diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /2078/CH3 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '2078/CH3')
-rwxr-xr-x | 2078/CH3/EX3.1/Example3_1.sce | 25 | ||||
-rwxr-xr-x | 2078/CH3/EX3.2/Example3_2.sce | 23 | ||||
-rwxr-xr-x | 2078/CH3/EX3.3/Example3_3.sce | 23 | ||||
-rwxr-xr-x | 2078/CH3/EX3.4/Example3_4.sce | 27 | ||||
-rwxr-xr-x | 2078/CH3/EX3.5/Example3_5.sce | 22 | ||||
-rwxr-xr-x | 2078/CH3/EX3.6/Example3_6.sce | 24 | ||||
-rwxr-xr-x | 2078/CH3/EX3.7/Example3_7.sce | 32 |
7 files changed, 176 insertions, 0 deletions
diff --git a/2078/CH3/EX3.1/Example3_1.sce b/2078/CH3/EX3.1/Example3_1.sce new file mode 100755 index 000000000..b9f44882a --- /dev/null +++ b/2078/CH3/EX3.1/Example3_1.sce @@ -0,0 +1,25 @@ +//Exa 3.1
+clc;
+clear;
+close;
+//Given data :
+P=30*10^6;//W
+pf=0.8;//lagging power factor
+VL=132*1000;//V
+l=120*1000;//m
+Eta=90/100;//Efficiency
+rho_Cu=1.78*10^-8;//ohm-m
+D_Cu=8.9*10^3;//kg/m^3
+rho_Al=2.6*10^-8;//ohm-m
+D_Al=2*10^3;//kg/m^3
+IL=P/(sqrt(3)*VL*pf);//A
+//W=3*IL^2*rho*l/a=(1-Eta)*P
+a_Cu=(3*IL^2*rho_Cu*l)/(1-Eta)/P;//m^2
+V_Cu=3*a_Cu*l;//m^3
+Wt_Cu=V_Cu*D_Cu;//kg
+disp(Wt_Cu,"Weight of copper required(kg)");
+a_Al=(3*IL^2*rho_Al*l)/(1-Eta)/P;//m^2
+V_Al=3*a_Al*l;//m^3
+Wt_Al=V_Al*D_Al;//kg
+disp(Wt_Al,"Weight of Alluminium required(kg)");
+//Answer in the textbook is not accurate.
diff --git a/2078/CH3/EX3.2/Example3_2.sce b/2078/CH3/EX3.2/Example3_2.sce new file mode 100755 index 000000000..aa04d8055 --- /dev/null +++ b/2078/CH3/EX3.2/Example3_2.sce @@ -0,0 +1,23 @@ +//Exa 3.2
+clc;
+clear;
+close;
+//Given data :
+a=poly(0,'a');
+cost=90*a+20;//Rs./m
+i=10;//%(interest and depreciation)
+l=2;//km
+cost_E=4;//paise/unit
+Im=250;//A
+a=1;//cm^2
+rho_c=0.173;//ohm/km/cm^2
+l2=1*1000;//km
+R=rho_c*l/a;//ohm
+W=2*Im^2*R;//W
+Eloss=W/1000*365*24/2;//per annum(kWh)
+P3BYa=cost_E/100*Eloss;//Rs
+Cc=90*a*l*1000;//Rs(capital cost of feeder cable)
+P2a=Cc*i/100;//Rs
+//P2a=P3BYa;//For most economical cross section
+a=sqrt(P3BYa*a/(P2a/a));//cm^2
+disp(a,"Most economical cross sectional area in cm^2 : ");
diff --git a/2078/CH3/EX3.3/Example3_3.sce b/2078/CH3/EX3.3/Example3_3.sce new file mode 100755 index 000000000..a745baad1 --- /dev/null +++ b/2078/CH3/EX3.3/Example3_3.sce @@ -0,0 +1,23 @@ +//Exa 3.3
+clc;
+clear;
+close;
+//Given data :
+t=2600;//hour
+Con_Cost=3;//Rs/kg(conductor cost)
+R=1.78*10^-8;//ohm-m
+D=6200;//kg/m^3
+E_Cost=10/100;//Rs/unit(energy cost)
+i=12;//%(interest and depreciation)
+a=poly(0,'a');//mm^2 ////cross sectional area
+W=a*1000*D/1000/1000;//kg/km(Weight of conductor of 1km length)
+cost=Con_Cost*W;//Rs./km(cost of conductor of 1km length)
+In_Dep=cost*i/100;//Rs(Annual interest and depreciation per conductor per km)
+In_DepBYa=In_Dep/a;
+I=poly(0,'I');//A
+E_lost_aBY_Isqr=R*1000/10^-6*t/1000;//Energy lost/annum/km/conductor
+E_lost_cost_aBY_Isqr=E_Cost*E_lost_aBY_Isqr;//Rs/annum
+//In_Dep=E_lost_cost;//For most economical cross section
+IBYa=sqrt(coeff(numer(In_DepBYa)/numer(E_lost_cost_aBY_Isqr)));//cm^2
+disp(IBYa,"Best current density in A/mm^2 : ");
+//Answer in the textbook is not accurate.
diff --git a/2078/CH3/EX3.4/Example3_4.sce b/2078/CH3/EX3.4/Example3_4.sce new file mode 100755 index 000000000..514679e5f --- /dev/null +++ b/2078/CH3/EX3.4/Example3_4.sce @@ -0,0 +1,27 @@ +//Exa 3.4
+clc;
+clear;
+close;
+//Given data :
+V=11;//kV
+P=1500;//kW
+pf=0.8;//lagging power factor
+t=300*8;//hours
+a=poly(0,'a');//cross section area
+Cc=8000+20000*a//Rs/km
+R=0.173/a;//ohm/km
+E_lost_cost=2/100;//Rs/unit
+i=12;//%(interest and depreciation)
+Cc_var=20000*a//Rs/km(variable cost)
+P2a=Cc_var*i/100;//Rs/km
+P2=P2a/a;
+I=P/sqrt(3)/V/pf;//A
+W=3*I^2*R;//W
+E_loss=W/1000*t;//kWh
+P3BYa=E_lost_cost*E_loss;//Rs
+//P2a=P3BYa;//For most economical cross section
+a=sqrt(coeff((numer(P3BYa))/coeff(numer(P2))));//cm^2
+d=sqrt(4*a/%pi);//cm
+del=I/a;//A/cm^2
+disp(d,"Diameter of conductor in cm : ");
+disp(del,"Most economical current density in A/cm^2 : ");
diff --git a/2078/CH3/EX3.5/Example3_5.sce b/2078/CH3/EX3.5/Example3_5.sce new file mode 100755 index 000000000..ebfb28bb7 --- /dev/null +++ b/2078/CH3/EX3.5/Example3_5.sce @@ -0,0 +1,22 @@ +//Exa 3.5
+clc;
+clear;
+close;
+//Given data :
+a=poly(0,'a');//cross section area
+I=poly(0,'I');//Current
+Cc=500+2000*a//Rs/km
+i=12;//%(interest and depreciation)
+E_lost_cost=5/100;//Rs/kWh
+rho=1.78*10^-8;//ohm-cm
+load_factor=0.12;
+Cc_var=2000*a//Rs/km(variable cost)
+P2a=Cc_var*i/100;//Rs/km
+P2=P2a/a;
+R_into_a=rho*1000/(10^-4);//ohm
+W_into_a=I^2*R_into_a;//W
+E_loss_into_a=W_into_a*load_factor/1000*8760;//kWh
+P3BYIsqr=E_lost_cost*E_loss_into_a/I^2;//Rs
+//P2a=P3BYa;//For most economical cross section
+IBYa=sqrt(coeff((numer(P2))/coeff(numer(P3BYIsqr))));//cm^2
+disp(IBYa,"Most economical current density in A/cm^2 : ");
diff --git a/2078/CH3/EX3.6/Example3_6.sce b/2078/CH3/EX3.6/Example3_6.sce new file mode 100755 index 000000000..5e9a98654 --- /dev/null +++ b/2078/CH3/EX3.6/Example3_6.sce @@ -0,0 +1,24 @@ +//Exa 3.6
+clc;
+clear;
+close;
+//Given data :
+A=poly(0,'A');//cross section area
+I=poly(0,'I');//Current
+Cc=500+2000*A//Rs/km
+load_factor=0.12;
+i=12;//%(depreciation)
+E_lost_cost=0.05;//Rs/kWh
+R=0.17/A;//ohm/km
+
+Cc_var=2000*A//Rs/km(variable cost)
+P2A=Cc_var*i/100;//Rs/km
+P2=P2A/A;
+R_into_A=R*A;//ohm
+W_into_A_BY_Isqr=R_into_A;//W
+E_loss_into_A_BY_Isqr=W_into_A_BY_Isqr*load_factor/1000*8760;//kWh
+P3BYIsqr=E_lost_cost*E_loss_into_A_BY_Isqr;//Rs
+//P2a=P3BYa;//For most economical cross section
+IBYa=sqrt(coeff((numer(P2))/coeff(numer(P3BYIsqr))));//cm^2
+disp(IBYa,"Most economical current density in A/cm^2 : ");
+//Answer in the textbook is wrong.
diff --git a/2078/CH3/EX3.7/Example3_7.sce b/2078/CH3/EX3.7/Example3_7.sce new file mode 100755 index 000000000..2521dcf62 --- /dev/null +++ b/2078/CH3/EX3.7/Example3_7.sce @@ -0,0 +1,32 @@ +//Exa 3.7
+clc;
+clear;
+close;
+//Given data :
+P1=1000;//kW
+pf1=0.8;//
+t1=10;//hours
+P2=500;//kW
+pf2=0.9;//
+t2=8;//hours
+P3=100;//kW
+pf3=1;//
+t3=6;//hours
+a=poly(0,'a');//cross section area
+I=poly(0,'I');//Current
+L=poly(0,'L');//length in km
+CcBYL=(8000*a+1500)//Rs/km(variable cost)
+i=10;//%(depreciation)
+E_lost_cost=80/100;//Rs/kWh
+rho=1.72*10^-6;//ohm-cm
+Cc_varBYL=8000*a*i/100//Rs/km(variable cost)
+I1=P1*1000/sqrt(3)/10000/pf1;//A
+I2=P2*1000/sqrt(3)/10000/pf2;//A
+I3=P3*1000/sqrt(3)/10000/pf3;//A
+R_into_a_BY_L=rho*1000*100;//ohm
+W_into_A_BY_Isqr=R_into_a_BY_L;//W
+E_loss_into_A_BY_L=3*R_into_a_BY_L*[I1^2*t1+I2^2*t2+I3^2*t3]*365/1000;//kWh
+E_loss_cost_into_A_BY_L=E_loss_into_A_BY_L*E_lost_cost;//Rs
+//Cc_var=E_loss_cost;//For most economical cross section
+a=sqrt(coeff((numer(E_loss_cost_into_A_BY_L))/coeff(numer(Cc_varBYL/a))));//cm^2
+disp(a,"Most economical cross sectional area in cm^2 : ");
|