From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 2078/CH3/EX3.1/Example3_1.sce | 25 +++++++++++++++++++++++++ 2078/CH3/EX3.2/Example3_2.sce | 23 +++++++++++++++++++++++ 2078/CH3/EX3.3/Example3_3.sce | 23 +++++++++++++++++++++++ 2078/CH3/EX3.4/Example3_4.sce | 27 +++++++++++++++++++++++++++ 2078/CH3/EX3.5/Example3_5.sce | 22 ++++++++++++++++++++++ 2078/CH3/EX3.6/Example3_6.sce | 24 ++++++++++++++++++++++++ 2078/CH3/EX3.7/Example3_7.sce | 32 ++++++++++++++++++++++++++++++++ 7 files changed, 176 insertions(+) create mode 100755 2078/CH3/EX3.1/Example3_1.sce create mode 100755 2078/CH3/EX3.2/Example3_2.sce create mode 100755 2078/CH3/EX3.3/Example3_3.sce create mode 100755 2078/CH3/EX3.4/Example3_4.sce create mode 100755 2078/CH3/EX3.5/Example3_5.sce create mode 100755 2078/CH3/EX3.6/Example3_6.sce create mode 100755 2078/CH3/EX3.7/Example3_7.sce (limited to '2078/CH3') diff --git a/2078/CH3/EX3.1/Example3_1.sce b/2078/CH3/EX3.1/Example3_1.sce new file mode 100755 index 000000000..b9f44882a --- /dev/null +++ b/2078/CH3/EX3.1/Example3_1.sce @@ -0,0 +1,25 @@ +//Exa 3.1 +clc; +clear; +close; +//Given data : +P=30*10^6;//W +pf=0.8;//lagging power factor +VL=132*1000;//V +l=120*1000;//m +Eta=90/100;//Efficiency +rho_Cu=1.78*10^-8;//ohm-m +D_Cu=8.9*10^3;//kg/m^3 +rho_Al=2.6*10^-8;//ohm-m +D_Al=2*10^3;//kg/m^3 +IL=P/(sqrt(3)*VL*pf);//A +//W=3*IL^2*rho*l/a=(1-Eta)*P +a_Cu=(3*IL^2*rho_Cu*l)/(1-Eta)/P;//m^2 +V_Cu=3*a_Cu*l;//m^3 +Wt_Cu=V_Cu*D_Cu;//kg +disp(Wt_Cu,"Weight of copper required(kg)"); +a_Al=(3*IL^2*rho_Al*l)/(1-Eta)/P;//m^2 +V_Al=3*a_Al*l;//m^3 +Wt_Al=V_Al*D_Al;//kg +disp(Wt_Al,"Weight of Alluminium required(kg)"); +//Answer in the textbook is not accurate. diff --git a/2078/CH3/EX3.2/Example3_2.sce b/2078/CH3/EX3.2/Example3_2.sce new file mode 100755 index 000000000..aa04d8055 --- /dev/null +++ b/2078/CH3/EX3.2/Example3_2.sce @@ -0,0 +1,23 @@ +//Exa 3.2 +clc; +clear; +close; +//Given data : +a=poly(0,'a'); +cost=90*a+20;//Rs./m +i=10;//%(interest and depreciation) +l=2;//km +cost_E=4;//paise/unit +Im=250;//A +a=1;//cm^2 +rho_c=0.173;//ohm/km/cm^2 +l2=1*1000;//km +R=rho_c*l/a;//ohm +W=2*Im^2*R;//W +Eloss=W/1000*365*24/2;//per annum(kWh) +P3BYa=cost_E/100*Eloss;//Rs +Cc=90*a*l*1000;//Rs(capital cost of feeder cable) +P2a=Cc*i/100;//Rs +//P2a=P3BYa;//For most economical cross section +a=sqrt(P3BYa*a/(P2a/a));//cm^2 +disp(a,"Most economical cross sectional area in cm^2 : "); diff --git a/2078/CH3/EX3.3/Example3_3.sce b/2078/CH3/EX3.3/Example3_3.sce new file mode 100755 index 000000000..a745baad1 --- /dev/null +++ b/2078/CH3/EX3.3/Example3_3.sce @@ -0,0 +1,23 @@ +//Exa 3.3 +clc; +clear; +close; +//Given data : +t=2600;//hour +Con_Cost=3;//Rs/kg(conductor cost) +R=1.78*10^-8;//ohm-m +D=6200;//kg/m^3 +E_Cost=10/100;//Rs/unit(energy cost) +i=12;//%(interest and depreciation) +a=poly(0,'a');//mm^2 ////cross sectional area +W=a*1000*D/1000/1000;//kg/km(Weight of conductor of 1km length) +cost=Con_Cost*W;//Rs./km(cost of conductor of 1km length) +In_Dep=cost*i/100;//Rs(Annual interest and depreciation per conductor per km) +In_DepBYa=In_Dep/a; +I=poly(0,'I');//A +E_lost_aBY_Isqr=R*1000/10^-6*t/1000;//Energy lost/annum/km/conductor +E_lost_cost_aBY_Isqr=E_Cost*E_lost_aBY_Isqr;//Rs/annum +//In_Dep=E_lost_cost;//For most economical cross section +IBYa=sqrt(coeff(numer(In_DepBYa)/numer(E_lost_cost_aBY_Isqr)));//cm^2 +disp(IBYa,"Best current density in A/mm^2 : "); +//Answer in the textbook is not accurate. diff --git a/2078/CH3/EX3.4/Example3_4.sce b/2078/CH3/EX3.4/Example3_4.sce new file mode 100755 index 000000000..514679e5f --- /dev/null +++ b/2078/CH3/EX3.4/Example3_4.sce @@ -0,0 +1,27 @@ +//Exa 3.4 +clc; +clear; +close; +//Given data : +V=11;//kV +P=1500;//kW +pf=0.8;//lagging power factor +t=300*8;//hours +a=poly(0,'a');//cross section area +Cc=8000+20000*a//Rs/km +R=0.173/a;//ohm/km +E_lost_cost=2/100;//Rs/unit +i=12;//%(interest and depreciation) +Cc_var=20000*a//Rs/km(variable cost) +P2a=Cc_var*i/100;//Rs/km +P2=P2a/a; +I=P/sqrt(3)/V/pf;//A +W=3*I^2*R;//W +E_loss=W/1000*t;//kWh +P3BYa=E_lost_cost*E_loss;//Rs +//P2a=P3BYa;//For most economical cross section +a=sqrt(coeff((numer(P3BYa))/coeff(numer(P2))));//cm^2 +d=sqrt(4*a/%pi);//cm +del=I/a;//A/cm^2 +disp(d,"Diameter of conductor in cm : "); +disp(del,"Most economical current density in A/cm^2 : "); diff --git a/2078/CH3/EX3.5/Example3_5.sce b/2078/CH3/EX3.5/Example3_5.sce new file mode 100755 index 000000000..ebfb28bb7 --- /dev/null +++ b/2078/CH3/EX3.5/Example3_5.sce @@ -0,0 +1,22 @@ +//Exa 3.5 +clc; +clear; +close; +//Given data : +a=poly(0,'a');//cross section area +I=poly(0,'I');//Current +Cc=500+2000*a//Rs/km +i=12;//%(interest and depreciation) +E_lost_cost=5/100;//Rs/kWh +rho=1.78*10^-8;//ohm-cm +load_factor=0.12; +Cc_var=2000*a//Rs/km(variable cost) +P2a=Cc_var*i/100;//Rs/km +P2=P2a/a; +R_into_a=rho*1000/(10^-4);//ohm +W_into_a=I^2*R_into_a;//W +E_loss_into_a=W_into_a*load_factor/1000*8760;//kWh +P3BYIsqr=E_lost_cost*E_loss_into_a/I^2;//Rs +//P2a=P3BYa;//For most economical cross section +IBYa=sqrt(coeff((numer(P2))/coeff(numer(P3BYIsqr))));//cm^2 +disp(IBYa,"Most economical current density in A/cm^2 : "); diff --git a/2078/CH3/EX3.6/Example3_6.sce b/2078/CH3/EX3.6/Example3_6.sce new file mode 100755 index 000000000..5e9a98654 --- /dev/null +++ b/2078/CH3/EX3.6/Example3_6.sce @@ -0,0 +1,24 @@ +//Exa 3.6 +clc; +clear; +close; +//Given data : +A=poly(0,'A');//cross section area +I=poly(0,'I');//Current +Cc=500+2000*A//Rs/km +load_factor=0.12; +i=12;//%(depreciation) +E_lost_cost=0.05;//Rs/kWh +R=0.17/A;//ohm/km + +Cc_var=2000*A//Rs/km(variable cost) +P2A=Cc_var*i/100;//Rs/km +P2=P2A/A; +R_into_A=R*A;//ohm +W_into_A_BY_Isqr=R_into_A;//W +E_loss_into_A_BY_Isqr=W_into_A_BY_Isqr*load_factor/1000*8760;//kWh +P3BYIsqr=E_lost_cost*E_loss_into_A_BY_Isqr;//Rs +//P2a=P3BYa;//For most economical cross section +IBYa=sqrt(coeff((numer(P2))/coeff(numer(P3BYIsqr))));//cm^2 +disp(IBYa,"Most economical current density in A/cm^2 : "); +//Answer in the textbook is wrong. diff --git a/2078/CH3/EX3.7/Example3_7.sce b/2078/CH3/EX3.7/Example3_7.sce new file mode 100755 index 000000000..2521dcf62 --- /dev/null +++ b/2078/CH3/EX3.7/Example3_7.sce @@ -0,0 +1,32 @@ +//Exa 3.7 +clc; +clear; +close; +//Given data : +P1=1000;//kW +pf1=0.8;// +t1=10;//hours +P2=500;//kW +pf2=0.9;// +t2=8;//hours +P3=100;//kW +pf3=1;// +t3=6;//hours +a=poly(0,'a');//cross section area +I=poly(0,'I');//Current +L=poly(0,'L');//length in km +CcBYL=(8000*a+1500)//Rs/km(variable cost) +i=10;//%(depreciation) +E_lost_cost=80/100;//Rs/kWh +rho=1.72*10^-6;//ohm-cm +Cc_varBYL=8000*a*i/100//Rs/km(variable cost) +I1=P1*1000/sqrt(3)/10000/pf1;//A +I2=P2*1000/sqrt(3)/10000/pf2;//A +I3=P3*1000/sqrt(3)/10000/pf3;//A +R_into_a_BY_L=rho*1000*100;//ohm +W_into_A_BY_Isqr=R_into_a_BY_L;//W +E_loss_into_A_BY_L=3*R_into_a_BY_L*[I1^2*t1+I2^2*t2+I3^2*t3]*365/1000;//kWh +E_loss_cost_into_A_BY_L=E_loss_into_A_BY_L*E_lost_cost;//Rs +//Cc_var=E_loss_cost;//For most economical cross section +a=sqrt(coeff((numer(E_loss_cost_into_A_BY_L))/coeff(numer(Cc_varBYL/a))));//cm^2 +disp(a,"Most economical cross sectional area in cm^2 : "); -- cgit