;//The scavenging ratio
+ta=15;//The atmospheric temperature in degree centigrade
+nc=0.75;//Compressor efficiency
+g=1.4;//Adiabatic index
+R=287;//Real gas constant in J/kgK
+Cp=1005;//Specific heat of gas in J/kgK
+
+//Calculations
+pi=ps+pa;//The scavenging pressure in bar
+Ti=(273+ta)+t;//The inlet temperature in K
+pr=pa/pi;//The ratio of the pressure for calculations
+di=(pi*10^5)/(R*Ti);//The density in kg/m^3
+ai=(g*R*Ti)^(1/2);//The sonic velocity in m/s
+C=(Rsc)/[2*((r-1)/r)*(ai/S)*(pi/pa)*[(2/(g-1))*[[(pr)^(2/g)]-[(pr)^((g+1)/g)]]]^(1/2)];//The flow coefficient
+ds=(pa*10^5)/(R*Ti);//The density in kg/m^3
+mep=(ds*Rsc*Cp*Ti*[[(pi/pa)^((g-1)/g)]-1])/[(nc*((r-1)/r))*10^5];//Mean effective pressure in bar
+
+//Output
+printf(' The flow coefficient = %3.4f \n The compressor mean effective pressure = %3.1f bar ',C,mep)
|