From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 2090/CH11/EX11.1/Chapter11_example1.sce | 15 +++++++++++++++ 2090/CH11/EX11.2/Chapter11_example2.sce | 25 +++++++++++++++++++++++++ 2090/CH11/EX11.3/Chapter11_example3.sce | 29 +++++++++++++++++++++++++++++ 2090/CH11/EX11.4/Chapter11_example4.sce | 33 +++++++++++++++++++++++++++++++++ 2090/CH11/EX11.5/Chapter11_example5.sce | 25 +++++++++++++++++++++++++ 2090/CH11/EX11.6/Chapter11_example6.sce | 27 +++++++++++++++++++++++++++ 6 files changed, 154 insertions(+) create mode 100755 2090/CH11/EX11.1/Chapter11_example1.sce create mode 100755 2090/CH11/EX11.2/Chapter11_example2.sce create mode 100755 2090/CH11/EX11.3/Chapter11_example3.sce create mode 100755 2090/CH11/EX11.4/Chapter11_example4.sce create mode 100755 2090/CH11/EX11.5/Chapter11_example5.sce create mode 100755 2090/CH11/EX11.6/Chapter11_example6.sce (limited to '2090/CH11') diff --git a/2090/CH11/EX11.1/Chapter11_example1.sce b/2090/CH11/EX11.1/Chapter11_example1.sce new file mode 100755 index 000000000..0307b2e18 --- /dev/null +++ b/2090/CH11/EX11.1/Chapter11_example1.sce @@ -0,0 +1,15 @@ +clc +clear +//Input data +nsc=75;//The scavenging efficiency of the two stroke engine in percent +ns=20;//The scavenging efficiency is increased by in percent + +//Calculations +Rsc=log(1/(1-(nsc/100)));//The scavenging ratio for normal efficiency +nsc1=(nsc/100)+((nsc/100)*(ns/100));//For 20% increase in scavenging efficiency +Rsc1=log(1/(1-(nsc1)));//The scavenging ratio for 20% more efficiency +Rscr=[(Rsc1-Rsc)/Rsc]*100;//Percentage increase in scavenging ratio in persent + +//Output +printf('The percentage change in the scavenging ratio = %3.1f percent ',Rscr) + diff --git a/2090/CH11/EX11.2/Chapter11_example2.sce b/2090/CH11/EX11.2/Chapter11_example2.sce new file mode 100755 index 000000000..c1ff0c70d --- /dev/null +++ b/2090/CH11/EX11.2/Chapter11_example2.sce @@ -0,0 +1,25 @@ +clc +clear +//Input data +d=0.12;//The bore diameter of the engine in m +l=0.15;//The stroke length of the engine in m +r=16;//The compression ratio +N=2000;//The speed of the engine in rpm +mf=(240/60);//Actual air flow per min in kg/min +T=300;//Air inlet temperature in K +p=1.025;//Exhaust pressure in bar +pi=3.141;//Mathematical constant of pi +R=287;//Real gas constant in J/kg + +//Calculations +da=(p*10^5)/(R*T);//The density of air in kg/m^3 +Vs=[(pi)*(d^2)*l]/4;//Swept volume in m^3 +V=(r/(r-1))*Vs;//Total cylinder volume in m^3 +m=da*V;//Ideal mass in total cylinder volume in kg per cycle +m1=m*N;//Ideal mass per unit time in kg/min +Rsc=mf/m1;//Scavenging ratio +nsc=[(1-exp(-Rsc))*100];//Scavenging efficiency in percent +ntr=[(nsc/100)/Rsc]*100;//Trapping efficiency in percent + +//Output +printf('(a) The scavenging ratio = %3.3f \n (b) The scavenging efficiency = %3.1f percent \n (c) The trapping efficiency = %3.1f percent ',Rsc,nsc,ntr) diff --git a/2090/CH11/EX11.3/Chapter11_example3.sce b/2090/CH11/EX11.3/Chapter11_example3.sce new file mode 100755 index 000000000..337ede508 --- /dev/null +++ b/2090/CH11/EX11.3/Chapter11_example3.sce @@ -0,0 +1,29 @@ +clc +clear +//Input data +mf=6.5;//Mass flow rate of fuel in kg/h +N=3000;//The speed of the engine in rpm +a=15;//The air fuel ratio +CV=44000;//The calorific value of the fuel in kJ/kg +pm=9;//The mean piston speed in m/s +pmi=4.8;//The mean pressure in bar +nsc=85;//The scavenging efficiency in percent +nm=80;//The mechanical efficiency in percent +R=290;//Real gas constant in J/kgK +p=1.03;//The pressure of the mixture in bar +T=288;//The temperature of the mixture in K +pi=3.141;//Mathematical constant + +//Calculations +ma=a*mf;//Mass flow rate of air in kg/h +L=[(pm*60)/(2*N)]*100;//The length of the stroke in cm +mac=mf+ma;//Actual mass flow rate in kg/h +mi=(mac)/(nsc/100);//Ideal mass flow rate in kg/h +da=(p*10^5)/(R*T);//The density of the mixture in kg/m^3 +d=[[(mi/da)*(4/pi)*(1/(L/100))*(1/(60*N))]^(1/2)]*100;//The diameter of the bore in cm +ip=(pmi*10^5*(L/100)*((pi/4)*(d/100)^2)*N)/(60*1000);//Power obtained in kW +bp=ip*(nm/100);//Brake power in kW +nth=(bp/((mf/3600)*CV))*100;//Thermal efficiency of the engine in percent + +//Output +printf(' The diameter of the bore = %3.2f cm \n The length of the stroke = %3.0f cm \n The brake power = %3.2f kW \n The brake thermal efficiency = %3.1f percent ',d,L,bp,nth) diff --git a/2090/CH11/EX11.4/Chapter11_example4.sce b/2090/CH11/EX11.4/Chapter11_example4.sce new file mode 100755 index 000000000..87c057a01 --- /dev/null +++ b/2090/CH11/EX11.4/Chapter11_example4.sce @@ -0,0 +1,33 @@ +clc +clear +//Input data +d=0.08;//The diameter of the bore in m +L=0.1;//The length of the stroke in m +r=8;//The compression ratio +o=60;//The exhaust port open before BDC in degrees +v=60;//The exhaust port closes after BDC in degrees +a=15;//Air fuel ratio +T=300;//The temperature of the mixture entering into the engine in K +p=1.05;//The pressure in the cylinder at the time of closing +R=290;//Real gas constant in J/kgK +ma=150;//Mass flow rate of air in kg/h +N=4000;//The speed of the engine in rpm +pi=3.1414;//Mathematical constant of pi + +//Calculations +mf=ma/a;//Mass flow rate of fuel in kg/h +mac=ma+mf;//Actual mass flow rate in kg/h +r=(L*100)/2;//Half the length of the stroke in cm +Le=(r+(r*sin (pi/6)))/100;//Effective stroke length in m +Vse=(pi*d^2*Le)/4;//Swept volume corresponding to Le in m^3 +V=(r/(r-1))*Vse;//Total volume corresponding to m^3 +da=(p*10^5)/(R*T);//The density in kg/m^3 +m=V*da;//Mass of mixture per cycle in kg/cycle +mi=m*60*N;//Ideal rate of mass flow in kg/h +Rsc=mac/mi;//Scavenging ratio +nsc=(1-(exp(-Rsc)))*100;//Scavenging efficiency in percent +ntr=nsc/Rsc;//Trapping efficiency in percent + +//Output +printf(' The scavenging ratio = %3.3f \n The scavenging efficiency = %3.2f percent \n The trapping efficiency = %3.2f percent ',Rsc,nsc,ntr) + diff --git a/2090/CH11/EX11.5/Chapter11_example5.sce b/2090/CH11/EX11.5/Chapter11_example5.sce new file mode 100755 index 000000000..0e9e75b6a --- /dev/null +++ b/2090/CH11/EX11.5/Chapter11_example5.sce @@ -0,0 +1,25 @@ +clc +clear +//Input data +d=8.25;//The diameter of the bore in cm +L=11.25;//The length of the stroke in cm +r=8;//The compression ratio +N=2500;//The speed of the engine in rpm +ip=17;//Indicated power in kW +a=0.08;//Fuel air ratio +T=345;//Inlet temperature mixture in K +p=1.02;//Exhaust pressure in bar +CV=44000;//The calorific value of the fuel in kJ/kg +nth=0.29;//Indicated thermal efficiency +M=114;//Molar mass of fuel +pi=3.141;//Mathematical constant +R=8314;//Universal Gas constant in J/kgK + +//Calculations +Vs=(pi*d^2*L)/4;//Displacement volume in cm^3 +V=(r/(r-1))*Vs;//Total cylinder volume in m^3 +ps=[(29*p*10^5)/(R*T)]*(1/(1+a*(29/M)));//The density of dry air in kg/m^3 +nsc=[(ip*1000)/((N/60)*V*10^-6*ps*a*CV*1000*nth)]*100;//The scavenging efficiency in percent + +//Output +printf('The scavenging efficiency = %3.1f percent',nsc) diff --git a/2090/CH11/EX11.6/Chapter11_example6.sce b/2090/CH11/EX11.6/Chapter11_example6.sce new file mode 100755 index 000000000..3b104790e --- /dev/null +++ b/2090/CH11/EX11.6/Chapter11_example6.sce @@ -0,0 +1,27 @@ +clc +clear +//Input data +S=15;//The speed of the piston in m/s +ps=0.35;//The scavenging pressure in bar +pa=1.03;//Atmospheric pressure in bar +r=18;//The compression ratio +t=35;//The inlet temperature in degree centigrade +Rsc=0.9;//The scavenging ratio +ta=15;//The atmospheric temperature in degree centigrade +nc=0.75;//Compressor efficiency +g=1.4;//Adiabatic index +R=287;//Real gas constant in J/kgK +Cp=1005;//Specific heat of gas in J/kgK + +//Calculations +pi=ps+pa;//The scavenging pressure in bar +Ti=(273+ta)+t;//The inlet temperature in K +pr=pa/pi;//The ratio of the pressure for calculations +di=(pi*10^5)/(R*Ti);//The density in kg/m^3 +ai=(g*R*Ti)^(1/2);//The sonic velocity in m/s +C=(Rsc)/[2*((r-1)/r)*(ai/S)*(pi/pa)*[(2/(g-1))*[[(pr)^(2/g)]-[(pr)^((g+1)/g)]]]^(1/2)];//The flow coefficient +ds=(pa*10^5)/(R*Ti);//The density in kg/m^3 +mep=(ds*Rsc*Cp*Ti*[[(pi/pa)^((g-1)/g)]-1])/[(nc*((r-1)/r))*10^5];//Mean effective pressure in bar + +//Output +printf(' The flow coefficient = %3.4f \n The compressor mean effective pressure = %3.1f bar ',C,mep) -- cgit