diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /2006 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '2006')
135 files changed, 2731 insertions, 0 deletions
diff --git a/2006/CH10/EX10.1/ex10_1.sce b/2006/CH10/EX10.1/ex10_1.sce new file mode 100755 index 000000000..fde02f7dc --- /dev/null +++ b/2006/CH10/EX10.1/ex10_1.sce @@ -0,0 +1,10 @@ +clc;
+m=100; // Mass of water in kg
+T0=90; // Initial temperature of water in degree celcius
+T=30; // temperature of Surroundings in degree celcius
+C=4.1868; // Specific heat in kJ/kg K
+AE=m*C*((T0-T)-(T+273)*log ((T0+273)/(T+273))); // Available energy
+Q=m*C*(T0-T); // Heat supplied
+UE=Q-AE; // Unavailable energy
+disp ("kJ",AE,"Available energy =");
+disp ("kJ",UE,"Unavailable energy = ","kJ",Q,"Heat supplied = ");
diff --git a/2006/CH10/EX10.10/ex10_10.sce b/2006/CH10/EX10.10/ex10_10.sce new file mode 100755 index 000000000..9a161ba4d --- /dev/null +++ b/2006/CH10/EX10.10/ex10_10.sce @@ -0,0 +1,16 @@ +clc;
+// State after reversible adiabatic expansion
+p2=50; // pressure in kPa
+s2s=6.4844; s1=6.4844; s2=6.944; // specific entropy in kJ/kg K
+x2s=0.829; // Quality of steam
+h2s=2252.6; h1=3256.6; // specific enthalpy in kJ/kg
+T2=81.33; T0=27; // Temperature in degree celcius
+ws=h1-h2s; // Reversible adiabatic work
+wa=831.2; // Actual work output in kJ/kg
+d_AE=979.1; // Decrease in availability in kJ/LG
+eff_I=wa/ws; // First law efficiency of turbine
+eff_II=wa/d_AE; // Second law efficiency of turbine
+disp ("%",eff_II*100,"Second law efficiency of turbine = ","%",eff_I*100,"First law efficiency of turbine = ");
+w2srev2=(T2-T0)*(s2-s1); // Negative work
+w1rev2=ws-w2srev2; // Decrease in availability
+disp ("kJ/kg",w1rev2,"Dcresase in Availability = ","kJ/kg",w2srev2,"Negative work = ");
diff --git a/2006/CH10/EX10.11/ex10_11.sce b/2006/CH10/EX10.11/ex10_11.sce new file mode 100755 index 000000000..12d1c95f1 --- /dev/null +++ b/2006/CH10/EX10.11/ex10_11.sce @@ -0,0 +1,30 @@ +clc;
+p1=100; // Pressure at inlet in kPa
+T1=30; // Temperature at inlet in degree celcius
+V1=0; // Velocity at inlet in m/s
+p2=350; // Pressure at outlet in kPa
+T2=141; // Temperature at exit in degree celcius
+V2=90; // Velocity at exit in m/s
+p0=100; // Pressure of Surroundings in kPa
+T0=30; // temperature of Surroundings in degree celcius
+k=1.4; // Index of the Isentropic compression process
+Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K
+R=0.287; // characteristic gas constant of air in kJ/kg K
+// (a).Adiabatic or polytropic compression
+T2s=(T1+273)*(p2/p1)^((k-1)/k); // Temperature after isentropic compression
+disp ("T2s>T2. Hence there is cooling . Compression is polytropic.","K",T2s,"Temperature after isentropic compression =", "(a).Adiabatic or polytropic compression");
+// (b).The first law efficiency of the compressor
+wa=Cpo*(T1-T2)-V2^2/2000; //Actual work of compression
+wT=(-R*(T1+273)*log (p2/p1))-(V2^2/2000); // Isothermal work
+eff_Ilaw=wT/wa; // The first law efficiency of the compressor
+disp ("%",eff_Ilaw,"(b).The first law efficiency of the compressor = ");
+// (c).Minimum work input & Irreversibility
+d_AE=(Cpo*(T1-T2))+((T0+273)*((R*log (p2/p1))-(Cpo*log ((T2+273)/(T1+273)))))-V2^2/2000; // decrease in availability
+wmin=d_AE; // Minimum work input
+wrev=wmin;
+I=wrev-wa; // Irreversibility
+disp ("kJ/kg",I,"Irreversibility =","kJ/kg",wmin,"Minimum work input =","(c).Minimum work input & Irreversibility");
+// (d).Second law efficiency of the compressor
+eff_IIlaw=wmin/wa; // Second law efficiency of the compressor
+disp ("%",eff_IIlaw*100,"(d).Second law efficiency of the compressor =");
+
diff --git a/2006/CH10/EX10.12/ex10_12.sce b/2006/CH10/EX10.12/ex10_12.sce new file mode 100755 index 000000000..d2252bef6 --- /dev/null +++ b/2006/CH10/EX10.12/ex10_12.sce @@ -0,0 +1,41 @@ +clc;
+T0=313; // Surroundings temperature in kelvin
+TL=233; // Refrigerated space temperature in kelvin
+QL=3.5167; // Refrigeration load in kW
+// (a).Carnot cycle
+COPcarnot=TL/(T0-TL); // COP of carnot cycle
+Wcarnot=QL/COPcarnot; // Work done
+Q0=QL+Wcarnot; // Heat rejected
+d_SL=-QL/TL;// Entropy change of refrigerated space
+d_S0=Q0/T0; //Entropy change of surroundings
+d_Sgen= d_SL+ d_S0; // Entropy generation
+disp (COPcarnot,"COP of carnot cycle = ","kW",Wcarnot,"Work done = ","(a).Carnot cycle");
+printf (" \n Entropy generation = %d \n \n kJ/K s \n",d_Sgen);
+// (b).Vapour compression cycle
+// From Freon-12 property table & figure 10.17
+p1=0.0642; p2=0.9607; // Pressure in MPa
+h1=169.5; h3=74.5; // specific enthalpy in kJ/kg
+s1=0.7269; s3=0.2716;// specific entropy in kJ/kg K
+// By calculations s2=s1 gives the following from property table
+t2=58.9; // Temperature in degree celcius
+h2=217.6; // specific enthalpy in kJ/kg
+// From h4=h3 gives the following from chart
+h4=h3;
+x4=0.44; // Quality of vapour
+s4=0.3195;// specific entropy in kJ/kg K
+m=QL/(h1-h4); // Mass flow rate of refrigerant
+W=m*(h2-h1); // Work done of vapour compression cycle
+COP=QL/W; // COP of vapour compression cycle
+QH=QL+W; // Heat rejected to surroundings
+d_SL=-QL/TL;// Entropy change of refrigerated space
+d_S0=QH/T0; //Entropy change of surroundings
+d_Sgen= d_SL+ d_S0; // Entropy generation
+disp (COP,"COP of vapour compression cycle = ","kW",W,"Work done = ","(b).Vapour compression cycle");
+printf (" \n Entropy generation = %f \n \n kJ/K s \n",d_Sgen);
+// (c).Difference in work = Lost work of the cycle
+d_work=W-Wcarnot; // Difference in work
+LWcycle=QH-T0*QL/TL; // Lost work of the cycle
+disp ("which is same as Difference in work","kW",LWcycle,"Lost work of the cycle= ","kW",d_work,"Difference in work = ","(c).Difference in work = Lost work of the cycle");
+// (d).Second Law efficiency of the vapour compression cycle
+eff_II=COP/COPcarnot; //Second Law efficiency
+disp ("%",eff_II*100,"(d).Second Law efficiency of the vapour compression cycle = ");
diff --git a/2006/CH10/EX10.2/ex10_2.sce b/2006/CH10/EX10.2/ex10_2.sce new file mode 100755 index 000000000..45c31dff8 --- /dev/null +++ b/2006/CH10/EX10.2/ex10_2.sce @@ -0,0 +1,13 @@ +clc;
+T=250; // Evaporation teemperature of water in degree celcius
+Ta=1250; // Initial temperature of combustion gas in degree celcius
+Tb=350; // Final temperature of combustion gas in degree celcius
+C=1.08; // Specific heat of gas in kJ/kg K
+T0=30; // temperature of Surroundings in degree celcius
+hfg=1716.2; // Enthalpy of evaporation at T temperature
+del_SH2O=hfg/(T+273); // Entropy change of water
+mgas=hfg/(C*(Ta-Tb)); // Mass of gas
+del_Sgas=mgas*C*log ((Tb+273)/(Ta+273)); // Enthalpy change of gas
+del_Stotal=del_SH2O+del_Sgas; // Total entropy change
+l_AE=(T0+273)*del_Stotal; // Loss of available energy
+disp ("kJ",l_AE,"Loss of available energy = ");
diff --git a/2006/CH10/EX10.3/ex10_3.sce b/2006/CH10/EX10.3/ex10_3.sce new file mode 100755 index 000000000..52d12459f --- /dev/null +++ b/2006/CH10/EX10.3/ex10_3.sce @@ -0,0 +1,24 @@ +clc;
+Cp=1.1; // Specific heat of combustion gas in kJ/kg K
+T3=1600; // Initial temperature of combustion gas in Kelvin
+T4=1150; // Final temperature of combustion gas in Kelvin
+p1=0.1; // Pressure at inlet of boiler in MPa
+p2=8;// Pressure at outlet of boiler in MPa
+T2=600; // Temperature at outlet of boiler in degree celcius
+m=1; // Mass of water in kg
+T0=298; // temperature of Surroundings in kelvin
+// (b).mass flow rate of gases per kg of water
+// From steam table
+h1=2758; h2=3642;// specific enthalpy in kJ/kg
+s1=5.7432; s2=7.0206; // specific entropy in kJ/kg K
+mgas=(h2-h1)/(Cp*(T3-T4)); //mass flow rate of gases per kg of water
+disp ("kg gas / kg water",mgas,"(b).mass flow rate of gases per kg of water =");
+// (c). Degrease in Available energy
+S21=s2-s1; // Change in entropy of water
+S34=mgas*Cp*log (T3/T4); // Change in entropy of gases
+UEgases=T0*S34; // UnAvailable energy of gas
+UEsteam=T0*S21; // UnAvailable energy of steam
+d_AE=UEsteam-UEgases; // Degrease in Available energy
+disp ("kJ/K",-S34,"Change in entropy of gas = ","kJ/K",S21,"Change in entropy of water = ","(c).");
+disp ("kJ",UEsteam,"Unavailable energy of steam =","kJ",UEgases,"Unavailable energy of gas = ");
+disp ("kJ",d_AE," Degrease in Available energy = ");
diff --git a/2006/CH10/EX10.5/ex10_5.sce b/2006/CH10/EX10.5/ex10_5.sce new file mode 100755 index 000000000..b9f433b0d --- /dev/null +++ b/2006/CH10/EX10.5/ex10_5.sce @@ -0,0 +1,10 @@ +clc;
+T=700;// Exhaust gas temperature in degree celcius
+p=120;// Exhaust gas pressure in kPa
+Cpo=1.089; // Specific heat at constant pressure in kJ/kg K
+R=0.287; // characteristic gas constant in kJ/kg K
+p0=100; // Pressure of Surroundings in kPa
+T0=30; // temperature of Surroundings in degree celcius
+Cvo=Cpo-R; // Specific heat at constant volume
+AE=(Cvo*(T-T0))+(p0*R*((T+273)/p-(T0+273)/p0))-((T0+273)*((Cpo*log((T+273)/(T0+273)))-(R*log (p/p0)))); // Available energy
+disp ("kJ",AE,"Available energy in Exhaust gas =");
diff --git a/2006/CH10/EX10.6/ex10_6.sce b/2006/CH10/EX10.6/ex10_6.sce new file mode 100755 index 000000000..2b9f2302b --- /dev/null +++ b/2006/CH10/EX10.6/ex10_6.sce @@ -0,0 +1,24 @@ +clc;
+p1=450; // Initial pressure in kPa
+T=600; // Initial temperature in kelvin
+V1=0.01; // Initial volume in m^3
+TR=1200; // Temperature of heat source in Kelvin
+V2=0.02; // Final volume in m^3
+p0=100; // Pressure of Surroundings in kPa
+T0=300; // temperature of Surroundings in kelvin
+// Useful Work
+W=p1*V1*log (V2/V1); // Actual work
+Wsurr=p0*(V2-V1); // Surrounding work
+Wu=W-Wsurr; // Useful work
+disp ("kJ",Wu,"Useful Work for the process =");
+// Reversible work
+Q=W; // For isothermal process
+S21=Q/T; // Entropy change of system
+Wrev=T0*S21-Wsurr+Q*(1-T0/TR); // reversible work
+disp ("kJ",Wrev,"Reversible work for the provess =");
+// Irreversibility of the process
+I=Wrev-Wu; // Irreversibility
+disp ("kJ",I,"Irreversibility of the process = ");
+// Entropy generation
+del_Sgen=S21-Q/TR;//Entropy generation
+disp ("kJ/kg",del_Sgen,"Entropy generation of the process = ");
diff --git a/2006/CH10/EX10.7/ex10_7.sce b/2006/CH10/EX10.7/ex10_7.sce new file mode 100755 index 000000000..24394e7c2 --- /dev/null +++ b/2006/CH10/EX10.7/ex10_7.sce @@ -0,0 +1,36 @@ +clc;
+// (i).Irreversibility in Turbine
+p1=9; // Steam pressure at turbine inlet in MPa
+T1=450; // Steam temperature at turbine inlet in degree celcius
+p2=50; // Steam pressure at turbine outlet in MPa
+x2=0.95; // Quality of steam
+p0=100; // Pressure of Surroundings in kPa
+T0=300; // temperature of Surroundings in kelvin
+q=-10; // Heat loss in kJ/kg
+// (a).Decrease in availability
+// from steam table
+h1=3256.6; h2=2415.4;// specific enthalpy in kJ/kg
+s1=6.4844; s2=6.944; // specific entropy in kJ/kg K
+d_AE=(h1-h2)-(T0*(s1-s2)); // Decrease in availability
+disp ("kJ/kg",d_AE,"(a).Decrease in availability =","(i).Irreversibility in turbine");
+// (b).Maxximum work output
+wrev=d_AE; //Maxximum work output
+disp ("kJ/kg",wrev,"(b).Maxximum work output =");
+// (c).Actual work output
+w=(h1-h2)+q; // From SSSF energy equation
+disp ("kJ/kg",w,"(c).Actual work output = ");
+// (d).Irreversibility
+I=wrev-w; //Irreversibility
+disp ("kJ/kg",I,"(d).Irreversibility = ");
+// (ii).Ammonia compressor
+T1=-10; // Temperature at inlet in degree celcius
+p2=1.554; // Pressure at outlet in MPa
+T2=140; // Temperature at outlet in degree celcius
+T0=298; // temperature of Surroundings in kelvin
+//from ammonia tables
+h1=1433; h2=1752;// specific enthalpy in kJ/kg
+s1=5.477; s2=5.655; // specific entropy in kJ/kg K
+wactual=-(h2-h1); // Actual work
+wmin=-((h2-h1)-(T0*(s2-s1)));// mimimum work
+I=wmin-wactual;// Irreversibility
+disp ("kJ/kg",I,"Irreversibility =","kJ/kg",wmin,"Minimum work =","kJ/kg",wactual,"Actual work = ","(ii).Ammonia compressor");
diff --git a/2006/CH10/EX10.8/ex10_8.sce b/2006/CH10/EX10.8/ex10_8.sce new file mode 100755 index 000000000..ba70fb25b --- /dev/null +++ b/2006/CH10/EX10.8/ex10_8.sce @@ -0,0 +1,30 @@ +clc;
+Cp=1.1; // Specific heat of combustion gas in kJ/kg K
+T3=1600; // Initial temperature of combustion gas in Kelvin
+T4=1150; // Final temperature of combustion gas in Kelvin
+p1=0.1; // Pressure at inlet of boiler in MPa
+p2=8;// Pressure at outlet of boiler in MPa
+T2=600; // Temperature at outlet of boiler in degree celcius
+m=1; // Mass of water in kg
+T0=298; // temperature of Surroundings in kelvin
+// From steam table
+h1=2758; h2=3642;// specific enthalpy in kJ/kg
+s1=5.7432; s2=7.0206; // specific entropy in kJ/kg K
+mgas=(h2-h1)/(Cp*(T3-T4)); //mass flow rate of gases per kg of water
+S21=s2-s1; // Change in entropy of water
+S34=mgas*Cp*log (T3/T4); // Change in entropy of gases
+// (a).Decrease in availability of gases
+d_AEgas=mgas*Cp*(T3-T4)-T0*S34//Decrease in availability of gases
+disp ("kJ",d_AEgas,"(a).Decrease in availability of gases = ");
+// (b).Decrease in availability of water
+d_AEwater=(h1-h2)-T0*(s1-s2);// Decrease in availability of water
+disp ("kJ",d_AEwater,"(b).Decrease in availability of water =");
+// (c).Reversible work for the process
+Wrev=d_AEgas+d_AEwater; //Reversible work for the process
+disp ("kJ",Wrev,"(c).Reversible work for the process=");
+// (d).Actual work for the process
+W=0; // Actual work
+disp ("kJ",W,"(d).Actual work for the process =");
+// (e).Irreversibility
+I=Wrev-W; //Irreversibility
+disp ("kJ",I,"(e).Irreversibility = ");
diff --git a/2006/CH10/EX10.9/ex10_9.sce b/2006/CH10/EX10.9/ex10_9.sce new file mode 100755 index 000000000..fb04343c5 --- /dev/null +++ b/2006/CH10/EX10.9/ex10_9.sce @@ -0,0 +1,21 @@ +clc;
+TH=600; // Temperature of heat sorce in degree celcius
+T3=311.06; // Boiler temperature in degree celcius
+p3=10; // Boiler pressure in MPa
+T4=32.88; // Condensor temperature in degree celcius
+p4=5; // Condensor pressure in kPa
+T0=288;// Temperature of surroundings in kelvin
+// From steam table and refer figure 10.10 for states
+h1=137.82; h2=147.82; h3=2724.7; hf4=197.82; hfg4=2423.7; h4=1913.6; // specific enthalpy in kJ/kg
+s1=0.4764; s2=s1; s3=5.6141; s4=s3; sf4=0.4764; sfg4=7.9187; s4=6.2782; // specific entropy in kJ/kg K
+wT=h3-h4; // Turbine work
+wp=h2-h1; // Pump work
+wnet=wT-wp; // Net work
+qH=h3-h2; // Heat supplied in boiler
+qL=h4-h1; // Heat rejected in condensor
+Wrev_Wpump=T0*(s2-s1);
+Wrev_Wboiler=T0*(s3-s2)-T0*qH/(TH+273);
+Wrev_Wturbine=T0*(s4-s3);
+Wrev_Wcondenser=T0*(s1-s4)+qL;
+Wrev_Wcycle=Wrev_Wpump+Wrev_Wboiler+Wrev_Wturbine+Wrev_Wcondenser;
+disp ("kJ/kg",Wrev_Wcycle,"The lost (Wrev-W)for the overall cycle = ","kJ/kg",Wrev_Wcondenser,"The lost (Wrev-W)for the condensor = ","kJ/kg",Wrev_Wturbine,"The lost (Wrev-W)for the Turbine = ","kJ/kg",Wrev_Wboiler,"The lost (Wrev-W)for the Boiler = ","kJ/kg",Wrev_Wpump,"The lost (Wrev-W)for the Pump = ");
diff --git a/2006/CH11/EX11.1/ex11_1.sce b/2006/CH11/EX11.1/ex11_1.sce new file mode 100755 index 000000000..5152d2780 --- /dev/null +++ b/2006/CH11/EX11.1/ex11_1.sce @@ -0,0 +1,18 @@ +clc;
+p1=150; p2=200; p3=250; p4=300; p5=350; p6=400; p7=450; p8=500; p9=550; p10=600; p11=650; p12=700; p13=750; p14=800; p15=850; p16=900; // Pressures of merect's boiler experiment in kPa
+t1=111.4; t2=120.2; t3=127.4; t4=133.6; t5=138.9; t6=143.6; t7=147.9; t8=151.9; t9=155.5; t10=158.9; t11=162; t12=165; t13=167.8; t14=170.4; t15=173; t16=175.4; // Temperatures of merect's boiler experiment in degree celcius
+n=16; // Total number of readings taken
+// Values of constant A & B
+s_y= log10 (p1*p2*p3*p4*p5*p6*p7*p8*p9*p10*p11*p12*p13*p14*p15*p16);
+s_x=1/(t1+273)+1/(t2+273)+1/(t3+273)+1/(t4+273)+1/(t5+273)+1/(t6+273)+1/(t7+273)+1/(t8+273)+1/(t9+273)+1/(t10+273)+1/(t11+273)+1/(t12+273)+1/(t13+273)+1/(t14+273)+1/(t15+273)+1/(t16+273);
+s_xy=((log10 (p1))*1/(t1+273))+ ((log10 (p2))*1/(t2+273))+ ((log10 (p3))*1/(t3+273))+ ((log10 (p4))*1/(t4+273))+ ((log10 (p5))*1/(t5+273))+ ((log10 (p6))*1/(t6+273))+ ((log10 (p7))*1/(t7+273))+ ((log10 (p8))*1/(t8+273))+ ((log10 (p9))*1/(t9+273))+ ((log10 (p10))*1/(t10+273))+ ((log10 (p11))*1/(t11+273)) + ((log10 (p12))*1/(t12+273)) + ((log10 (p13))*1/(t13+273)) + ((log10 (p14))*1/(t14+273)) + ((log10 (p15))*1/(t15+273)) + ((log10 (p16))*1/(t16+273));
+s_x2=(1/(273+t1))^2+(1/(273+t2))^2+(1/(273+t3))^2+(1/(273+t4))^2+(1/(273+t5))^2+(1/(273+t6))^2+(1/(273+t7))^2+(1/(273+t8))^2+(1/(273+t9))^2+(1/(273+t10))^2+(1/(273+t11))^2+(1/(273+t12))^2+(1/(273+t13))^2+(1/(273+t14))^2+(1/(273+t15))^2+(1/(273+t16))^2;
+B= ((n*s_xy)-(s_x*s_y))/((n*s_x2)-((s_x)^2)); // Constant B
+A=((s_y)-(B*s_x))/n; // Constant A
+disp (B,"B =",A,"A =","Values of constant A & B");
+// The latent heat of vapourization
+T=150; // The latent heat of vapourization at this temperature in degree celcius
+d_T=20; d_p=258.7;// Temperature and pressure difference
+vg=0.3928; vf=0.0011; // specific volume in m^3/kg
+hfg=(T+273)*(vg-vf)*d_p/d_T; // Clapeyron equztion
+disp ("kJ/kg",hfg,"The latent heat of vapourization at 150 oC =");
diff --git a/2006/CH11/EX11.3/ex11_3.sce b/2006/CH11/EX11.3/ex11_3.sce new file mode 100755 index 000000000..cf7f84d27 --- /dev/null +++ b/2006/CH11/EX11.3/ex11_3.sce @@ -0,0 +1,28 @@ +clc;
+p5=6000; // Pressure of superheated steam in kPa
+T5=723.15; // Temperature of superheated steam in kelvin
+p1=0.6113; // Pressure at reference state in kPa
+T1=273.16; // Temperature at reference state in kelvin
+hfg1=2501.3; // Latent heat of vapourization of water at reference state in kJ/kg
+R_1=8.3143; // Universal gas constant of air in kJ/kmol K
+// The critical state properties of water
+pc=2.09; // pressure in MPa
+Tc=647.3; // Temperature in kelvin
+h1=0; // Reference state in kJ/kg
+h2=h1+hfg1; // specific enthalpy in kJ/kg
+// At point 2
+p2=p1; T2=T1;
+z=0.9986;
+r=18.015;
+A2=(0.4278/(pc*10^4))*(Tc/T2)^2.5; // Constants
+B=(0.0867/(pc*10^4))*(Tc/T2); // Constants
+h2_h3=R_1*(T2/r)*(((-3/2)*(A2/B)*log (1+(B*p2/z)))+z-1); // Enthalpy difference between state 2 & 3
+// At point 5
+z1=0.9373;
+A2=(0.4278/(pc*10^4))*(Tc/T5)^2.5; // Constants
+B=(0.0867/(pc*10^4))*(Tc/T5); // Constants
+h5_h4=R_1*(T5/r)*(((-3/2)*(A2/B)*log (1+(B*p5/z1)))+z1-1); // Enthalpy difference between state 5 & 4
+a=1.6198;b=6.6*10^-4; // Constants
+h4_h3=a*(T5-T1)+b*(T5^2-T1^2)/2; // Enthalpy difference between state 3 & 4
+h5=h2-h2_h3+h5_h4+h4_h3; // Specific enthalpy at state 5
+disp ("kJ/kg",h5,"Specific enthalpy at state 5 = ");
diff --git a/2006/CH11/EX11.4/ex11_4.sce b/2006/CH11/EX11.4/ex11_4.sce new file mode 100755 index 000000000..9951d2069 --- /dev/null +++ b/2006/CH11/EX11.4/ex11_4.sce @@ -0,0 +1,18 @@ +clc;
+T2=373; // Temperature of CO2 gas in kelvin
+p2=100; // Pressure of CO2 gas in atm
+T1=0; // Reference state temperature in kelvin
+// The crictical constants for CO2 are
+Tc=304.2; // Temperature in kelvin
+Pc=72.9; // Pressure in atm
+zc=0.275;
+// Refer figure 11.7 for state definition
+h1_0=((-3.74*T2)+((30.53/(100^0.5))*((T2^1.5)/1.5))-((4.1/100)*((T2^2)/2))+((0.024/(100^2))*((T2^3)/3)));
+Tr=T2/Tc; Pr=p2/Pc; // Reduced properties
+// From generalized chart figure 11.6
+hR_Tc=10.09;
+h1_2=hR_Tc*Tc;
+M=44; // Molecular weight
+h10=h1_0/M; h12=h1_2/M;
+h373=h10-h12; // The required enthalpy of CO2 gas at 373 K and 100 atm
+disp ("kJ/kg",h373,"The required enthalpy of CO2 gas at 373 K and 100 atm = ");
diff --git a/2006/CH11/EX11.5/ex11_5.sce b/2006/CH11/EX11.5/ex11_5.sce new file mode 100755 index 000000000..8e21677b0 --- /dev/null +++ b/2006/CH11/EX11.5/ex11_5.sce @@ -0,0 +1,20 @@ +clc;
+p1=11; // Initial pressure in bar
+T1=40; // Initial temperature in degree celcius
+p2=60; // Final pressure in bar
+R_1=8.3143; // Universal gas constant in kJ/kmol K
+// The crictical properties for natural gas
+Tc=161; // Temperature in kelvin
+Pc=46.4; // Pressure in bar
+// Reduced properties are
+Pr1=p1/Pc; Pr2=p2/Pc;
+Tr1=(T1+273)/Tc;
+// T2=T1, The ideal gas enthalpy h2*=h1*=h1
+h21=-47.5; // From generalized enthalpy departure chart
+M=16; // Molecular weight
+Sp2_1=(R_1/M)*log (p2/p1)// for the difference in ideal gas entropies
+Sp2_Sp_2=-0.1125; Sp_2_Sp_1=-2.1276; // Entropies in kJ/kg K
+s2_s1=(Sp2_Sp_2)+(Sp_2_Sp_1);
+q=(T1+273)*s2_s1; // Heat transfer
+w=q-h21; // Work of compression
+disp ("kJ/kg",w,"Work of compression = ","kJ/kg",q,"Heat transfer = ");
diff --git a/2006/CH11/EX11.8/ex11_8.sce b/2006/CH11/EX11.8/ex11_8.sce new file mode 100755 index 000000000..ed7f9ec40 --- /dev/null +++ b/2006/CH11/EX11.8/ex11_8.sce @@ -0,0 +1,32 @@ +clc;
+p1=10; // Initial pressure in MPa
+T1=263; // Initial temperature in Kelvin
+p2=1.5; // Final pressure in MPa
+R_1=8.3143; // Universal gas constant in kJ/kmol K
+M=28; // Molecular mass
+// The crictical properties for nitrogen gas
+Tc=126.2; // Temperature in kelvin
+Pc=3.39; // Pressure in MPa
+// Reduced properties are
+Pr1=p1/Pc; Pr2=p2/Pc;
+Tr1=T1/Tc;
+// From the generalized chart for enthalpy departure at Pr1 & Tr1
+h_11=8.7*Tc/M;
+// The solution involves iteration procedure. Assume T2 and check if h2_h1=0
+// First approximation T2=200 K
+T2=200; // In K
+Tr2=T2/Tc;
+Cpr=1.046;
+h_21=Cpr*(T2-T1);
+// From the generalized chart for enthalpy departure at Pr1 & Tr1
+h_22=1*Tc/M;
+h2_h1=h_11-T2+T1-h_22;
+// Second approximation
+T2=190; // In K
+Tr2=T2/Tc;
+Cpr=1.046;
+h_21=Cpr*(T2-T1);
+// From the generalized chart for enthalpy departure at Pr1 & Tr1
+h_22=1.5*Tc/M;
+h2_h1=h_11-T2+T1-h_22;
+disp ("Here also h2-h1 != 0. Therefore the temperature is dropping.Thus Joule-Thomson coefficient is positive.There is cooling in this process");
diff --git a/2006/CH11/EX11.9/ex11_9.sce b/2006/CH11/EX11.9/ex11_9.sce new file mode 100755 index 000000000..a42ffd78d --- /dev/null +++ b/2006/CH11/EX11.9/ex11_9.sce @@ -0,0 +1,10 @@ +clc;
+Tcammonia=405.9;
+Tcwater=647.3;
+Tr=0.576; // Condition of similarity
+Twater=Tcwater*Tr; // At reduced temperature Temperature of water
+Tammonia=Tcammonia*Tr;//At reduced temperature Temperature of ammonia
+// From steam table at Twater
+hfgwater=2257;// specific enthalpy in kJ/kg
+hfgammonia=Tcammonia/Tcwater *hfgwater; // Latent heat of vaporization of ammonia
+disp ("kJ/kg",hfgammonia,"Latent heat of vaporization of ammonia =");
diff --git a/2006/CH12/EX12.1/ex12_1.sce b/2006/CH12/EX12.1/ex12_1.sce new file mode 100755 index 000000000..9978d311c --- /dev/null +++ b/2006/CH12/EX12.1/ex12_1.sce @@ -0,0 +1,24 @@ +clc;
+M1=28.02; // Molecular mass of N2
+M2=32; // Molecular mass of O2
+M3=39.91; // Molecular mass of Ar
+M4=44; // Molecular mass of CO2
+M5=2.02; // Molecular mass of H2
+y1=0.7803; // Part by volume of N2 in dry atmospheric air
+y2=0.2099; // Part by volume of O2 in dry atmospheric air
+y3=0.0094; // Part by volume of Ar in dry atmospheric air
+y4=0.0003; // Part by volume of CO2 in dry atmospheric air
+y5=0.0001; // Part by volume of H2 in dry atmospheric air
+R_1=8.3143; // Universal gas constant of air in kJ/kmol K
+// (a).Average molecular mass and apperent gas constant of dry atmospheric air
+M=(y1*M1)+(y2*M2)+(y3*M3)+(y4*M4)+(y5*M5); // Average molecular mass
+R=R_1/M; //Apperent gas constant of dry atmospheric air
+disp ("kJ/kg K",R,"Apperent gas constant of dry atmospheric air =","kmol",M,"Average molecular mass = ","(a).Average molecular mass and apperent gas constant of dry atmospheric air");
+// (b).The fraction of each component
+m1=(M1*y1)/M;//The fraction of N2 component
+m2=(M2*y2)/M;//The fraction of O2 component
+m3=(M3*y3)/M;//The fraction of Ar component
+m4=(M4*y4)/M;//The fraction of CO2 component
+m5=(M5*y5)/M;//The fraction of H2 component
+disp (m5,m4,m3,m2,m1,"(b).The fraction of N2,O2,Ar,CO2,H2 components are given below respectively ");
+
diff --git a/2006/CH12/EX12.2/ex12_2.sce b/2006/CH12/EX12.2/ex12_2.sce new file mode 100755 index 000000000..1daa02c57 --- /dev/null +++ b/2006/CH12/EX12.2/ex12_2.sce @@ -0,0 +1,20 @@ +clc;
+M1=44; // Molecular mass of CO2
+M2=32; // Molecular mass of O2
+M3=28; // Molecular mass of CO
+M4=28; // Molecular mass of N2
+y1=0.1; // Part by volume of CO2 in exhaust gas
+y2=0.06; // Part by volume of O2 in exhaust gas
+y3=0.03; // Part by volume of CO in exhaust gas
+y4=0.81; // Part by volume of N2 in exhaust gas
+R_1=8.3143; // Universal gas constant in kJ/kmol K
+// (a).Average molecular mass and apperent gas constant of exhaust gas
+M=(y1*M1)+(y2*M2)+(y3*M3)+(y4*M4); // Average molecular mass
+R=R_1/M; //Apperent gas constant of dry atmospheric air
+disp ("kJ/kg K",R,"Apperent gas constant of dry atmospheric air =","kmol",M,"Average molecular mass = ","(a).Average molecular mass and apperent gas constant of exhaust gas");
+// (b).The fraction of each component
+m1=(M1*y1)/M;//The fraction of CO2 component
+m2=(M2*y2)/M;//The fraction of O2 component
+m3=(M3*y3)/M;//The fraction of CO component
+m4=(M4*y4)/M;//The fraction of N2 component
+disp (m4,m3,m2,m1,"(b).The fraction of CO2,O2,CO,N2 components are given below respectively ");
diff --git a/2006/CH12/EX12.3/ex12_3.sce b/2006/CH12/EX12.3/ex12_3.sce new file mode 100755 index 000000000..5296908a0 --- /dev/null +++ b/2006/CH12/EX12.3/ex12_3.sce @@ -0,0 +1,8 @@ +clc;
+y1=0.79; // Volume of Nitrogen in 1 kg of air
+y2=0.21; // Volume of Oxygen in 1 kg of air
+R_1=8.3143; // Universal gas constant of air in kJ/kmol K
+T0=298; // temperature of Surroundings in kelvin
+del_Sgen=-R_1*((y1*log (y1))+(y2*log (y2))); //Entropy generation
+LW=T0*del_Sgen; // Minimum work
+disp ("kJ/kmmol K",LW,"The minimum work required for separation of two gases = ");
diff --git a/2006/CH12/EX12.4/ex12_4.sce b/2006/CH12/EX12.4/ex12_4.sce new file mode 100755 index 000000000..c249756f1 --- /dev/null +++ b/2006/CH12/EX12.4/ex12_4.sce @@ -0,0 +1,14 @@ +clc;
+DPT=8; // Dew point temperature in degree celcius
+p=100; // Pressure of air in kPa
+T=25; // Temperature of air in degree celcius
+// (a).partial pressure of water vapour in air
+pv=1.0584; // Saturation pressure of water at DBT in kPa
+disp ("kPa",pv,"(a).partial pressure of water vapour in air = ");
+// (b).Specific humidity
+sh=0.622*pv/(p-pv);//Specific humidity
+disp ("kg of water vapour /kg of dry air",sh,"(b).Specific humidity =");
+// (c).Relative humidity
+pg=3.169; // Saturation pressure of water at T in kPa
+RH=pv/pg; //Relative humidity
+disp ("%",RH*100,"(c).Relative humidity =");
diff --git a/2006/CH12/EX12.5/ex12_5.sce b/2006/CH12/EX12.5/ex12_5.sce new file mode 100755 index 000000000..3af8c61dd --- /dev/null +++ b/2006/CH12/EX12.5/ex12_5.sce @@ -0,0 +1,27 @@ +clc;
+DBT=35; // Dry bulb temperature in degree celcius
+WBT=23; // Wet bulb temperature in degree celcius
+P=100; // Pressure of air in kPa
+Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K
+R=0.287; // characteristic gas constant of air in kJ/kg K
+// (a).Humidity ratio
+hv=2565.3; // specific enthalpy hg at DBT in kJ/kg
+hfWBT=96.52; hfgWBT=2443; // specific enthalpy at WBT in kJ/kg
+PsatWBT=2.789;// Saturation pressure at WBT in kPa
+shWBT=0.622*PsatWBT/(P-PsatWBT);// specific humidity
+sh=((Cpo*(WBT-DBT))+(shWBT*hfgWBT))/(hv-hfWBT); // Humidity ratio
+disp ("kg w.v /kg d.a",sh,"(a).Humidity ratio =");
+// (b).Relative Humidity
+pv=sh*P/(0.622+sh); // Partial pressure of water vapour
+pg=5.628; // Saturation pressure at DBT in kPa
+RH=pv/pg; //Relative Humidity
+disp ("%",RH*100,"(b).Relative Humidity =");
+// (d).Dew point temperature
+DPT=17.5; // Saturation temperature at pg in degree celcius
+disp ("oC",DPT,"(d).Dew point temperature =");
+// (e).Specific volume
+v=(R*(DBT+273))/(P-pv); // Specific volume
+disp ("m^3/kg",v,"(e).Specific volume = ");
+// (d).Enthalpy of air
+h=(Cpo*DBT)+(sh*hv); //Enthalpy of air
+disp ("kJ/kg d.a",h,"(d).Enthalpy of air =");
diff --git a/2006/CH12/EX12.6/ex12_6.sce b/2006/CH12/EX12.6/ex12_6.sce new file mode 100755 index 000000000..f62371c1f --- /dev/null +++ b/2006/CH12/EX12.6/ex12_6.sce @@ -0,0 +1,16 @@ +clc;
+DPT1=30; // Dew point temperature at inlet in degree celcius
+DPT2=15; // Dew point temperature at outlet in degree celcius
+RH1=0.50; // Relative humidity at inlet
+RH2=0.80; // Relative humidity at outlet
+p=101.325; // Atmospheric pressure in kPa
+Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K
+pg1=4.246; // saturation pressure of water at DBT1 in kPa
+pg2=1.7051; // saturation pressure of water at DBT2 in kPa
+pv1=RH1*pg1; pv2=RH2*pg2; // Partial pressure of water vapour in air at inlet and outlet
+sh1=0.622*pv1/(p-pv1); sh2=0.622*pv2/(p-pv2); // Specific humidities at inlet and outlet
+hv1=2556.3;// specific enthalpy hg at DBT1 in kJ/kg
+hv2=2528.9;// specific enthalpy hg at DBT2 in kJ/kg
+hv3=63;// specific enthalpy hf at DBT 2in kJ/kg
+q=(Cpo*(DPT2-DPT1))+(sh2*hv2)-(sh1*hv1)+((sh1-sh2)*hv3); // Heat transfer
+disp ("kJ/kg of dry air",q,"Heat removed from the air =");
diff --git a/2006/CH12/EX12.7/ex12_7.sce b/2006/CH12/EX12.7/ex12_7.sce new file mode 100755 index 000000000..084b6534d --- /dev/null +++ b/2006/CH12/EX12.7/ex12_7.sce @@ -0,0 +1,33 @@ +clc;
+y1=0.5; // Molecular mass of CH4 in kmol
+y2=0.5; // Molecular mass of C3H8 in kmol
+T=363; // Temperature of gas in kelvin
+p=5.06; // Pressure of gas in MPa
+v=0.48; // volume of cylinder in m^3
+R_1=8.3143; // Universal gas constant of air in kJ/kmol K
+
+// (a).Using kay’s rule
+// let component 1 refer to methane and component 2 to propane
+// the critical properties
+Tc1=190.7; Tc2=370; // temperature in kelvin
+Pc1=46.4; Pc2=42.7; // Pressure in bar
+// using kay’s rule for the mixture
+Tcmix=y1*Tc1+y2*Tc2;
+Pcmix=y1*Pc1+y2*Pc2;
+// reduced properties
+Tr=T/Tcmix; Pr=p/Pcmix;
+// From generalized chart
+z=0.832;
+v_1=z*R_1*T/(p*10^3); // molar volume of the mixture
+d=(v-v_1)/v; // Percentage deviation from actual value
+disp ("%",d*100,"Percentage deviation from actual value = ","(a).Using kay’s rule");
+// (b).Using Redlich-Kwong equation of state
+a1=0.42748*R_1*Tc1^2.5/Pc1;
+a2=0.42748*R_1*Tc2^2.5/Pc2;
+b1=0.08664*R_1*Tc1/Pc1;
+b2=0.08664*R_1*Tc2/Pc2;
+// Substituting these values in the equation 12.16
+// And solving these equation by iteration method we get
+v_1=0.47864;// molar volume of the mixture
+d=(v-v_1)/v; // Percentage deviation from actual value
+disp ("%",d*100,"Percentage deviation from actual value = ","(b).Using Redlich-Kwong equation of state");
diff --git a/2006/CH12/EX12.8/ex12_8.sce b/2006/CH12/EX12.8/ex12_8.sce new file mode 100755 index 000000000..08ab33eed --- /dev/null +++ b/2006/CH12/EX12.8/ex12_8.sce @@ -0,0 +1,8 @@ +clc;
+ln_piCH4=-0.0323;
+pi_CH4=0.9683;
+p=6895; // Pressure in kPa
+T=104.4; // Temperature in degree celcius
+a=0.784;
+f_CH4=pi_CH4*a*p; // Faguacity
+disp("kPa",f_CH4,"The Required Faguacity = ");
diff --git a/2006/CH13/EX13.1/ex13_1.sce b/2006/CH13/EX13.1/ex13_1.sce new file mode 100755 index 000000000..855f95f88 --- /dev/null +++ b/2006/CH13/EX13.1/ex13_1.sce @@ -0,0 +1,50 @@ +clc;
+// Take freon 22 as component 1 and Freon 12 as component 2
+// (a). y-x diagram at 40 oC
+P1sat=15.335; // Saturation pressure of Freon 22 at 40oC in bar
+P2sat=9.607; // Saturation pressure of Freon 12 at 40oC in bar
+a=P1sat/P2sat;
+xset('window',1); // For Plotting y-x Diagram
+function y1=f(x1)
+ y1=(a*x1)/(1+x1*(a-1)); // y Function
+endfunction
+x1=linspace(0,1.0,3);
+plot (x1,f,x1,x1); // plot comment
+title ("(a).y-x diagram for the mixture at 40 oC","fontsize",4,"color","blue");
+xlabel(" x1 ","fontsize",4,"color","blue");
+ylabel(" y1 ","fontsize",4,"color","blue");
+legend(["y1";"x1"],[2]);
+disp ("Refer window 1","(a). y-x diagram at 40 oC");
+// (b). p-x-y diagram at 40 oC
+ // By using the following relation calculate p value for various value of x1,y1
+ // p=(x1*P1sat)+(1-x1)*P2sat
+x1=[0,0.2,0.5,0.8,1];
+y1=[0,0.285,0.615,0.865,1];
+p=[9.607,10.7526,12.471,14.1894,15.335];
+xset('window',2);
+plot (x1,p,y1,p);
+title ("(b).P-y-x diagram for the mixture at 40 oC","fontsize",4,"color","blue");
+xlabel(" x1 & y1 ","fontsize",4,"color","blue");
+ylabel(" p in bar ","fontsize",4,"color","blue");
+legend(["Liquid out";"Vapour"],[2]);
+disp ("Refer window 2","(b). p-x-y diagram at 40 oC");
+// (c).t-x-y diagram at 10 bar
+// for any value of x1 at p=10 bar, the bubble temperature can be found by trial and error from the following relation
+ // p=10 bar =(x1*P1sat)+(1-x1)*P2sat
+T1sat=23.7; // Saturation temperature of Freon 22 at 10 bar in oC
+T2sat=41.6; // Saturation temperature of Freon 12 at 10 bar in oC
+// Thus, for x1=0.5, we find that t=31 oC.
+x1=0.5; // Let assume
+P1sat=12.186; // Saturation pressure of Freon 22 at 31oC in bar
+P2sat=7.654; // Saturation pressure of Freon 12 at 31oC in bar
+a=P1sat/P2sat;
+y1=(a*x1)/(1+x1*(a-1)); // y Function
+// For different value of x1 the values of t,y1 are calculated by above expression and given below
+x1=[0,0.5,1]; y1=[0,0.614,1]; t=[41.6,31,23.7];
+xset('window',3);
+plot (x1,t,y1,t);
+title ("(c).t-y-x diagram for the mixture at 10 bar","fontsize",4,"color","blue");
+xlabel(" x1 & y1 ","fontsize",4,"color","blue");
+ylabel(" t in oC ","fontsize",4,"color","blue");
+legend(["f";"g"]);
+disp ("Refer window 3","(c).t-x-y diagram at 10 bar");
diff --git a/2006/CH13/EX13.2/ex13_2.sce b/2006/CH13/EX13.2/ex13_2.sce new file mode 100755 index 000000000..fbceefd62 --- /dev/null +++ b/2006/CH13/EX13.2/ex13_2.sce @@ -0,0 +1,25 @@ +clc;
+T=573.15; // Temperature of the water with another liquid in kelvin
+R=8.3144/18; // Characteristic gas constant
+// (a).4 MPa
+P_1=10; // By Method II, The lowest possible pressure at which date available in steam table for 300 oC temperature in kPa
+h_i=3076.5; // Specific enthalphy at P_1 in kJ/kg
+s_i=9.2813; // Specific entropy at P_1 in kJ/kg K
+// from superheat table at p=4 MPa and t=300 oC
+hi=2960.7; // Specific enthalphy in kJ/kg
+si=6.3615; // Specific entropy in kJ/kg K
+fi=P_1*exp ((((hi-h_i)/T)-(si-s_i))/R); // Standard state fugacity of water
+disp ("kPa (round off error)",fi,"Standard state fugacity of water = ","(a).4 MPa");
+// (b).equal to saturation pressure at 300 oC
+Psat=8.581; // Saturation pressure at 300 oC in MPa
+// From steam table at Psat=8.581 MPa and t=300 oC
+hi=2749; // Specific enthalphy in kJ/kg
+si=5.7045; // Specific entropy in kJ/kg K
+fi=P_1*exp ((((hi-h_i)/T)-(si-s_i))/R); // Standard state fugacity of water
+pisat=fi/(Psat*10^3); // fugacity coefficient
+disp (pisat,"fugacity coefficient =","kPa",fi,"Standard state fugacity of water = ","(b).Equal to saturation pressure at 300 oC");
+// (c).10 MPa
+// Applying Method I
+viL=0.001404; // Specific volume at 300 oC in m^3/kg
+fi=pisat*Psat*10^3*exp ((viL*(P_1-Psat)*10^3)/(R*T)); // Standard state fugacity of water
+disp ("kPa",fi,"Standard state fugacity of water = ","(a).10 MPa");
diff --git a/2006/CH13/EX13.3/ex13_3.sce b/2006/CH13/EX13.3/ex13_3.sce new file mode 100755 index 000000000..8842d93b2 --- /dev/null +++ b/2006/CH13/EX13.3/ex13_3.sce @@ -0,0 +1,72 @@ +clc;
+// Let take NH3 as component 1 and H2O as component 2
+// (a) & (b)
+// Calculation of f1sat = pi1sat*p1sat for ammonia
+P_1=50; // low reference state pressure in kPa
+P1sat=614.95; // Saturation Pressure of ammonia at 10 oC in kPa
+h1sat=1453.3; // Specific enthalpy at 10 oC in kJ/kg
+s1sat=5.2104; // Specific entropy at 10 oC in kJ/kg K
+R=8.3144/17; // Characteristic gas constant
+T=283; // Temperature in kelvin
+// At 10 oC and P_1=50 kPa for ammonia
+h_1sat=1499.2; // Specific enthalpy in kJ/kg
+s_1sat=6.5625; // Specific entropy in kJ/kg K
+f1sat=P_1*exp ((((h1sat-h_1sat)/T)-(s1sat-s_1sat))/R); // Standard state fugacity of Ammonia
+disp ("kPa",f1sat,"Standard state fugacity of Ammonia = ","(a) & (b)");
+// Calculation of f2sat = pi2sat*p2sat for water
+P2sat=1.2276; // Saturation Pressure at 10 oC in kPa for water
+pi2sat=1; // At low pressure for water
+f2sat = pi2sat*P2sat; // Standard state fugacity of water
+disp ("kPa",f2sat,"Standard state fugacity of water = ");
+// Calulations of ViL/RT
+// For ammonia and water at 10 oC
+v1L=0.001601; v2L=0.001; // Specific volume in m^3/kg
+v1L_RT=v1L/(R*T); v2L_RT=v2L/(R*T);
+disp (v2L_RT,"v2L/RT = ","(answer mentioned in the textbook is wrong)",v1L_RT,"v1L/RT = ");
+// Calculations of activity coefficients
+// Expression for activity coefficients of ammonia and water become in given by respectively
+// r_1=(y1*p/(x1*569.6))*exp (-4.34*10^-6*(p-p1sat)); for ammonia
+// r_2=(y2*p/(x2*1.2276))*exp (-7.65*10^-6*(p-p2sat)); for water
+// The values thus calculated for r_1,r_2,lny_1,lnr_2 are calculated and plotted in window 1
+// Note that the values of pyonting factors are negligibly small
+x1=[0,0.2,0.3,0.4,0.5,0.6,0.8,1.0];
+y1=[0,0.963,0.986,0.9958,0.9985,0.9993,0.9999,1.0];
+lnr_1=[-3.1,-1.845,-1.295,-0.75,-0.33,-0.065,-0.035,-0];
+lnr_2=[0,-0.1397,-0.2767,-0.507,-0.709,-0.952,-1.613,-2.2];
+// similarly the excess function gE/RT and gE/x1x2RT are also calculated using the following expression respectively
+// gE_RT=x1*lnr_1+x2*lnr_2; // the excess function from 12.51
+ // gE_x1x2RT=(lnr_1/x2)+(lnr_2/x1);
+// since gE=0 & x1x2=0 both at x1=0 and x1=1. However its values in between x1=0 & x1=1
+// By substituting these values in the above expression and given below
+gE_RT=[0,-0.481,-0.582,-0.604,-0.5195,-0.4198,-0.2925,0];
+gE_x1x2RT=[-3.1,-2.92,-2.83,-2.74,-2.65,-2.56,-2.38,-2.2];
+xset('window',1); // For Plotting Diagram
+plot (x1,lnr_1,"b*-",x1,lnr_2,"g*-",x1,gE_RT,"r",x1,gE_x1x2RT,"k*-");
+title ("(a)&(b).Activity coefficients for NH3/H2O at 10 oC","fontsize",4,"color","blue");
+xlabel(" x1 → ","fontsize",4,"color","blue");
+ylabel(" ln γ → ","fontsize",4,"color","blue");
+legend(["ln γ1";"ln γ2";"gE/RT";"gE/x1x2 RT"],[4]);
+disp ("Refer window 1 for plots");
+// As x1→0,x2→1,gE_x1x2RT→A=ln r_1^∞
+// As x1→1,x2→0,gE_x1x2RT→B=ln r_2^∞
+A=-3.1; B=-2.2; // THe Margules constants
+disp (B,"B = ",A,"A = ","The Margules constants ");
+disp ("From window 1 for ammonia/water mixture which is characteristic of systems with negative deviation from Roault law. Because γi<=1 and ln γi <=0");
+// (c).
+// Assuming ideal vapour phase, and at low pressures we have
+// y1P=γ1*x1*p1sat; y2p=γ2* x2* p2sat;
+// Now the activity coefficients can be found from Margules equations and given below
+x1=[0,0.2,0.3,0.4,0.5,0.6,1.0];
+y1=[0,0.963,0.986,0.9958,0.9985,0.9999,1.0];
+p=[1.2276,8.6597,30.6598,54.6845,150.6458,278.1549,614.95];
+// The ideal solution pressure
+ // PRaoult=x1*P1sat+x2*P2sat;
+PRaoult=[1.2276,614.95]; x_1=[0,1]; // For Ideal solution pressure
+xset('window',2); // For Plotting Diagram
+plot (x1,p,"r*-",y1,p,"b*-",x_1,PRaoult,"g");
+title ("(c).p-x-y diagram of NH3/H2O at 10 oC","fontsize",4,"color","blue");
+xlabel(" x1 → & y1 → ","fontsize",4,"color","blue");
+ylabel(" p, kPa → ","fontsize",4,"color","blue");
+legend(["p-x1";"p-y1";"PRaoult"],[2]);
+disp ("For p-x-y diagram refer window 2","(c).")
+disp ("From window 2 The actual pressure p < pRaoult. It is thus seen that the mixture has negative deviation from Raoults law.");
diff --git a/2006/CH13/EX13.4/ex13_4.sce b/2006/CH13/EX13.4/ex13_4.sce new file mode 100755 index 000000000..95d1bad07 --- /dev/null +++ b/2006/CH13/EX13.4/ex13_4.sce @@ -0,0 +1,69 @@ +clc;
+x1=0.9; // mole fraction of NH3
+x2=0.1; // Mole fraction of H2O
+p=490.3; // Pressure in kPa
+T=280.1; // Temperature in kelvin
+lam12_11=-2131; lam21_22=-2726; // In kJ/kmol
+R_1=8.3144; // Universal gas constant in kJ/kmol K
+// (a).Enthalpy of saturated liquid Mixture at L/B at bubble temperature
+V1L=0.0016; V2L=0.001; //from properties of NH3 and H2O in m^3/kg
+a=((V2L*18)/(V1L*17)) * exp (-lam12_11/(R_1*T));
+b=((V1L*17)/(V2L*18)) * exp (-lam21_22/(R_1*T));
+d_a=a*(lam12_11/(R_1*T^2)); d_b=b*(lam21_22/(R_1*T^2));
+d_lnr1=(-(a*x2^2*d_a/(x1+(a*x2))^2))-(x2*d_b/(b*x1+x2))+(b*x1*x2*d_b/(b*x1+x2)^2);
+d_lnr2=(-b*x1^2*d_b/(b*x1+x2)^2)-(x1*d_a/(x1+a*x2))+(a*x1*x2*d_a/(x1+a*x2)^2);x1=0.728; // By substituting these valuses in equation
+h_E=-R_1*T^2*(x1*d_lnr1+x2*d_lnr2); // Heat of mixing
+x1=0.9;
+M=x1*17+x2*18; // Molecular weight
+hE=h_E/M;
+h1L=32.5; h2L=29.4; // in kJ/kg
+hL=(x1*h1L)+(x2*h2L)+hE;// Specific enthalpy of the liquid mixture
+disp ("kJ/kg",hL,"Specific enthalpy of the liquid mixture = ","(a).Enthalpy of saturated liquid Mixture at L/B at bubble temperature");
+// (b).Enthalpy of saturated vapour at V in Equilibrium with liquid at L/B
+// From property table of ammonia and water at 0 oC
+T1=273.15; // Temperature in kelvin
+p1sat=429.4; p2sat=0.6108; // Pressure in kPa
+hfg1=1262.4; hfg2=2501.4;// specific enthalpy in kJ/kg
+vg1=0.2895; vg2=206.3; // specific volume in m^3/kg
+// Referring to fig 13.15 , we have
+hb1=1262.4; hb2=2501.4;// specific enthalpy in kJ/kg
+M=17;
+// The crictical properties
+Tc1=405.3; Tc2=647.3;// Temperature in kelvin
+pc1=11.28; pc2=22.09; // Pressure in MPa
+z1=(p1sat*vg1/(R_1*T1/M)); z2=(p2sat*vg2/(R_1*T/M));
+A2_1=(0.4278/(pc1*10^3))*(Tc1/T1)^2.5; // Constants
+B_1=(0.0867/(pc1*10^3))*(Tc1/T1); // Constants
+h1R=R_1*(T1/M)*(((-3/2)*(A2_1/B_1)*log (1+(B_1*p1sat/z1)))+z1-1);
+A2_2=(0.4278/(pc2*10^3))*(Tc2/T1)^2.5; // Constants
+B_2=(0.0867/(pc2*10^3))*(Tc2/T1); // Constants
+h2R=-0.2;
+hc1=hb1-h1R; hc2=hb2-h2R; // Enthalpies at 0 oC
+Cpo1=14.86; Cpo2=12.92; // In kJ/kg
+A2_1=(0.4278/(pc1*10^3))*(Tc1/T)^2.5; // Constants
+B_1=(0.0867/(pc1*10^3))*(Tc1/T); // Constants
+A2_2=(0.4278/(pc2*10^3))*(Tc2/T)^2.5; // Constants
+B_2=(0.0867/(pc2*10^3))*(Tc2/T); // Constants
+y1=0.9999; y2=0.0001;
+Tc=y1*Tc1+y2*Tc2;
+z=0.957;
+hR=R_1*(T/M)*(((-3/2)*(A2_1/B_1)*log (1+(B_1*p/z)))+z-1);
+hV=y1*(hc1+Cpo1)+y2*(hc2+Cpo2)+hR;
+disp ("kJ/kg",hV,"(b).Enthalpy of saturated vapour at V in Equilibrium with liquid at L/B");
+// (c).Enthalpy of saturated vapour at D after complete vaporization of liquid at B/L
+T=359.15; // In K
+Cpo1=192.2; Cpo2=160.9; // In kJ/kg
+A2_1=(0.4278/(pc1*10^3))*(Tc1/T)^2.5; // Constants
+B_1=(0.0867/(pc1*10^3))*(Tc1/T); // Constants
+A2_2=(0.4278/(pc2*10^3))*(Tc2/T)^2.5; // Constants
+B_2=(0.0867/(pc2*10^3))*(Tc2/T); // Constants
+y1=0.9; y2=0.1;
+Tc=y1*Tc1+y2*Tc2;
+z=0.9768;
+hR=R_1*(T/M)*(((-3/2)*(A2_1/B_1)*log (1+(B_1*p/z)))+z-1);
+hD=y1*(hc1+Cpo1)+y2*(hc2+Cpo2)+hR;
+disp ("kJ/kg",hD,"(c).Enthalpy of saturated vapour at D after complete vaporization of liquid at B/L");
+// (d).Latent Heat of Vapourization of this Liquid Mixture
+hB=-0.2;
+hD_hB=hD-hB; //Latent Heat of Vapourization of this Liquid Mixture
+disp ("kJ/kg mixture",hD_hB,"(d). Latent Heat of Vapourization of this Liquid Mixture = ");
diff --git a/2006/CH14/EX14.1/ex14_1.sce b/2006/CH14/EX14.1/ex14_1.sce new file mode 100755 index 000000000..7b8d0554e --- /dev/null +++ b/2006/CH14/EX14.1/ex14_1.sce @@ -0,0 +1,6 @@ +clc;
+// From the Table 14.1
+del_hfHCL=92307; // Enthalpy of Heat in kJ/kmol
+del_hfH2O=-241818; // Enthalpy of Heat kJ/kmol
+del_Ho=4*del_hfHCL-2*del_hfH2O; // The standard heat of reaction from enthalpy equation
+disp ("kJ (answer mentioned in the textbook is wrong)",del_Ho,"The standard heat of reaction for the process = ");
diff --git a/2006/CH14/EX14.10/ex14_10.sce b/2006/CH14/EX14.10/ex14_10.sce new file mode 100755 index 000000000..796916a22 --- /dev/null +++ b/2006/CH14/EX14.10/ex14_10.sce @@ -0,0 +1,29 @@ +clc;
+// (a).The product CO2 is also at 298K
+Pco=2/3; // Paratial pressure of CO in atm
+Po2=1/3; // Paratial pressure of O2 in atm
+Pco2=1; // Paratial pressure of CO2 in atm
+T0=298; // Temperature of surroundings in kelvin
+R_1=8.3143; // Universal gas constant of air in kJ/kmol K
+// From table 14.1 at 298 K and 1 atm
+s_co2=213.795-R_1*log (Pco2); // entropies in kJ/kmol K
+s_co=197.653-R_1*log (Pco); // entropies in kJ/kmol K
+s_o2=205.03-R_1*log (Po2); // entropies in kJ/kmol K
+del_Scv=s_co2-s_co-1/2*s_o2; // Entropy change of comtrol volume
+// From table 14.1
+del_hfco2=-393509; del_hfco=-110525; // Enthalpy of Heat in kJ/kmol
+Q= del_hfco2- del_hfco; // Heat transfer (to surroundings)
+del_Ssurr=abs(Q)/T0; // Entropy change of surroundings
+del_Sgen=del_Scv+del_Ssurr; //Entropy change of universe
+disp ("kJ/K",del_Sgen,"Entropy change of universe = ","kJ/K",del_Ssurr,"Entropy change of surroundings = ","kJ/K",del_Scv,"Entropy change of comtrol volume = ","(a).The product CO2 is also at 298K");
+// (b).The reaction is adiabatic
+// Let the adiabatic flame temperature be T. Then since
+Q=0;
+C_p=44*0.8414;
+// From table A.16
+T=5057.5; //adiabatic flame temperature in kelvin
+s_CO2=213.795+C_p*log (T/T0); // entropies in kJ/kmol K
+del_Scv=s_CO2-s_co-1/2*s_o2; // Entropy change of comtrol volume
+del_Ssurr=abs(Q)/T0; // Entropy change of surroundings
+del_Sgen=del_Scv+del_Ssurr; //Entropy change of universe
+disp ("kJ/K",del_Sgen,"Entropy change of universe = ","kJ/K",del_Ssurr,"Entropy change of surroundings = ","kJ/K",del_Scv,"Entropy change of comtrol volume = ","(b).The reaction is adiabatic");
diff --git a/2006/CH14/EX14.11/ex14_11.sce b/2006/CH14/EX14.11/ex14_11.sce new file mode 100755 index 000000000..00c9585b3 --- /dev/null +++ b/2006/CH14/EX14.11/ex14_11.sce @@ -0,0 +1,11 @@ +clc;
+// The Combustion of H2 with Q2 from H2O
+//H2(g)+1/2 O2 (g)→H2O(l)+285830 kJ/kmol H2
+T0=298; // Temperature of surroundings in kelvin
+// From table 14.1 at 298 K
+del_hfH2O=-285830; // Enthalpy of Heat in kJ/kmol
+s_298H2O=69.94; s_298H2=130.684; s_298O2=205.142; // entropies in kJ/kmol K
+GP_GR=del_hfH2O-T0*(s_298H2O-s_298H2-1/2*s_298O2); // Formation of Gibbs function
+GR=0;
+GP=GP_GR-GR; // Standard Gibbs function of formation of liquid H2O
+disp ("kJ/kmol",GP,"Standard Gibbs function of formation of liquid H2O = ");
diff --git a/2006/CH14/EX14.12/ex14_12.sce b/2006/CH14/EX14.12/ex14_12.sce new file mode 100755 index 000000000..bec785529 --- /dev/null +++ b/2006/CH14/EX14.12/ex14_12.sce @@ -0,0 +1,22 @@ +clc;
+// the combustion equation
+// n1C3H8+n2O2+n3 N2 → n4 CO2+ n5 H2O+n6 O2+n7 N2
+T0=298; // Temperature of surroundings in kelvin
+// (a).Product species at 25 oC and 1 atm
+d_gfC3H8=-24290; d_gfCO2=-394359; d_gfH2O=-228570; // in kJ/kmol
+GR=d_gfC3H8;
+GP=3*d_gfCO2+4*d_gfH2O;
+Wmax=GR-GP; // Maximum possible work output
+M=44;//Molecular weight
+Wmax=Wmax/M;
+disp ("kJ/kg fuel (answer mentioned in the textbook is wrong)",Wmax,"Maximum possible work output = ","(a).");
+// (b).The actual partial pressures of products
+n1=1; n2=20; n3=75.2;
+n4=3; n5=4; n6=15; n7=75.2; // refer equation
+SR=19233; SP=19147; // in kJ/K from table
+HR=-104680; // in kJ/kmol fuel
+d_h0fCO2=-393509; d_h0fH2O=-241818; // in kJ/kmol
+HP=3*d_h0fCO2+4*d_h0fH2O;
+Wmax=HR-HP-T0*(SR-SP); // Maximum possible work output
+Wmax=Wmax/M;
+disp ("kJ/kg (round off error)",Wmax,"Maximum possible work output = ","(b).");
diff --git a/2006/CH14/EX14.2/ex14_2.sce b/2006/CH14/EX14.2/ex14_2.sce new file mode 100755 index 000000000..7dbf1df8a --- /dev/null +++ b/2006/CH14/EX14.2/ex14_2.sce @@ -0,0 +1,6 @@ +clc;
+del_Ho=5640000; // Heat released during the process
+// From the Table 14.1
+del_hfO2=-393509; del_hfH2O=-285830; // Enthalpy of Heat in kJ/kmol
+del_hfsucrose=12*del_hfO2+11*del_hfH2O+del_Ho; // The enthalpy formation of sucrose
+disp ("kJ/kmol (answer mentioned in the textbook is wrong)",del_hfsucrose,"The enthalpy formation of sucrose = ");
diff --git a/2006/CH14/EX14.3/ex14_3.sce b/2006/CH14/EX14.3/ex14_3.sce new file mode 100755 index 000000000..162819364 --- /dev/null +++ b/2006/CH14/EX14.3/ex14_3.sce @@ -0,0 +1,16 @@ +clc;
+// (a).Balancing of chemical equation
+// The unbalanced equation for the process is C8H18 + O2 + N2 → CO2 + H2O + N2
+x=8; // Carbon balance
+y=9; // Hydrogen balance
+z=12.5; // Oxygen balance in reverse order
+n=z*3.76; // Nitrogen Balance
+disp ("(a).Balancing of chemical equation");
+printf ("\n C8H18 + %0.1f O2 + %d N2 → %d CO2 + %d H2O + %d N2 \n ",z,n,x,y,n);
+// (b).The theoretical air-fuel ratio
+a=1; // Mole of C8H18
+AF1=(z+n)/a; //The theoretical air-fuel ratio on mole basis
+ma=28.84; // Molecular mass of air
+mc=114; // Molecular mass of C8H18
+AF2=(AF1*ma)/(a*mc); // The theoretical air-fuel ratio on mass basis
+disp ("kg air / kmol C8H18",AF2,"The theoretical air-fuel ratio on mass basis = ","kmol air / kmol C8H18",AF1,"The theoretical air-fuel ratio on mole basis = ","(b).The theoretical air-fuel ratio");
diff --git a/2006/CH14/EX14.4/ex14_4.sce b/2006/CH14/EX14.4/ex14_4.sce new file mode 100755 index 000000000..59fbbf9dc --- /dev/null +++ b/2006/CH14/EX14.4/ex14_4.sce @@ -0,0 +1,8 @@ +clc;
+// The combustion equation for C4H10 with 80% theoretical air is C4H10 +5.2(O2 + 3.76 N2) → a(1)CO + a(2)CO2 + 5H2O + 19.55N2
+// The following matrix shows the balance of C and O
+A=[1 1 ; 1 2];
+B=[4 ;5.4];
+a=A\B;
+disp ("The equation for the combustion of butane with 80% theoretical air is ")
+printf ("\n C4H10 +5.2(O2 + 3.76 N2) → %0.1f CO + %0.1f CO2 + 5H2O + 19.55N2",a(1),a(2));
diff --git a/2006/CH14/EX14.5/ex14_5.sce b/2006/CH14/EX14.5/ex14_5.sce new file mode 100755 index 000000000..aa64da71f --- /dev/null +++ b/2006/CH14/EX14.5/ex14_5.sce @@ -0,0 +1,16 @@ +clc;
+p=101.325; // Atmospheric pressure in kPa
+// The complete combustion equation for actane
+ // yC8H18+ x (O2+3.76N2) → n1 CO2+n2 H2O+n3 O2+n3 N2
+x=12.5*1.5; y=1;
+n1=8; n2=9; n3=6.28; n4=70.5;
+n=n1+n2+n3+n4; // Total number of moles of the products
+AFm=(x+x*3.76)/y ;// Air fuel ratio
+m=28.84;
+M=116; // Molecular weight of octane
+AF=AFm*m/M;
+yco2=n1/n; yH2O=n2/n; yO2=n3/n; yN2=n4/n;
+pH2O=p*yH2O; // Partial pressure of water vapour in the products
+Tsat=45.21; // In oC
+disp ("kg air/kg octane",AF,"Air fuel ratio = ");
+disp ("If the products are cooled below 25 oC then, the water vapour will condense. Because the cooled temperature is less than dew point temperature of water vapour i.e., T < Tsat.");
diff --git a/2006/CH14/EX14.6/ex14_6.sce b/2006/CH14/EX14.6/ex14_6.sce new file mode 100755 index 000000000..ec8d04571 --- /dev/null +++ b/2006/CH14/EX14.6/ex14_6.sce @@ -0,0 +1,23 @@ +clc;
+// The complete chemical equation is //[0.14H2+0.03CH4+0.27CO+0.045CO2+0.01O2+0.505N2]+0.255(O2+3.75N2) →0.2H2O+0.345CO2+1.44N2
+a=0.14; // Composition of H2 in air
+b=0.03; // Composition of CH4 in air
+c=0.27; // Composition of CO in air
+d=0.045; // Composition of CO2 in air
+e=0.01; // Composition of O2 in air
+f=0.505; // Composition of N2 in air
+g=(0.265-0.01); // O2 requirement from atmospheric air with 1% O2 already in fuel
+h=3.76; // By nitrogen balance
+i=1; // mole of the air
+AFvol=(g+(g*h))/i; // Air fuel ratio (theroretical)
+AFv=1.1*AFvol; // Air fuel ratio on mol (volume) basis
+disp ("kmol actual air/kmol fuel",AFv,"Air fuel ratio on mol (volume) basis =")
+M1=2; // Molecular mass of H2
+M2=16; // Molecular mass of CH4
+M3=28; // Molecular mass of CO
+M4=44; // Molecular mass of CO2
+M5=32; // Molecular mass of O2
+M=a*M1+b*M2+c*M3+d*M4+e*M5+f*M3; // Molecular mass of Fuel
+Ma=28.84; // Molecular mass of air
+AFm=AFv*Ma/(i*M); // Air fuel ratio on mass basis
+disp ("kg air / kg fuel",AFm,"Air fuel ratio on mass basis = ");
diff --git a/2006/CH14/EX14.7/ex14_7.sce b/2006/CH14/EX14.7/ex14_7.sce new file mode 100755 index 000000000..85812cd57 --- /dev/null +++ b/2006/CH14/EX14.7/ex14_7.sce @@ -0,0 +1,16 @@ +clc;
+//From table 14.2 at 25 oC and 1 atm for C8H8
+del_Ho=-2039.7; // LHV in MJ/kmol
+// Combustion equation is C3H8+ 5O2 +18.8N2 → 3CO2 +4H2O +18.8N2
+// From table 14.3
+h333_C3H8=2751; // h333_h298 of C3H8 in kJ/kmol
+h333_O2=147; // h333_h298 of O2 in kJ/kmol
+h333_N2=145; // h333_h298 of N2 in kJ/kmol
+h1333_CO2=52075; // h1333_h298 of CO2 in kJ/kmol
+h1333_H2O=32644; // h1333_h298 of H2O in kJ/kmol
+h1333_N2=32644; // h1333_h298 of N2 in kJ/kmol
+M=44; // molecular mass of C3H8
+Ha_H1=h333_C3H8+5*h333_C3H8+18.8*h333_N2; // The enthalpy differences
+Hb_H2=3*h1333_CO2+4*h1333_H2O+18.8*h1333_N2; // The enthalpy differences
+Q=(del_Ho+Hb_H2/1000-Ha_H1/1000)/M; // Heat transfer from combustion chamber
+disp ("MJ/kg C3H8",abs (Q),"Heat transfer from combustion chamber =");
diff --git a/2006/CH14/EX14.8/ex14_8.sce b/2006/CH14/EX14.8/ex14_8.sce new file mode 100755 index 000000000..33622f7c9 --- /dev/null +++ b/2006/CH14/EX14.8/ex14_8.sce @@ -0,0 +1,7 @@ +clc;
+Ha_H1=6220; // From example 14.7 in kJ/kmol
+del_Ho=-2039.7; // From example 14.7 LHV in MJ/kmol
+Hb_H2=-del_Ho+Ha_H1; // For adiabatic combustion of C3H8
+// Hb_H2=3*h1333_CO2+4*h1333_H2O+18.8*h1333_N2 By iteration process and making use of the values from Table A.3, A.13, A.15 we can get the adiabatic flame temperature is
+Tad=2300;// The adiabatic flame temperature in kelvin
+disp ("K",Tad,"The adiabatic flame temperature");
diff --git a/2006/CH14/EX14.9/ex14_9.sce b/2006/CH14/EX14.9/ex14_9.sce new file mode 100755 index 000000000..5da736239 --- /dev/null +++ b/2006/CH14/EX14.9/ex14_9.sce @@ -0,0 +1,16 @@ +clc;
+// (a).Entropy change per kmol of C
+// From table 14.1 at 298 K and 1 atm
+s_c=5.686; // Absolute entropies of C in kJ/kmol K
+s_o2=205.142; // Absolute entropies of o2 in kJ/kmol K
+s_co2=213.795; // Absolute entropies of CO2 in kJ/kmol K
+del_s=s_co2-(s_c+s_o2); // The entropy change
+disp ("kJ/K/kmol C",del_s,"(a).The entropy change = ");
+// (b).Entropy change of universe
+Tsurr=298; // Temperature of surroundings in kelvin
+// From table 14.1
+del_Ho=-393509; // del_hfco2 in kJ/kmol CO2
+Q=abs (del_Ho);
+del_Ssurr=Q/Tsurr; // Entropy change of surroundings
+del_Suniv=del_s+del_Ssurr; //Entropy change of universe
+disp ("kJ/K",del_Suniv,"(b).Entropy change of universe = ");
diff --git a/2006/CH15/EX15.1/ex15_1.sce b/2006/CH15/EX15.1/ex15_1.sce new file mode 100755 index 000000000..23fcb39da --- /dev/null +++ b/2006/CH15/EX15.1/ex15_1.sce @@ -0,0 +1,8 @@ +clc;
+// (b).Number of moles of each constituents
+nCH4=2; // Number of moles of CH4
+E=3-nCH4; // Amount of reaction from (a) and refer example 15.1 (a)
+nH2O=1-E;// Number of moles of H2O
+nCO=1+E;// Number of moles of CO
+nH2=4+3*E;// Number of moles of H2
+disp (nH2,"Number of moles of H2 = ",nCO,"Number of moles of CO = ",nH2O,"Number of moles of H2O = ","(b).Number of moles of each constituents");
diff --git a/2006/CH15/EX15.2/ex15_2.sce b/2006/CH15/EX15.2/ex15_2.sce new file mode 100755 index 000000000..37ba9ac04 --- /dev/null +++ b/2006/CH15/EX15.2/ex15_2.sce @@ -0,0 +1,19 @@ +clc;
+T0=298; // Given temperature in kelvin
+R_1=8.314; // Universal gas constant in kJ/kg mol K
+// (a).CO+1/2 O2 = CO2
+// From table of properties of combustion
+del_hfco2=-393509;// Enthalpy of heat
+del_hfco=-110525;// Enthalpy of heat
+s_co2=213.795;// Entropy of heat
+s_co=197.652;// Entropy of heat
+s_o2=205.142;// Entropy of heat
+del_Ga=(del_hfco2-del_hfco-T0*(s_co2-s_co-(1/2*s_o2)));
+Ka=exp (abs (del_Ga)/(R_1*1000*T0));
+disp ("(a).CO+1/2 O2 = CO2");
+printf ("\n The equilibrium constant at 298 K = %0.3f (Error in textbook) \n",Ka);
+// (b).2CO + O2 = 2CO2
+Kb=exp (2*abs (del_Ga)/(R_1*1000*T0));
+disp ("(b).2CO + O2 = 2CO2");
+printf ("\nThe equilibrium constant at 298 K = %0.3f (Error in textbook)",Kb);
+
diff --git a/2006/CH15/EX15.3/ex15_3.sce b/2006/CH15/EX15.3/ex15_3.sce new file mode 100755 index 000000000..018a610c3 --- /dev/null +++ b/2006/CH15/EX15.3/ex15_3.sce @@ -0,0 +1,12 @@ +clc;
+T0=298; // Temperature of surroundings in kelvin
+R_1=8.314; // Universal gas constant in kJ/kg mol K
+T=2800; // Given Temperature in kelvin
+// From table of properties of combustion
+del_hfco2=-393509; // Enthalpy of heat
+del_hfco=-110525; // Enthalpy of heat
+del_H=del_hfco2-del_hfco; // Standard enthalpy of reaction
+Ka=1.229D+45; // The equilibrium constant From the example 15.2
+K1=log (Ka);
+K=exp(-(del_H/R_1)*((1/T)-(1/T0))+K1);
+disp (K,"K =");
diff --git a/2006/CH15/EX15.5/ex15_5.sce b/2006/CH15/EX15.5/ex15_5.sce new file mode 100755 index 000000000..8fde15c6a --- /dev/null +++ b/2006/CH15/EX15.5/ex15_5.sce @@ -0,0 +1,11 @@ +clc;
+T=2800; // Temperature of combustion in kelvin
+p=1; // Pressure of combustion in atm
+// For this reverse reaction at 2800K and 1atm, from Table 15.1
+K=44.168; // K=e^3.788;
+K=sqrt (K); // For stoichiometric equation CO+1/2 O2 = CO2 which is halved
+// From equation 15.24a and by the iteration process we get the following
+a=0.198;
+b=(1+a)/2;
+c=1-a;
+disp (c,b,a,"The balance for the actual reaction equation CO + O2 → aCO + bO2 + cCO2 is given by ");
diff --git a/2006/CH15/EX15.6/ex15_6.sce b/2006/CH15/EX15.6/ex15_6.sce new file mode 100755 index 000000000..36addeae8 --- /dev/null +++ b/2006/CH15/EX15.6/ex15_6.sce @@ -0,0 +1,7 @@ +clc;
+// By driving the equation for equilibrium constant as shown in example 15.6 we get 6.646(6)^(1/6)=((1-a)/a)((3+a)/(1+a))^1/2
+// by simple iteration process we get
+a=0.095;
+b=(1+a)/2;
+c=1-a;
+disp ("mol",c,"The equilibrium composition of CO2 = ","mol",b,"The equilibrium composition of O2 = ","mol",a,"The equilibrium composition of CO = ");
diff --git a/2006/CH15/EX15.7/ex15_7.sce b/2006/CH15/EX15.7/ex15_7.sce new file mode 100755 index 000000000..aba8add17 --- /dev/null +++ b/2006/CH15/EX15.7/ex15_7.sce @@ -0,0 +1,11 @@ +clc;
+T=2800; // Temperature of combustion in kelvin
+p=1; // Pressure of combustion in atm
+// For this reverse reaction at 2800K and 1atm, from Table 15.1
+K=44.168; // K=e^3.788;
+K=sqrt (K); // For stoichiometric equation CO+1/2 O2 = CO2 which is halved
+// From equation 15.24a and by the iteration process we get the following
+a=0.302;
+b=(1+a)/2;
+c=1-a;
+disp (c,b,a,"The balance for the actual reaction equation CO + 1/2O2 + 1.88N2 ↔ aCO + bO2 + cCO2 +3.76N2 is given by ");
diff --git a/2006/CH15/EX15.8/ex15_8.sce b/2006/CH15/EX15.8/ex15_8.sce new file mode 100755 index 000000000..04bd9651f --- /dev/null +++ b/2006/CH15/EX15.8/ex15_8.sce @@ -0,0 +1,18 @@ +clc;
+T=3000; // Temperature of combustion in kelvin
+p=1; // Pressure of combustion in atm
+T0=298; // Temperature of surroundings in kelvin
+R_1=8.314; // Universal gas constant in kJ/kg mol K
+// Gibbs functions at 298K from Table 14.1
+del_gNO=86550; // In kJ/kmol
+del_gNO2=51310; // In kJ/kmol
+// From table of properties of combustion
+del_hfNO=90250; // Enthalpy of heat
+del_hfNO2=33180; // Enthalpy of heat
+K1=exp (-(del_hfNO/R_1)*((1/T)-(1/T0))-((del_gNO)/(R_1*T0)));
+K2=exp (-(del_hfNO2/R_1)*((1/T)-(1/T0))-((del_gNO2)/(R_1*T0)));
+// By solving equilibrium equations by iteration method
+E1=0.228; E2=0.0007;
+yNO=E1/4.76; // Mole fraction of NO in exhaust gas
+yNO2=E2/4.76; // Mole fraction of NO2 in exhaust gas
+disp ("%",yNO2*100,"Mole fraction of NO2 in exhaust gas = ","%",yNO*100,"Mole fraction of NO in exhaust gas = ","Percentage of NOx present in the exhaust gas ");
diff --git a/2006/CH2/EX2.1/ex2_1.sce b/2006/CH2/EX2.1/ex2_1.sce new file mode 100755 index 000000000..a7a947942 --- /dev/null +++ b/2006/CH2/EX2.1/ex2_1.sce @@ -0,0 +1,12 @@ +clc;
+patm = 14.5 ; // atmospheric pressure in psia
+pgauge = 2.5; // gauge pressure in psia
+A = 10; // Area of the piston in in^2
+g=9.80665; // Acceleration due to gravity in m/s^2
+p = patm + pgauge; //total pressure of gas
+m=(p-patm)*A ; //mass of the piston
+disp("lbm",m,"Mass of the piston =","In English units");
+p=(p*0.454*g)/(0.0254^2); // conversion of English unit to SI units
+patm=(patm*0.454*g)/(0.0254^2); // conversion of English unit to SI units
+m = ((p-patm)*(A*2.54^2*10^-4))/g; // Mass of the piston
+disp("kg",m,"Mass of the piston =","In SI units");
diff --git a/2006/CH2/EX2.2/ex2_2.sce b/2006/CH2/EX2.2/ex2_2.sce new file mode 100755 index 000000000..81f4fdedb --- /dev/null +++ b/2006/CH2/EX2.2/ex2_2.sce @@ -0,0 +1,11 @@ +clc;
+d_r = 13600; // Density of manometric fluid (mercury) in kg/m^3
+g = 8.92; // Gravitational acceleration in m/s^2
+z1=0.589*sind(60); // vertical height of fluid at section 1
+z2=2*sind(30); // vertical height of fluid at section 2
+z=z2-z1; // Difference in vertical heights of fluid
+patm = 14.7; // Atmospheric pressure in lbf/in^2
+patm=(patm*4.44822*144/0.3048^2); // conversion of lbf/in^2 unit to N/m^2 unit
+p=patm + (d_r*g*(z2-z1)); // Balance of force at A
+disp ("m",z,"Difference in vertical heights of fluid");
+disp ("kPa",p/1000,"The pressure of fluid in the vessel");
diff --git a/2006/CH3/EX3.1/ex3_1.sce b/2006/CH3/EX3.1/ex3_1.sce new file mode 100755 index 000000000..d13b237f7 --- /dev/null +++ b/2006/CH3/EX3.1/ex3_1.sce @@ -0,0 +1,22 @@ +clc;
+V=0.01; // Volume of water in a rigid vessel in m^3
+m=4.5; // Mass of water+ steam in a rigid vessel in kg
+T=35; // Temperature of water in a rigid vessel in degree celcius
+// (a)
+v=V/m; // specific volume of water
+// From steam table
+vf=0.001006; vg=25.22; // specific volume in m^3/kg
+x=(v-vf)/(vg-vf); // Quality of steam
+x1=1-x; // Quality of water
+mg=x*m; // Mass of steam
+mf=x1*m; // Mass of water
+disp ("kg",mf,"Mass of water in a rigid vessel = ","kg",mg,"Mass of steam in a rigid vessel = ",x1,"Quality of water in a rigid vessel = ",x,"Quality of steam in a rigid vessel = "," (a) ");
+// (b)
+vc=0.003155; // Crictical volume for water in m^3/kg
+disp ("The level of liquid water will rise in the vessel. Since v < vc and refer figure 3.21"," (b) ");
+// (c)
+disp ("The final temperature after heating is 370.04 oC. Because it is constant volume process and refer figure 3.21"," (c) ");
+// (d)
+m1=0.45; // Mass of water in kg
+v1=V/m; // specific volume of water
+disp ("Level of liquid drops to bottom (v1 > vc). Temperature on reaching saturation state is 298.5 oC and refer figure 3.21", " (d) ");
diff --git a/2006/CH3/EX3.2/ex3_2.sce b/2006/CH3/EX3.2/ex3_2.sce new file mode 100755 index 000000000..d33501fba --- /dev/null +++ b/2006/CH3/EX3.2/ex3_2.sce @@ -0,0 +1,26 @@ +clc;
+ // (a) Ammonia 26 oC and 0.074 m^3/kg
+// From saturation table of ammonia at 26 oC
+v=0.074; // specific volume of ammonia in m^3/kg
+vf=0.001663; vg=0.1245; // specific volume of ammonia in m^3/kg
+x=(v-vf)/(vg-vf); // Quality of vapour since v<vg
+disp (x,"The Quality of ammonia = ","(a) Ammonia 26 oC and 0.074 m^3/kg");
+// (b).Ammonia 550kPa and 0.31m^3/kg
+// From saturation table of ammonia at 550 kPa
+v=0.31; // specific volume of ammonia in m^3/kg
+vg=0.23; // specific volume of ammonia in m^3/kg
+// v > vg . Since from superheated table by interpolation for 550kPa and v
+T=82.1; // Temperature of ammonia in degree celcius
+disp ("oC",T,"Temperature of ammonia = ","(b).Ammonia 550kPa and 0.31m^3/kg");
+// (c).Freon 12, 0.35MPa and 0.036 m^3/kg
+// From saturation table of Freon 12 at 0.35MPa
+v=0.036; // specific volume of Freon 12 in m^3/kg
+vf=0.000722; vg=0.049329; // specific volume of Freon 12 in m^3/kg
+x=(v-vf)/(vg-vf); // Quality of vapour since v<vg
+disp (x,"The Quality of Freon 12 = ","(c).Freon 12, 0.35MPa and 0.036 m^3/kg");
+// (d).Methane 0.5MPa and 1.0 m^3/kmol
+v=1; // specific volume of Methane in m^3/kmol
+// From table at 0.5 MPa molar values are
+vf=0.04153; vg=2.007; // specific volume of Methane in m^3/kmol
+x=(v-vf)/(vg-vf); // Quality of vapour since v<vg
+disp (x,"The Quality of Methane = ","(d).Methane 0.5MPa and 1.0 m^3/kmol");
diff --git a/2006/CH3/EX3.3/ex3_3.sce b/2006/CH3/EX3.3/ex3_3.sce new file mode 100755 index 000000000..39c305578 --- /dev/null +++ b/2006/CH3/EX3.3/ex3_3.sce @@ -0,0 +1,7 @@ +clc;
+V=300; // Volume of air in the room in m^3
+p=1; // Atmospheric pressure in bar
+T=25; // Temperature of air in Degree Celcius
+R=287; // Characteristic constant of Air in J/kg k
+m=(p*10^5*V)/(R*(T+273)); // Ideal gas equation
+disp ("kg",m,"Mass of air in room");
diff --git a/2006/CH3/EX3.4/ex3_4.sce b/2006/CH3/EX3.4/ex3_4.sce new file mode 100755 index 000000000..aa9e3e181 --- /dev/null +++ b/2006/CH3/EX3.4/ex3_4.sce @@ -0,0 +1,10 @@ +clc;
+D=20; // Diameter of the sphere in cm
+m=2.54; // Mass of gas filled in sphere in gram
+p=10; // Pressure of gas in bar
+T=25; // Temperature of gas in Degree Celcius
+R=8.3144*10^3; // Universal gas constant in J/kmol K
+V=(3.14*(D*10^-2)^3)/16; // Volume of das in sphere in m^3
+M=(m*10^-3*R*(T+273))/(p*10^5*V); // Molecular weight of the gas
+disp (M,"Molecular weight of the gas");
+disp ("Therefore gas in sphere is Helium (unless mixture of two or more gases)");
diff --git a/2006/CH3/EX3.5/ex3_5.sce b/2006/CH3/EX3.5/ex3_5.sce new file mode 100755 index 000000000..199a4afb1 --- /dev/null +++ b/2006/CH3/EX3.5/ex3_5.sce @@ -0,0 +1,12 @@ +clc;
+p2=2.5; // Pressure of air in the cylinder in bar
+T1=430; // Temperature of air in cylinder in Degree Celcius
+V1=1.2; // Volume of cylinder in m^3
+V2=0.6; // Volume of cylinder upto end stops in m^3
+// (a) Temperature of air when the piston reaches the stops
+T2=(T1+273)*(V2/V1); // constant pressure process
+disp ("K",T2,"Temperature of air when the piston reaches the stops");
+// (b) The pressure of air when its temperature equals to 25 oC
+T3=25; //Room temperature in Degree Celcius
+p3=p2*((T3+273)/T2); // constant volume process
+disp ("bar",p3,"The pressure of air when its temperature equals to 25 oC");
diff --git a/2006/CH3/EX3.7/ex3_7.sce b/2006/CH3/EX3.7/ex3_7.sce new file mode 100755 index 000000000..e385cc9f8 --- /dev/null +++ b/2006/CH3/EX3.7/ex3_7.sce @@ -0,0 +1,33 @@ +clc;
+p=6000; // Pressure of nitrogen gas in kPa
+T=150; // Temperature of nitrogen gas in kelvin
+V=250; // Volume of tank in litres
+R_1=8.3143; // Universal gas constant in kJ/kmol K
+M=28.1013; // Molecular mass
+// (a).Beattie - Bridgeman equation of state
+// Constants for nitrogen gas
+c=4.2*10^4; Ao=136.2315; a=0.02617; Bo=0.05046; b=-0.00691;
+// By substituting these values in the following equation
+// p=(R_1*T/v^2)*(1-(c/(vT^3)))*(v+Bo*(1-(b/v)))-(Ao/v^2*(1-(a/v)))
+// By trial and error we get
+v=0.1222; // specific volume in m^3/kmol
+m=(M*V/1000)/v; // Mass of nitrogen gas
+disp ("m^3/kmol",v,"specific volume of nitrogen gas = ","kg",m,"Mass of nitrogen gas = ","(a).Beattie - Bridgeman equation of state");
+// (b).Nitrogen tables
+// From property table of nitrogen fas
+v=0.004413; // specific volume in m^3/kg
+m=(V/1000)/v; // Mass of nitrogen gas
+disp ("m^3/kg",v,"specific volume of nitrogen gas = ","kg",m,"Mass of nitrogen gas = ","(b).Nitrogen tables");
+// (c).Ideal gas equation of state
+m=(p*V/1000)/(R_1*T/M); //Mass of nitrogen gas
+disp ("kg",m,"Mass of nitrogen gas = ","(c).Ideal gas equation of state");
+// (d).Generalized compressibility chart
+// The crictical properties for nitrogen gas
+Tc=126.2; // Temperature in kelvin
+Pc=3.349; // Pressure in MPa
+// Reduced properties are
+Pr=p/Pc; Tr=T/Tc;
+z=0.6; // From chart
+m=(p*V/1000)/(z*R_1*T/M); //Mass of nitrogen gas
+disp ("kg",m,"Mass of nitrogen gas = ","(d).Generalized compressibility chart");
+disp ("Ideal gas equation of state","Generalized compressibility chart","Beattie - Bridgeman equation of state","Nitrogen tables"," (e).Arrangement the methods in order of percentage error : ");
diff --git a/2006/CH3/EX3.8/ex3_8.sce b/2006/CH3/EX3.8/ex3_8.sce new file mode 100755 index 000000000..34e2fff9f --- /dev/null +++ b/2006/CH3/EX3.8/ex3_8.sce @@ -0,0 +1,15 @@ +clc;
+T=-58.7; //Normal boling point of CF3Br in Degree Celcius
+Tc=340.9; // Crictical temperature of CF3Br in K
+pc=4.05; // Crictical pressure of CF3Br in MPa
+M=148.9; // Moleclar mass of CF3Br
+p=1.01325*10^5; // Atmospheric pressure in N/m^2
+R1=8314.4; // Universal gas constant in J/kmol K
+R=R1/M; // Gas constant of CF3Br
+a=(0.42748*R^2*Tc^2.5)/(pc*10^6); // Constant of Redlich-Kwong equation of state
+b=(0.08664*R*Tc)/(pc*10^6); // Constant of Redlich-Kwong equation of state
+vi=(R*(T+273))/p; // Ideal gas volume for assigning initial value
+// By substituting these values in the Redlich-Kwong equation of state
+ // vi_1=(R*(T+273)/p)+b-((a/(p*(273+T)^0.5*vi))) and and solving it by trial and error method we get
+vi_1=0.11443; // in m^3/kg
+disp ("m^3/kg",vi_1,"Saturated vapour volume");
diff --git a/2006/CH4/EX4.1/ex4_1.sce b/2006/CH4/EX4.1/ex4_1.sce new file mode 100755 index 000000000..d70c2e75f --- /dev/null +++ b/2006/CH4/EX4.1/ex4_1.sce @@ -0,0 +1,16 @@ +clc;
+p1=5; // Pressure of Helium gas at initial state in bar
+T1=222; // Temperature of Helium gas at initial state in K
+V1=0.055; // Volume of Helium gas at initial state in m^3
+n=1.5; // Index of expansion process
+R=2.078;// Characteristic gas constant of Helium gas in kJ/kg K
+p2=2; // Pressure of Helium gas at final state (after expansion) in bar
+disp ("Method I");
+V2=V1*(p1/p2)^(1/n);// From Polytropic process relation for final volume
+W=((p2*10^2*V2)-(p1*10^2*V1))/(n-1); // Work done from Polytropic process relation
+disp ("kJ",W,"Work done =");
+disp ("Method II");
+m=(p1*10^2*V1)/(R*T1); // ideal gas equation
+T2=T1*(p2/p1)^((n-1)/n); // From Polytropic process relation of final temperature
+W=(m*R*(T1-T2))/(1-n); // Work done from Polytropic process relation
+disp ("kJ",W,"Work done =");
diff --git a/2006/CH4/EX4.10/ex4_10.sce b/2006/CH4/EX4.10/ex4_10.sce new file mode 100755 index 000000000..59b9f9e41 --- /dev/null +++ b/2006/CH4/EX4.10/ex4_10.sce @@ -0,0 +1,21 @@ +clc;
+Tc1=10; // Feed water inlet temperature in degree celcius
+Tc2=77; // Feed water outlet temperature in degree celcius
+th1=166; // Initial temperature of flue gas in degree celcius
+r=4; // Ratio of mass flow rates of flue gases and water
+Ch=1.05; // The specific heat of flue gas in kJ/kg K
+Cc=4.187; // The specific heat of feed water in kJ/kg K
+U=114; // Overall heat transfer coefficient in W/m^2
+mc=1; // massflowrate of feed water in kg/s
+th2=th1-((Cc*(Tc2-Tc1))/(r*Ch)); // Outlet temperature of flue gas in degree celcius
+Q=mc/3600*Cc*(Tc2-Tc1); // Heat transfer rate per kg/h of water flow
+// Parallel flow
+del_Tm=((th1-Tc1)-(th2-Tc2))/log ((th1-Tc1)/(th2-Tc2)); // Logarthamic Mean Temperature Difference in degree celcius
+A=Q*10^3/(U*del_Tm); // Economiser surface area
+disp ("degree celcius",del_Tm,"Logarthamic Mean Temperature Difference="," (a)Parallel flow");
+disp ("m^2",A,"Economiser surface area =");
+// Counter flow
+del_Tm=((th1-Tc2)-(th2-Tc1))/log ((th1-Tc2)/(th2-Tc1)); // Logarthamic Mean Temperature Difference in degree celcius
+A=Q*10^3/(U*del_Tm); // Economiser surface area
+disp ("degree celcius",del_Tm,"Logarthamic Mean Temperature Difference="," (b) Counter flow");
+disp ("m^2",A,"Economiser surface area =");
diff --git a/2006/CH4/EX4.3/ex4_3.sce b/2006/CH4/EX4.3/ex4_3.sce new file mode 100755 index 000000000..745e1b8e3 --- /dev/null +++ b/2006/CH4/EX4.3/ex4_3.sce @@ -0,0 +1,15 @@ +clc;
+p1=1.3; // Initial pressure of gas in bar
+V1=0.03; // Initial volume of gas in m^3
+V2=0.1; // Final volume of gas in m^3
+disp ("(a).Constant pressure process");
+W=p1*10^2*(V2-V1); // work done by gas
+disp("kJ",W,"work done by gas =");
+disp ("(b).Constant Temperature process");
+W=p1*10^2*V1*log(V2/V1);// Work done by gas
+disp("kJ",W,"work done by gas =");
+disp ("(c).polytropic process of index 1.3");
+n=1.3; //index of polytropic process
+p2=p1*(V1/V2)^n; // From Polytropic process relation for final pressure
+W=((p2*10^2*V2)-(p1*10^2*V1))/(1-n); // Work done by gas
+disp("kJ",W,"work done by gas =");
diff --git a/2006/CH4/EX4.4/ex4_4.sce b/2006/CH4/EX4.4/ex4_4.sce new file mode 100755 index 000000000..6ac0f8806 --- /dev/null +++ b/2006/CH4/EX4.4/ex4_4.sce @@ -0,0 +1,22 @@ +clc;
+patm=1; // Atmospheric pressure in bar
+V1=0.0135; // Volume of Freon 12 at initial state in m^3
+D=9; // Diameter of the cylinder in cm
+m=90; // Mass of the piston in kg
+g=9.80665; // acceleration due to gravity in m/s^2
+// (a). Determination of the final pressure and volume of the system
+A=%pi/4 * (D*10^-2)^2; // Area of the cylinder
+p1=0.7449; // Initial pressure of saturated vapour at 30 degree celcius in MPa
+v1=0.023508; // Initial specific volume of saturated vapour at 30 degree celcius in m^3/kg
+p2=(patm*10^5)+(m*g)/A; // Final pressure of Freon 12
+v2=0.084022; // Final specific volume from superheated table at p2 and 30 degree celcius in m^3/kg
+mf=V1/v1; // Mass of Freon 12
+V2=mf*v2; // Final volume of Freon 12
+disp ("Pa",p2,"Final pressure = ","(a)");
+disp ("m^3 (round off error)",V2,"Final volume = ");
+// (b). Calculation of workdone by Freon 12 during this process
+Wirrev=p2*(V2-V1); // P dv Work done
+disp ("kJ (round off error)",Wirrev/1000,"Work done = ","(b)");
+// (c). Calculation of workdone by Freon 12 during reversible process
+Wrev=p1*10^6*V1*log (V2/V1);//From reversible process relation for work done
+disp ("kJ (round off error)",Wrev/1000,"Work done in reveersible process = ","(c)");
diff --git a/2006/CH4/EX4.5/ex4_5.sce b/2006/CH4/EX4.5/ex4_5.sce new file mode 100755 index 000000000..b4dfdc509 --- /dev/null +++ b/2006/CH4/EX4.5/ex4_5.sce @@ -0,0 +1,21 @@ +clc;
+p1=0.1; // Initial pressure (before compression) of air in MPa
+T1=30; // Initial temperature (before compression) of air in degree celcius
+p2=0.9; // Final pressure (after compression) of air in MPa
+R=0.287; // Characteristic constant of air in kJ/kg k
+// (i) Actual work in the flow process
+// (a).Isothermal Process
+w=-R*(T1+273)*log (p2/p1); // work done for isothermal process
+disp ("kJ/kg",w,"work done = ","(a).Isothermal Process","(i) Actual work in the flow process");
+// (b).Polytropic process
+n=1.4; // Index of polytropic process
+T2=(T1+273)*(p2/p1)^((n-1)/n); // From Polytropic process relation for final temperature
+w=(n/(1-n))*R*(T2-(T1+273)); // work done for polytropic process
+disp ("kJ/kg",w,"compression work = ","(b).Polytropic process");
+// (ii).Nonflow work
+// (a).Isothermal Process
+w=-R*(T1+273)*log (p2/p1); // work done for isothermal process
+disp ("kJ/kg",w,"work done = ","(a).Isothermal Process","(ii).Nonflow work");
+// (b).Polytropic process
+w=(1/(1-n))*R*(T2-(T1+273));// work done for polytropic process
+disp ("kJ/kg",w,"compression work = ","(b).Polytropic process");
diff --git a/2006/CH4/EX4.6/ex4_6.sce b/2006/CH4/EX4.6/ex4_6.sce new file mode 100755 index 000000000..07ba3e93a --- /dev/null +++ b/2006/CH4/EX4.6/ex4_6.sce @@ -0,0 +1,29 @@ +clc;
+p1=1; // Initial pressure (before compression) of air in bar
+p2=8; // Final pressure (after compression) of air in bar
+Vp=15; // Displacement volume of reciprocating air compressor in litres
+Vc=0.05*Vp; // Clearance volume of reciprocating air compressor in litres
+N=600; // Speed of compressor in rpm
+V1=Vc+Vp; // Total volume of reciprocating air compressor in litres
+p3=p2; // constant pressure process
+p4=p1; // constant pressure process
+V3=Vc;// Clearance volume of reciprocating air compressor in litres
+n=1.3; // Index of reversible adiabatic compression process
+m=1.4; // Index of reversible adiabatic expansion process
+V4=V3*(p3/p4)^(1/m);
+// (a).Work per machine cycle
+Wcycle = ((n/(n-1))*p1*10^2*V1*10^-3*(1-(p2/p1)^((n-1)/n)))-((m/(m-1))*p4*10^2*V4*10^-3*(1-(p3/p4)^((m-1)/m))); // Work per machine cycle
+disp ("kJ",Wcycle,"Work per machine cycle (Error in textbook)","(a)");
+Wpower=abs (Wcycle)*(N/60); // Power consumption of the compressor
+disp ("kW",Wpower,"Power consumption of the compressor");
+// (b).Work of the cycle if m=n
+m=n;
+W_cycle=(n/(n-1))*p1*10^2*(V1-V4)*10^-3*(1-(p2/p1)^((n-1)/n)); // Work per machine cycle
+disp ("kJ",W_cycle,"Work per machine cycle","(b)");
+er=((W_cycle-Wcycle)/Wcycle) * 100 // Error involved in calculating work if m=n
+disp ("%",er,"Error (Error in textbook)= ");
+// (c).Clearance volumetric efficiency
+C=Vc/Vp;
+eff = 1+C+-C*(p2/p1)^(1/n); // Clearance volumetric efficiency
+disp ("%",eff*100,"Clearance volumetric efficiency = ","(c).Clearance volumetric efficiency");
+
diff --git a/2006/CH4/EX4.7/ex4_7.sce b/2006/CH4/EX4.7/ex4_7.sce new file mode 100755 index 000000000..2269a1af7 --- /dev/null +++ b/2006/CH4/EX4.7/ex4_7.sce @@ -0,0 +1,19 @@ +clc;
+D=150; // Cylinder Diameter in mm
+L=200; // Piston stroke in mm
+C=0.05; // Clearance factor
+p1=15; // Steam inlet conditions (saturated) in bar
+p4=1; // Exhaust or back pressure in bar
+p2=p1; // Constant pressure process
+p5=p4; // Constant pressure process
+Vp=(%pi*(D*10^-3)^2*L*10^-3)/4; // Swept volme of cylinder
+Vc=C*Vp; // Clearance volume of cylinder
+V3=Vc+Vp; // Total volume of cylinder
+V1=Vc; // Clearance volume
+V6=V1; // constant volume process
+V4=V3; // constant volume process
+V5=Vc+0.3*Vp; // Compression begins at 30% of stroke
+V2=Vc+0.4*Vp; // Cut-off occurs at 40% of stroke
+p6=p5*(V5/V6); // Pressure after compression
+Wcycle=(p1*10^2*(V2-V1))+(p2*10^2*V2*log (V3/V2))-(p4*10^2*(V4-V5))-(p5*10^2*V5* log(V5/V6)); // Work per Cycle
+disp("kJ",Wcycle,"Work per cycle =");
diff --git a/2006/CH4/EX4.8/ex4_8.sce b/2006/CH4/EX4.8/ex4_8.sce new file mode 100755 index 000000000..f64e8261a --- /dev/null +++ b/2006/CH4/EX4.8/ex4_8.sce @@ -0,0 +1,10 @@ +clc;
+D=10; //Bore in cm
+L=12.5; //Stroke length in cm
+a=9.68; // Area of indicator card in cm^2
+l=5.33; // Card length in cm
+Ks=21.7; // Indicator spring constant per meter of card length
+A=(%pi*(D*10^-2)^2)/4; // Area of pisaton
+Pm=(a/l)*10^-2*Ks*10^6; // Mean effective pressure
+W=Pm*A*L*10^-2; // Work done by cycle
+disp("kJ",W,"Work done by cycle = ");
diff --git a/2006/CH4/EX4.9/ex4_9.sce b/2006/CH4/EX4.9/ex4_9.sce new file mode 100755 index 000000000..395adbd4c --- /dev/null +++ b/2006/CH4/EX4.9/ex4_9.sce @@ -0,0 +1,20 @@ +clc;
+D=152; // Bore of steam engine in mm
+l=89; // Stroke length of steam engine in mm
+a1=8;a2=10; // area of indicatior diagram on two sides
+Ks=50; // Indicator spring constant in lbf/in^2/in
+N=310; // Engine speed in rpm
+d=0.664; // Diameter of flywheel in m
+// (a)
+a=(a1+a2)/2; // Average area of indicator diagram
+Ks=50*4.44822/(0.0254)^3; // Unit conversion from lbf/in^2/in to N/m^2
+pm=(a/(l/10))*10^-2*Ks; // Mean effective pressure
+A=(%pi*(D*10^-3)^2)/4; // Area of the piston
+IP=2*pm*l*10^-3*A*N/60; // Indicated power
+disp ("kW",IP/1000,"Indicated power of Engine =","(a)");
+// (b)
+F=12-1.5; // Tangential force on the brake drum in kgf
+BP=F*9.81*d/2*2*%pi*N/60; // Brake power of Engine
+eff=BP/IP *100 ; // Mechanical efficiency
+disp ("kW",BP/1000,"Brake power of Engine = ","(b)");
+disp ("%",eff,"Mechanical efficiency of Engine =");
diff --git a/2006/CH5/EX5.1/ex5_1.sce b/2006/CH5/EX5.1/ex5_1.sce new file mode 100755 index 000000000..fd8daef5d --- /dev/null +++ b/2006/CH5/EX5.1/ex5_1.sce @@ -0,0 +1,5 @@ +clc;
+Q12=-250; // Heat transfer during Discharging of battery in kcal
+W21=-0.53; // Consumption of electricity dring Charging process in kWh
+Q21=(W21*3600)-(Q12*4.1868); // First law of thermodynamics
+disp ("kJ",Q21,"Heat loss from battery during charging process");
diff --git a/2006/CH5/EX5.10/ex5_10.sce b/2006/CH5/EX5.10/ex5_10.sce new file mode 100755 index 000000000..d9e32fa75 --- /dev/null +++ b/2006/CH5/EX5.10/ex5_10.sce @@ -0,0 +1,10 @@ +clc;
+p1=1; // initial pressure of air in piston cylinder arrangement in bar
+T=300; // Temperature of air in piston cylinder arrangement in kelvin
+p2=10; // Final pressure of air in piston cylinder arrangement in bar
+R=0.287; // Characteristic gas constant of air in kJ/kg K
+disp("The change in internal energy during the isothermal process is zero");
+w=R*T*log (p1/p2); // Work done
+disp ("kJ/kg",w,"Work done = ");
+q=w; // From first law of thermodynamics
+disp ("kJ/kg",q,"Heat transfer = ");
diff --git a/2006/CH5/EX5.12/ex5_12.sce b/2006/CH5/EX5.12/ex5_12.sce new file mode 100755 index 000000000..0c2cd44f5 --- /dev/null +++ b/2006/CH5/EX5.12/ex5_12.sce @@ -0,0 +1,32 @@ +clc;
+p1=65;// (Error in textbook) // Pressure of air at state 1 in bar
+v1=0.0135; // Volume of air at state 1 in m^3
+v2=0.1; // Volume of air at state 2 in m^3
+R=0.287; // Characteristic gas constant of air in kJ/kg K
+Cvo=0.7165; // Specific heat at constant volume in kJ/kg K
+// (a).Adiabatic process
+k=1.4; // Index of adiabatic process
+p2=p1*(v1/v2)^k; // Pressure of air at state 2
+T1=p1*10^2*v1/R;// Tempewrature of air at state 1
+T2=p2*10^2*v2/R;// Tempewrature of air at state 2
+w=R*(T2-T1)/(1-k); // work done
+q=0; // Adiabatic expansion process
+delta_u=Cvo*(T2-T1); // Change in internal energy of air
+disp ("kJ",q,"Heat Ineraction = ","kJ",delta_u,"Change in internal energy of air = ","kJ",w,"Work done = ","K",T2,"Final Temperature = ","(a).Adiabatic Process");
+// (b).Polytropic process
+n=1.3; // Index of adiabatic process
+p2=p1*(v1/v2)^n; // Pressure of air at state 2
+T1=p1*10^2*v1/R;// Tempewrature of air at state 1
+T2=p2*10^2*v2/R;// Tempewrature of air at state 2
+w=R*(T2-T1)/(1-n); // work done
+delta_u=Cvo*(T2-T1); // Change in internal energy of air
+q=delta_u+w; // Adiabatic expansion process
+disp ("kJ",q,"Heat Ineraction = ","kJ",delta_u,"Change in internal energy of air = ","kJ",w,"Work done = ","K",T2,"Final Temperature = ","(b).Polytropic Process");
+// (c).Isothermal process
+T1=p1*10^2*v1/R;// Tempewrature of air at state 1
+T2=T1; // Tempewrature of air at state 2
+p2=p1*(v1/v2); // Pressure of air at state 2
+w=R*T1*log (v2/v1); // work done
+delta_u=Cvo*(T2-T1); // Change in internal energy of air
+q=delta_u+w; // Adiabatic expansion process
+disp ("kJ",q,"Heat Ineraction = ","kJ",delta_u,"Change in internal energy of air = ","kJ",w,"Work done = ","K",T2,"Final Temperature = ","(c).Isothermal Process");
diff --git a/2006/CH5/EX5.13/ex5_13.sce b/2006/CH5/EX5.13/ex5_13.sce new file mode 100755 index 000000000..c6d5b847c --- /dev/null +++ b/2006/CH5/EX5.13/ex5_13.sce @@ -0,0 +1,12 @@ +clc;
+m=10; // mass flow rate of chilled water in kg/s
+V1=50; //velocity of chilled water at section 1 in m/s
+z1=30; // Elevation of section 1 in m
+V2=10; //velocity of chilled water at section 2 in m/s
+z2=60; // Elevation of section 2 in m
+h1=21; // Enthalpy of chilled water at section 1 in kJ/kg
+h2=43; // Enthalpy of chilled water at section 2 in kJ/kg
+W=35; // Rate of work done by pump in kW
+g=9.80665; // Acceleration due to gravity in m/s^2
+Q=m*(h2-h1)+(m*(V2^2-V1^2)/2000)+(m*g*(z2-z1)/1000)-W; // Steady flow energy equation
+disp ("kW",Q,"The rate of Heat Transfer From Building (Error in textbook)= ");
diff --git a/2006/CH5/EX5.14/ex5_14.sce b/2006/CH5/EX5.14/ex5_14.sce new file mode 100755 index 000000000..335fe328f --- /dev/null +++ b/2006/CH5/EX5.14/ex5_14.sce @@ -0,0 +1,19 @@ +clc;
+p1=1; // Suction pressure of air in bar
+p2=5; // Delivery pressure of air in bar
+T1=310; // Suction Temperature of air in kelvin
+Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K
+// (a) Polytropic compression
+T2=475; // Delivery Temperature of air in kelvin
+Q=-0.15; // Heat loss to the cooling water in kW
+Wpoly=-5.3; // Power consumption of compressor in kW
+m=(-Wpoly+Q)/(Cpo*(T2-T1)); // mass flow rate of air from SSSF energy equation
+n=1/((1-((log (T2/T1))/(log (p2/p1))))); // Index of polytropic process
+disp (n,"Index of polytropic process = ","kg/s",m,"mass flow rate of air = ","(a).Polytropic compression");
+// (b) Adiabatic compression
+k=1.4; // Index of adiabatic process
+Wad=-m*Cpo*T1*((p2/p1)^((k-1)/k)-1); // power consumption of compressor
+disp ("kW",Wad,"Power consumption of compressor = ","(b).Adiabatic compression");
+// (c).Difference between specific work
+wdiff=(abs(Wad)-abs(Wpoly))/m; // Difference between specific work
+disp ("kJ/kg",wdiff,"Difference between specific work = ","(c).Difference between specific work");
diff --git a/2006/CH5/EX5.15/ex5_15.sce b/2006/CH5/EX5.15/ex5_15.sce new file mode 100755 index 000000000..33775fa72 --- /dev/null +++ b/2006/CH5/EX5.15/ex5_15.sce @@ -0,0 +1,13 @@ +clc;
+W=500; // Power output from steam turbine in MW
+Q=10; // Heat loss to surroundings in MW
+p1=12.5; // Pressure of staem at steam turbine inlet in MPa
+p2=10; // Pressure of staem at steam turbine outlet in kPa
+V1=50; // Velocity of steam at steam turbine inlet in m/s
+V2=100; // Velocity of steam at steam turbine outlet in m/s
+x2=0.85; // Quality of steam at steam turbine outlet
+h1=3341.8; // Specific enthalpy of staem at inlet from steam table in kJ/kg
+hf2=191.83; hg2=2584.7;// Specific enthalpies of fluid and steam at outlet from steam table in kJ/kg
+h2=(1-x2)*hf2+x2*hg2;// Specific enthalpy of staem at outlet in kJ/kg
+m=(W-Q)*10^3/((h1-h2)+(V1^2-V2^2)/2000); // Mass flow rate of steam
+disp ("kg/s",m,"Mass flow rate of steam = ");
diff --git a/2006/CH5/EX5.16/ex5_16.sce b/2006/CH5/EX5.16/ex5_16.sce new file mode 100755 index 000000000..55d20839e --- /dev/null +++ b/2006/CH5/EX5.16/ex5_16.sce @@ -0,0 +1,23 @@ +clc;
+p1=3; // Pressre of air at state 1 in bar
+p2=p1; // constant pressure process
+T1=450; // Temperature of air at state 1 in kelvin
+T2=1250; // Temperature of air at state 2 in kelvin
+T3=1000; // Temperature of air at state 3 in kelvin
+V3=50; // Velocity of air at state 3 in m/s
+T4=800; // Temperature of air at state 4 in kelvin
+Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K
+// (a).Combustion chamber
+q=Cpo*(T2-T1); // Heat added to air
+disp ("kJ/kg (round off error)",q,"Heat added to air = ","(a).Combustion chamber");
+// (b).Turbine
+k=1.4; // Index of adiabatic process
+w=Cpo*(T2-T3)-V3^2/2000; // Work done
+disp ("kJ/kg (round off error)",w,"Work done = ",("(b).Turbine)"));
+// (c).Nozzle
+V4=sqrt (2*Cpo*10^3*(T3-T4)+V3^2); // Velocity of air leaving the nozzle
+disp ("m/s (round off error)",V4,"Velocity of air leaving the nozzle = ","(c).Nozzle");
+// (d).Pressure drop
+p3=p2*(T3/T2)^(k/(k-1)); // Pressure of air leaving turbine
+p4=p3*(T4/T3)^(k/(k-1)); // Pressure of air leaving nozzle
+disp ("bar ",p4,"Pressure of air leaving nozzle = ","bar",p3,"Pressure of air leaving turbine = ","(d).Pressure drop");
diff --git a/2006/CH5/EX5.17/ex5_17.sce b/2006/CH5/EX5.17/ex5_17.sce new file mode 100755 index 000000000..a1271553e --- /dev/null +++ b/2006/CH5/EX5.17/ex5_17.sce @@ -0,0 +1,13 @@ +clc;
+V=1000; // Speed of aircraft in kmph
+p1=0.35; // Ambient pressure in bar
+T1=258; // Ambient temperature in kelvin
+V1=V*1000/3600; // unit conversion kmph into m/s
+p=1.01325; // Atmospheric pressure in bar
+Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K
+k=1.4; // Index of compression process
+T2=T1+(V1^2)/(2*Cpo*10^3); // The temperature after leaving inlet diffuser
+p2=p1*(T2/T1)^(k/(k-1)); // Pressure after leaving inlet diffuser
+r=p/p2; // Pressre ratio of compressor required for pressurization
+disp ("K",T2,"The temperature after leaving inlet diffuser = ");
+disp (r,"Pressre ratio of compressor required for pressurization = ");
diff --git a/2006/CH5/EX5.18/ex5_18.sce b/2006/CH5/EX5.18/ex5_18.sce new file mode 100755 index 000000000..26f15cf5a --- /dev/null +++ b/2006/CH5/EX5.18/ex5_18.sce @@ -0,0 +1,16 @@ +clc;
+p1=50; // Pressre of steam at diffuser inlet in kPa
+T1=150; // Temperature of steam at diffuser inlet in degree celcius
+V1=180; // Velocity of steam at diffuser inlet in m/s
+A1=1000; // area of diffuser inlet in cm^2
+V2=90; // Velocity of steam at diffuser outlet in m/s
+p2=1; // Pressre of steam at diffuser outlet in bar
+Q=120; // Heat loss to the surroundings in kW
+v1=3.24; // Specific volume of steam from superheated steam table in m^3/kg at inlet
+h1=2645.9; // // Specific enthalpy of steam from superheated steam table in m^3/kg at inlet
+m=V1*A1*10^-4/v1; // Mass flow rate of steam
+q=Q/m; // Heat transfer per unit mass of steam
+h2=q+h1+(V1^2-V2^2)/2000; // Specific enthalpy of steam from SSSF energy equationat outlet
+v2=1.704; // Specific volume of steam from superheated steam table in m^3/kg at outlet
+A2=m*v2/V2; // Area of diffuser exit
+disp ("cm^2",A2*10^4,"Area of diffuser exit (Error in textbook)= ");
diff --git a/2006/CH5/EX5.19/ex5_19.sce b/2006/CH5/EX5.19/ex5_19.sce new file mode 100755 index 000000000..93e1a688c --- /dev/null +++ b/2006/CH5/EX5.19/ex5_19.sce @@ -0,0 +1,12 @@ +clc;
+p=0.15; // Pressure of Freon-12 gas in MPa
+T1=10; // Temperature of Freon-12 gas in degree celcius
+T2=35; // Temperature of Freon-12 gas in degree celcius
+h1=196.762; // Specific enthalpy of Freon-12 from table at 1 in kJ/kg
+h2=69.49; // Specific enthalpy of Freon-12 from table at 2 in kJ/kg
+h3=178.54; // Specific enthalpy of Freon-12 from table at 3 in kJ/kg
+// For solving Conservation of mass and SSSF energy equations
+A=[1 -1; h3 -h2];
+B=[1 ; h1];
+M=A\B;
+disp ("kg/s",M(1),"Mass of saturated vapour at 0.15 MPa = ","kg/s",M(2),"Mass of saturated liquid at 35 oC = ");
diff --git a/2006/CH5/EX5.2/ex5_2.sce b/2006/CH5/EX5.2/ex5_2.sce new file mode 100755 index 000000000..5d9aa959c --- /dev/null +++ b/2006/CH5/EX5.2/ex5_2.sce @@ -0,0 +1,12 @@ +clc;
+m=5; // Mass of water in a tank in kg
+T1=30; // Temperature of water at initial state (1) in degree celcius
+T2=95; // Temperature of water at final state (2) in degree celcius
+Qout=70; // Heat transfer from the water tank to the surrounding air in kJ
+W=75; //Electric energy input to a stirrer inside water in kJ
+mf=32.3; // Mass of fel in bomb in grams
+u1=125.78; // Internal energy of water from steam table (uf at T1) in kJ/kg
+u2=397.88; // Internal energy of water from steam table (uf at T2) in kJ/kg
+Qf=m*(u2-u1)-W+Qout; // From First law of thermodynamics
+qf=Qf/(mf*10^-3); // Heat consumption per unit mass of fuel
+disp ("kJ/kg",qf,"Heat consumption per unit mass of fuel =");
diff --git a/2006/CH5/EX5.20/ex5_20.sce b/2006/CH5/EX5.20/ex5_20.sce new file mode 100755 index 000000000..176ff3958 --- /dev/null +++ b/2006/CH5/EX5.20/ex5_20.sce @@ -0,0 +1,12 @@ +clc;
+p1=15;// Inlet pressure of condenser in kPa
+x=0.92; // Quality of steam
+ms=25; // mass flow rate of steam in kg/s
+d_t=12; // temperature rise of water
+Cpw=4.1868; // Specific heat of water in kJ/kg K
+hfg=225.94; h4_3=2599.1; // specific enthalpy in kJ/kg
+h1=(1-x)*hfg+x*h4_3; // specific enthalpy
+h2=225.94; // specific enthalpy in kJ/kg
+Q=ms*(h1-h2); // Heat transfer rate in condenser
+mw=Q/(Cpw*d_t); // Mass flow rate of water
+disp ("kg/s",mw,"Mass flow rate of water = ","kW",Q,"Heat transfer rate in condenser = ");
diff --git a/2006/CH5/EX5.3/ex5_3.sce b/2006/CH5/EX5.3/ex5_3.sce new file mode 100755 index 000000000..84212704b --- /dev/null +++ b/2006/CH5/EX5.3/ex5_3.sce @@ -0,0 +1,21 @@ +clc;
+V=50; // Volume of water in a tank in litres
+T1=120; // Temperature of water at initial state (1) in degree celcius
+x1=0.6; // Dryness fraction at initial state (1)
+T2=-10; // Temperature of water at final state (2) in degree celcius
+vf1=0.00106; // specific volume of water from steam tables at T1 in m^3/kg
+vg1=0.8919; // specific volume of water from steam tables at T1 in m^3/kg
+v1=(1-x1)*vf1+x1*vg1; // Specific volume of misture of liquid and water at state (1)
+m=(V*10^-3)/v1; // Mass of water in the tank
+vs2=0.0010891; // Specific volume of saturated ice at T2 in m^3/kg
+vg2=466.7; // Specific volume of water vapour at T2 in m^3/kg
+v2=v1; // constant specific volume during cooling process
+x2=(v2-vs2)/(vg2-vs2); // Dryness fraction at state (2)
+uf1=503.5; // Specific internal energy at state (1) in kJ/kg
+ug1=2529.3; // Specific internal energy at state (1) in kJ/kg
+us2=-354.09; // Specific internal energy at state (2) in kJ/kg
+ug2=2361.4; // Specific internal energy at state (2) in kJ/kg
+u1=(1-x1)*uf1+x1*ug1; // Total Specific internal energy at state (1) in kJ/kg
+u2=(1-x2)*us2+x2*ug2; // Total Specific internal energy at state (2) in kJ/kg
+Q12=m*(u2-u1); // Heat transfer during cooling pocess
+disp ("kJ",Q12,"Heat transfer during cooling pocess = ");
diff --git a/2006/CH5/EX5.4/ex5_4.sce b/2006/CH5/EX5.4/ex5_4.sce new file mode 100755 index 000000000..9f2dc7ed3 --- /dev/null +++ b/2006/CH5/EX5.4/ex5_4.sce @@ -0,0 +1,24 @@ +clc;
+V1=0.3; // Initial volume of water upto stop 1 in m^3
+p1=1; // Initial pressure of water in bar
+x1=0.2; // Dryness fraction at initial state (1)
+p2=3; // Pressur required to lift the piston in bar
+V4=0.45; // Volume of water upto stop 2 in m^3
+vf1=0.001043; // Specific volume at state (1) from steam table in m^3/kg
+vg1=1.694; // Specific volume at state (1) from steam table in m^3/kg
+v1=vf1+x1*(vg1-vf1); // Total Specific volume at state (1) from steam table in m^3/kg
+m=V1/v1; // Mass of water
+v3=V4/m; // Specific volume at stop 2
+v2=v1; p3=p2; v4=v3; V3=V4; V2=V1; // From process diagram
+// (a)
+p4=0.361; // Final Pressure at v4 from steam table in Mpa
+disp ("MPa",p4,"Fianl pressure = ","(a)");
+// (b)
+W14=p2*10^2*(V3-V2); // Work done in process
+uf1=417.36; // Specific internal energ at initial state in kJ/kg
+ufg1=2088.7; // Specific internal energ at initial state in kJ/kg
+u1=uf1+x1*ufg1; // Total Specific internal energr at initial state in kJ.kg
+u4=2550.2; // Specific internal energ at final state in kJ/kg
+Q14=m*(u4-u1)+W14; // From first law of thermodynamics
+disp ("kJ",W14,"Work done during the process = ","(b)");
+disp ("kJ",Q14,"Heat transfer during the process = ");
diff --git a/2006/CH5/EX5.5/ex5_5.sce b/2006/CH5/EX5.5/ex5_5.sce new file mode 100755 index 000000000..e69c58fa0 --- /dev/null +++ b/2006/CH5/EX5.5/ex5_5.sce @@ -0,0 +1,16 @@ +clc;
+V1=0.01; // Initial Volume of Freon 12 vapour in cylinder in m^3
+T1=15; // Initial Temperature of Freon 12 vapour in degree celcius
+p1=4.914; // Initial pressure (Psat at T1) in bar
+p2=9; // Final pressure of Freon 12 vapour after compression in bar
+T2=65; // Final temperature of Freon 12 vapour after compression in degree celcius
+Q=-0.5; // Heat lost to surroundings during compresson process in kJ
+v1=0.035413; // Initial specific volume of Freon 12 vapour from table in m^3/kg
+m=V1/v1; // Mass of vapour
+hg1=193.644; // specific enthalpy of Freon 12 vopour at state 1 in kJ/kg
+u1=hg1-(p1*10^2*v1); // Total Specific internal energy at state 1
+h2=222.9; // specific enthalpy of Freon 12 vapour at state 2 in kJ/kg
+v2=0.022537; // specific volume of Freon 12 vapour at state 2 in m^3/kg
+u2=h2-(p2*10^2*v2); // Total Specific internal energy at state 2
+W=-m*(u2-u1)+Q; // From first law of thermodynamics
+disp ("kJ",W,"Work of compression = ");
diff --git a/2006/CH5/EX5.6/ex5_6.sce b/2006/CH5/EX5.6/ex5_6.sce new file mode 100755 index 000000000..69fbdc2bb --- /dev/null +++ b/2006/CH5/EX5.6/ex5_6.sce @@ -0,0 +1,12 @@ +clc;
+tS=-10; // initial temperature of ice in degree celcius
+ts=0; // Melting temperature of ice in degree celcius
+Cs=1.94; // Specific heat of ice in kJ/kg k
+m=1000; // Mass of ice in kg
+tF=10; // Temperature of water after 24 hours in degree celcius
+tf=0; // Freezing temperature of water in degree celcius
+Cf=4.1868; // Specific heat of water in kJ/kg K
+hsg=335; // Latent heat of fusion of ice in kJ/kg
+Q=m*(Cs*(ts-tS)+hsg+Cf*(tF-tf)); // Heat gain of water
+Q_dot=Q/(24*3600); // Rate of cooling
+disp ("kW",Q_dot,"Rate of cooling = ");
diff --git a/2006/CH5/EX5.7/ex5_7.sce b/2006/CH5/EX5.7/ex5_7.sce new file mode 100755 index 000000000..df242d37b --- /dev/null +++ b/2006/CH5/EX5.7/ex5_7.sce @@ -0,0 +1,12 @@ +clc;
+T1=300; // Temperature of air at state 1 in Kelvin
+T2=500; // Temperature of air at state 2 in Kelvin
+m_=28.966; // Molecular weight oh air in kg
+Cpoav=1.017; // Average value of specific heat of air in kJ/kg K
+// (a). change in enthalpy
+h_=27.43*(T2-T1)+3.09*10^-3*(T2^2-T1^2)-0.2296*10^-6*(T2^3-T1^3); //change in enthalpy during process in kJ/kmol
+h=h_/m_; // change in enthalpy during process in kJ/kg
+disp ("kJ/kg",h,"(a).change in enthalpy during process = ");
+// (b).change in enthalpy
+h=Cpoav*(T2-T1); // change in enthalpy in kJ/kg
+disp ("kJ/kg",h,"(b).change in enthalpy during process with average specfic heat = ");
diff --git a/2006/CH5/EX5.8/ex5_8.sce b/2006/CH5/EX5.8/ex5_8.sce new file mode 100755 index 000000000..8387e5fcd --- /dev/null +++ b/2006/CH5/EX5.8/ex5_8.sce @@ -0,0 +1,14 @@ +clc;
+m=0.1; // mass of nitrogen gas in kg
+V1=0.1; // Initial volme of nitrogen gas in m^3
+p1=1.2; // Initial pressure of nitrogen gas in bar
+V2=0.075; // Final volume of nitrogen gas in m^3
+Cpo=1.041; // Specific heat at constant pressure of nitrogen in kJ/kg K
+R=0.2969393; // Characteristic gas constant of nitrogen in Kj/kg K
+T1=(p1*10^2*V1)/(m*R); // Initial temperature of nitrogen gas
+T2=T1*(V2/V1); // Final temperature of nitrogen gas (constant pressure process)
+Q=m*Cpo*(T2-T1); // Heat transfer to surroundings
+W=p1*10^2*(V2-V1); // Work done
+disp ("K",T2,"Final Temperature of nitrogen gas = ");
+disp ("kJ",Q,"Heat transfer to surroundings = ");
+disp ("The Work is done on the gas","kJ",W,"Work done = ");
diff --git a/2006/CH5/EX5.9/ex5_9.sce b/2006/CH5/EX5.9/ex5_9.sce new file mode 100755 index 000000000..7b464b297 --- /dev/null +++ b/2006/CH5/EX5.9/ex5_9.sce @@ -0,0 +1,29 @@ +clc;
+p=1; // pressure inside piston cylinder arrangement in MPa
+// stae 1 = saturated liquid
+// state 2 = saturated vapour
+// state 3 = superheated vapour
+v1=0.001127; // specific volume at state 1 in m^3/kg
+v2=0.19444; // specific volume at state 2 in m^3/kg
+v3=0.4011; // specific volume at state 3 in m^3/kg
+u1=761.68; // specific internal energy at state 1 in kK/kg
+u2=2583.6; // specific internal energy at state 2 in kK/kg
+u3=3296.8; // specific internal energy at state 3 in kK/kg
+h1=762.81; // specific enthalpy at state 1 in kJ/kg
+h2=2778.1; // specific enthalpy at state 2 in kJ/kg
+h3=3697.9; // specific enthalpy at state 3 in kJ/kg
+w12=p*10^3*(v2-v1); // Work done during process 1-2
+w23=p*10^3*(v3-v2); // Work done during process 2-3
+wtotal=w12+w23; // Total work done
+disp ("kJ/kg",wtotal,"Work done = ");
+// Calculation of heat transfer
+// Method I
+q12=(u2-u1)+w12; // Heat transfer during process 1-2
+q23=(u3-u2)+w23; // Heat transfer during process 2-3
+qtotal=q12+q23; // Total Heat transfer
+disp ("kJ/kg",qtotal,"Heat Transfer = ","Method I","Calculation of Heat Transfer");
+// Method II
+q12=h2-h1; // Heat transfer during process 1-2
+q23=h3-h2; // Heat transfer during process 2-3
+qtotal=q12+q23; // Total Heat transfer
+disp ("kJ/kg",qtotal,"Heat Transfer = ","Method II");
diff --git a/2006/CH6/EX6.1/ex6_1.sce b/2006/CH6/EX6.1/ex6_1.sce new file mode 100755 index 000000000..a01bd530e --- /dev/null +++ b/2006/CH6/EX6.1/ex6_1.sce @@ -0,0 +1,13 @@ +clc;
+QH=500; // Heat supplied in kJ
+QL=200; // Heat rejected in kJ
+TH=720; // Resorvior Temperature in kelvin
+TL=360; // Resorvior Temperature in kelvin
+W=260; // Work developed in kJ
+e_max=1-TL/TH; // maximum efficiency
+e_clamied=W/QH; // Efficiency clamied
+if (e_clamied<e_max) then
+ disp ("It obeys the second law of thermodynamics.The claim is true");
+else
+ disp ("It violates the second law of thermodynamics.The claim is False");
+end
diff --git a/2006/CH6/EX6.10/ex6_10.sce b/2006/CH6/EX6.10/ex6_10.sce new file mode 100755 index 000000000..4a5b6606f --- /dev/null +++ b/2006/CH6/EX6.10/ex6_10.sce @@ -0,0 +1,9 @@ +clc;
+p1=3; // initial pressure of air in bar
+T1=200; // initial temperature of air in degree celcius
+p2=1.5; // final pressure of air in bar
+T2=105; // final temperature of air in degree celcius
+Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K
+R=0.287; // characteristic gas constant of air in kJ/kg K
+delta_s= Cpo*log (T2/T1)- R*log (p2/p1); // change in entropy during irreversible process
+disp ("kJ/kg K",delta_s,"change in entropy during irreversible process = ");
diff --git a/2006/CH6/EX6.11/ex6_11.sce b/2006/CH6/EX6.11/ex6_11.sce new file mode 100755 index 000000000..187504be3 --- /dev/null +++ b/2006/CH6/EX6.11/ex6_11.sce @@ -0,0 +1,9 @@ +clc;
+p1=5; // Initial pressure of argon gas in bar
+T1=30; // Initial temperature of argon gas in degree celcius
+v1=1; // Initial volume of argon gas in m^3 by assumption
+v2=2*v1; // Final volume of argon gas in m^3
+R=8.3144/40; // Characteristic gas constant of argon gas in kJ/kg K
+p2=p1*(v1/v2); // Final pressure of argon gas
+delta_s= R*log (v2/v1); // change in entropy (choosing the reversible isothermal path)
+disp ("kJ/kg K",delta_s,"change in entropy (choosing the reversible isothermal path) = ","bar",p2,"Final pressure of argon gas =");
diff --git a/2006/CH6/EX6.12/ex6_12.sce b/2006/CH6/EX6.12/ex6_12.sce new file mode 100755 index 000000000..927bce373 --- /dev/null +++ b/2006/CH6/EX6.12/ex6_12.sce @@ -0,0 +1,24 @@ +clc;
+p1=1; // Atmospheric pressure in bar
+T1=348; // Atmospheric temperature in kelvin
+V1=800; // Volume of air sucked into the cylinder in cm^3
+p2=15; // pressure of air after compression in bar
+V2=V1/8; // volume of air after compression in cm^3
+p3=50; // pressure of air after heat addition in bar
+Cvo=0.7165; // Specific heat at constant volme in kJ/kg K
+R=0.287; // characteristic gas constant of air in kJ/kg K
+// (a).Index of compression process
+n=log (p2/p1)/log (V1/V2); // Index of compression process
+disp ("which is less than 1.4. The compression process is polytropic.",n,"Index of compression process = ","(a).Index of compression process");
+// (b).Change in entropy of air during each process
+m=(p1*10^2*V1*10^-6)/(R*T1); // Mass of air in cylinder
+T2=T1*(p2/p1)*(V2/V1); // Temperature after compression
+T3=T2*(p3/p2); // Temperature after heat addition
+delta_s21=m*(Cvo*log (T2/T1)+R*log (V2/V1)); // change in entropy during compression
+delta_s32=m*Cvo*log (T3/T2); //change in entropy during heat addition
+disp ("kJ/K",delta_s32,"change in entropy during heat addition = (Error in textbook)","kJ/K",delta_s21,"change in entropy during compression = (Error in textbook)","(b).Change in entropy of air during each process");
+// (c).Heat transfer during polytropic compression process
+k=1.4;// Index of isentropic preocess
+Q=m*Cvo*((k-n)/(1-n))*(T2-T1); // Heat transfer during polytropic compression process
+disp ("kJ",Q,"Heat transfer during polytropic compression process = (Error in textbook)","(c).Heat transfer during polytropic compression process");
+
diff --git a/2006/CH6/EX6.13/ex6_13.sce b/2006/CH6/EX6.13/ex6_13.sce new file mode 100755 index 000000000..00386ded4 --- /dev/null +++ b/2006/CH6/EX6.13/ex6_13.sce @@ -0,0 +1,16 @@ +clc;
+p1=0.3; // initial pressure of ateam in MPa
+T1=350; // Initial temperature of steam in degree celcius
+// following are the values taken from steam table for initial state
+v1=0.9535; // specific volume in m^3/kg
+u1=2886.2; // specific internal energy in kJ/kg
+s1=7.868; // specific entropy in kJ/kg K
+v2=2*v1; // final specific volume of steam
+u2=u1;
+// following are the values taken from steam table final state
+T2=349; // Final temperature of steam in degree celcius
+p2=0.167; // Final pressure of ateam in MPa
+s2=8.164; // specific entropy in kJ/kg K
+delta_s=s2-s1; // Entropy generation
+LW=(T1+T2)/2 * delta_s; // Lost work
+disp ("kJ",LW,"Lost work = ","kJ/kg K",delta_s,"Entropy Generation =");
diff --git a/2006/CH6/EX6.15/ex6_15.sce b/2006/CH6/EX6.15/ex6_15.sce new file mode 100755 index 000000000..4965921d7 --- /dev/null +++ b/2006/CH6/EX6.15/ex6_15.sce @@ -0,0 +1,20 @@ +clc;
+m=1; // Mass of water in kg
+T1=300; // Temperature of water in kelvin
+C=4.1868; // Specific heat in kJ/kg K
+// (a). Heat Transfer
+T2=500; // Temperature of heat reservoir in kelvin
+Q=m*C*(T2-T1); // Heat transfer
+del_Swater=m*C*log (T2/T1); // Entropy change of water
+del_Sreservoir=-Q/T2; // Entropy change of reservoir
+del_Suniverse=del_Swater+del_Sreservoir; // Entropy change of universe
+disp ("kJ/K",del_Suniverse,"Entropy change of universe =","(a).Heat Transfer");
+// (b).Heat Transfer in each reservoir
+T2=400; // Temperature of intermediate reservoir in kelvin
+T3=500; // Temperature of heat reservoir in kelvin
+Q=m*C*(T3-T2); // Heat transfer
+del_Swater=m*C*(log (T2/T1)+log (T3/T2)); // Entropy change of water
+del_SreservoirI=-Q/T2; // Entropy change of reservoir I
+del_SreservoirII=-Q/T3; // Entropy change of reservoir II
+del_Suniverse=del_Swater+del_SreservoirI+del_SreservoirII; // Entropy change of universe
+disp ("kJ/K",del_Suniverse,"Entropy change of universe =","(b).Heat Transfer in each reservoir");
diff --git a/2006/CH6/EX6.16/ex6_16.sce b/2006/CH6/EX6.16/ex6_16.sce new file mode 100755 index 000000000..9b6bc5f34 --- /dev/null +++ b/2006/CH6/EX6.16/ex6_16.sce @@ -0,0 +1,19 @@ +clc;
+m=1; // Mass of saturated steam in kg
+T=100; // Teamperature of steam in degree celcius
+T0=303; // temperature of Surroundings in kelvin
+hfg=2257; // Latent heat of evaporation in kJ/kg
+sfg=6.048; // specific entropy in kJ/kg K
+// (a).Entropy change
+Q=m*hfg; // Heat transfer
+del_Ssystem=-m*sfg; // Change of entropy of system
+del_Ssurr=Q/T0; // Change of entropy of surroundings
+del_Suniverse=del_Ssystem+del_Ssurr; // Change of entropy of universe
+disp ("kJ/K",del_Suniverse,"Change of entropy of universe =","kJ/K",del_Ssurr,"Change of entropy of surroundings =","kJ/K",del_Ssystem,"Change of entropy of system =","(a).Entropy change");
+// (b).Effect of heat transfer
+del_Suniverse=0; // process is reversible
+del_Ssurr=del_Suniverse-del_Ssystem; //Change of entropy of surroundings
+QH=hfg; // Heat transfer from the condensing steam to reversible heat engine
+QL=T0*del_Ssurr; // Heat receiveded by the surroundins reversible heat engine
+W=QH-QL; //work output of reversible heat engine
+disp ("Difference between QH & QL is converted into work output in a reversible cyclic process","kJ",W,"work output of reversible heat engine =","kJ",QL,"Heat receiveded by the surroundins reversible heat engine =","kJ",QH,"Heat transfer from the condensing steam to reversible heat engine =","(b).Effect of heat transfer");
diff --git a/2006/CH6/EX6.17/ex6_17.sce b/2006/CH6/EX6.17/ex6_17.sce new file mode 100755 index 000000000..833fd8b40 --- /dev/null +++ b/2006/CH6/EX6.17/ex6_17.sce @@ -0,0 +1,18 @@ +clc;
+m=1; // Mass of ice in kg
+T1=258;// Temperature of ice in kelvin
+Tm=273; // Melting point of ice in kelvin
+T2=303; // temperature of Surroundings in kelvin
+Cpice=2.095; // Specific heat of ice in kJ/kg K
+hsg=333.5; // Latent heat of fusion in kJ/kg
+Cpw=4.1868; // Specific heat of water in kJ/kg K
+// (a).Change of entropy
+Q=m*(Cpice*(Tm-T1)+hsg+Cpw*(T2-Tm));// Heat transfer
+del_Ssystem=m*((Cpice*log (Tm/T1))+(hsg/Tm)+(Cpw*log (T2/Tm)));// Change of entropy of system
+del_Ssurr=-Q/T2; // Change of entropy of surroundings
+del_Suniverse=del_Ssystem+del_Ssurr; // Change of entropy of universe
+disp ("kJ/K",del_Suniverse,"Change of entropy of universe =","kJ/K",del_Ssurr,"Change of entropy of surroundings =","kJ/K",del_Ssystem,"Change of entropy of system =","(a).Entropy change");
+// (b).The minimum work of restoring water back to ice
+QL=Q; // Refrigerating effect
+W=T2*del_Ssystem-QL; // The minimum work of restoring water back to ice
+disp ("kJ",W,"(b).The minimum work of restoring water back to ice = ");
diff --git a/2006/CH6/EX6.18/ex6_18.sce b/2006/CH6/EX6.18/ex6_18.sce new file mode 100755 index 000000000..5384b8060 --- /dev/null +++ b/2006/CH6/EX6.18/ex6_18.sce @@ -0,0 +1,9 @@ +clc;
+TA=323;// Temperature at section A in kelvin
+PA=125; // Pressure at section A in kPa
+TB=287;// Temperature at section B in kelvin
+PB=100; // Pressure at section B in kPa
+Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K
+R=0.287; // characteristic gas constant of air in kJ/kg K
+SBA=(Cpo*log (TB/TA))-(R*log (PB/PA)); // Change in entropy
+disp("Hence SA>SB. Therefore B to A","kJ/kg",SBA,"Change in entropy from B to A =");
diff --git a/2006/CH6/EX6.19/ex6_19.sce b/2006/CH6/EX6.19/ex6_19.sce new file mode 100755 index 000000000..3b9ef2d19 --- /dev/null +++ b/2006/CH6/EX6.19/ex6_19.sce @@ -0,0 +1,24 @@ +clc;
+p1=12.5; // Pressure of steam at inlet in MPa
+T1=500; // Temperature of steam at inlet in degree celcius
+V1=50; // Velocity of steam at inlet in m/s
+p2=10; // Pressure of steam at outlet in kPa
+V2=100; // Velocity of steam at outlet in m/s
+// (a).Actual expansion
+x2=0.85; // Quality of steam
+// From steam table
+h1=3341.8; hf2=191.83; hg2=2584.7; // specific enthalpy in kJ/kg
+s1=6.4618; sf2=0.6493; sfg2=7.5009; // specific entropy in kJ/kg K
+h2a=(1-x2)*hf2+x2*hg2; // specific enthalpy in kJ/kg
+wa=(h1-h2a)+((V1^2-V2^2)/2000); // Actual work output
+disp ("kJ",wa,"(a).Actual work output of turbine = ");
+// (b).Reversible adiabatic expansion
+x2s=(s1-sf2)/sfg2; // Quality of steam after reversible adiabatic expansion
+h2s=(1-x2s)*hf2+x2s*hg2; // specific enthalpy in kJ/kg
+ws=(h1-h2s)+((V1^2-V2^2)/2000); // Reversible adiabatic work output
+L=ws-wa; // Lost of work
+disp ("kJ/kg",L,"Lost of work due to irreversibity of expansion process =","kJ/kg",ws,"Reversible adiabatic work output = ","(b).Reversible adiabatic expansion");
+// (c).Entropy Generation
+s2a=sf2+x2*sfg2; // actual specific entropy in kJ/kg K
+Sgen=s2a-s1; // Entropy generation
+disp ("kJ/kg K",Sgen,"(c).Entropy Generation =");
diff --git a/2006/CH6/EX6.2/ex6_2.sce b/2006/CH6/EX6.2/ex6_2.sce new file mode 100755 index 000000000..f11abef00 --- /dev/null +++ b/2006/CH6/EX6.2/ex6_2.sce @@ -0,0 +1,18 @@ +clc;
+QH=325; // Heat supplied in kJ
+QL=125; // Heat rejected in kJ
+TH=1000; // Resorvior Temperature in kelvin
+TL=400; // Resorvior Temperature in kelvin
+W=200; // Work developed in kJ
+e_carnot=1-TL/TH; // maximum efficiency
+e_clamied=W/QH; // Efficiency clamied
+disp (e_carnot,"e_carnot =");
+disp (e_clamied,"e_clamied =");
+if (e_carnot==e_clamied) then
+ disp ("The machine is reversible");
+elseif (e_carnot>e_clamied)
+ disp ("The machine is irreversible");
+else
+ disp ("Here e_clamied > e_carnot so the cyclic machine is impossible.")
+end
+disp ("It would be reversible if its thermal efficiency is equal to Carnot efficiency, and irreversible if it is less than Carnot efficiency.")
diff --git a/2006/CH6/EX6.20/ex6_20.sce b/2006/CH6/EX6.20/ex6_20.sce new file mode 100755 index 000000000..aec2dfe47 --- /dev/null +++ b/2006/CH6/EX6.20/ex6_20.sce @@ -0,0 +1,15 @@ +clc;
+p1=0.1; // pressure at state 1 in MPa
+p2=6; // Pressure at state 2 in MPa
+// (a).Pump work for water
+vf1=0.001043; // specific volume in m^3/kg
+wp=-vf1*(p2-p1)*10^3; // Pump work for water
+disp ("kJ",wp,"(a).Pump work for water =");
+// (b).For steam
+h1=2675.5;// specific enthalpy in kJ/kg
+s1=7.3595;// specific entropy in kJ/kg K
+// From superheated steam table
+t2=675; // Temperature at state 2 in degree celcius
+h2=3835.3;// specific enthalpy in kJ/kg
+wc=-(h2-h1); // Compressor work for steam
+disp ("kJ/kg",wc,"(b).Compressor work for steam =");
diff --git a/2006/CH6/EX6.21/ex6_21.sce b/2006/CH6/EX6.21/ex6_21.sce new file mode 100755 index 000000000..a0470798e --- /dev/null +++ b/2006/CH6/EX6.21/ex6_21.sce @@ -0,0 +1,25 @@ +clc;
+// (a).Restoring to initial state by throttling process
+T1=303; //Temperature of air at state 1 in kelvin
+p1=1; //Pressure of air at state 1 in bar
+p2=5; //Pressure of air at state 2 in bar
+p3=1;//Pressure of air at state 3 in bar
+T3=303; //Temperature of air at state 3 in kelvin
+Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K
+R=0.287; // characteristic gas constant of air in kJ/kg K
+k=1.4; // Index of reversible adiabatic compression
+T2=T1*(p2/p1)^((k-1)/k); // Temperature after reversible adiabatic compression
+w12=Cpo*(T2-T1); // Work of reversible adiabatic compression
+s21=0; // Entropy change of air
+s32=-R*log (p3/p2); // Entropy change
+s31=s32; // Net entropy change of air
+d_Ssurr=0; // Entropy change of surroundings because There is no heat transfer
+d_Suniv=s31+d_Ssurr; // Net Entropy change of universe
+disp ("kJ/kg K",d_Suniv,"Net Entropy change of universe = ","kJ/kg",w12,"Work of reversible adiabatic compression = ","(a).Restoring to initial state by throttling process");
+// (b).Restoring to initial state by by completing cycle
+T0=298; // Temperature of surroundings in kelvin
+d_Ssystem=0; // Entropy change of systrem is zero because it is cyclic process
+q31=Cpo*(T2-T3); // Heat rejected to the surroundings
+d_Ssurr=q31/T0; // Entropy change of surroundings
+d_Suniv=d_Ssystem+d_Ssurr; // Increase in entropy of the universe
+disp ("kJ/kg K",d_Suniv,"Net Entropy change of universe = ","(b).Restoring to initial state by by completing cycle");
diff --git a/2006/CH6/EX6.3/ex6_3.sce b/2006/CH6/EX6.3/ex6_3.sce new file mode 100755 index 000000000..8253067ec --- /dev/null +++ b/2006/CH6/EX6.3/ex6_3.sce @@ -0,0 +1,14 @@ +clc;
+// Air conditioning unit
+TL=278; // Operating temperature in kelvin
+TH=318; // Operating temperature in kelvin
+COP1=TL/(TH-TL); // COP of Air conditioning unit
+QL=1; // For some calculation purpose
+W1=QL/COP1; // Work input of Air conditioning unit
+// Food refrigeration unit
+TL=258; // Operating temperature in kelvin
+TH=318; // Operating temperature in kelvin
+COP2=TL/(TH-TL); // COP of Food refrigeration unit
+W2=QL/COP2; // Work input of Food refrigeration unit
+Wper=(W2-W1)/W1; // Increase in work input
+disp ("%",Wper*100,"Increase in work input = ");
diff --git a/2006/CH6/EX6.4/ex6_4.sce b/2006/CH6/EX6.4/ex6_4.sce new file mode 100755 index 000000000..d1234056b --- /dev/null +++ b/2006/CH6/EX6.4/ex6_4.sce @@ -0,0 +1,13 @@ +clc;
+//(a).Summer air conditioning (cooling)
+TL=298; // Operating temperature in kelvin
+TH=318; // Operating temperature in kelvin
+q=0.75; // Heat Transfer from fabric of room per degree of temperature difference in kW
+QL=q*(TH-TL); // Heat Transfer from fabric of room
+COPc=TL/(TH-TL); // COP of Air conditioning unit
+W=QL/COPc; // Work input of Air conditioning unit
+disp ("kW",W,"Work input of Air conditioning unit = ","(a).Summer air conditioning (cooling)");
+// (b).Winter air conditioning (recerse cycle heating)
+TH=293; // Operating temperature in kelvin
+TL=(-(-2*q*TH)-sqrt ((-2*q*TH)^2-(4*q*(q*TH^2-TH))))/(2*q);// Lowest outdoor Temperature by root
+disp ("K",TL,"Lowest outdoor Temperature = ","(b).Winter air conditioning (recerse cycle heating)");
diff --git a/2006/CH6/EX6.5/ex6_5.sce b/2006/CH6/EX6.5/ex6_5.sce new file mode 100755 index 000000000..4cd13fbb9 --- /dev/null +++ b/2006/CH6/EX6.5/ex6_5.sce @@ -0,0 +1,14 @@ +clc;
+// (a).For the refrigerator
+TL=258; // Operating temperature in kelvin
+TH=313; // Operating temperature in kelvin
+QL=3.5167; // Ton of refrigeration in kW
+COP=TL/(TH-TL); // COP of Refrigeration unit
+W=QL/COP; // Power comsumption of refrigerator
+disp ("kW",W,"Power comsumption of refrigerator = ","(a).For the refrigerator");
+// (b). For the freezer
+TL=248; // Operating temperature in kelvin
+TH=313; // Operating temperature in kelvin
+COP=TL/(TH-TL); // COP of Freezer unit
+QL=W*COP; // Refrigeration produced
+disp ("kW",QL,"Refrigeration produced = ","(b). For the freezer")
diff --git a/2006/CH6/EX6.6/ex6_6.sce b/2006/CH6/EX6.6/ex6_6.sce new file mode 100755 index 000000000..e3cf03a71 --- /dev/null +++ b/2006/CH6/EX6.6/ex6_6.sce @@ -0,0 +1,14 @@ +clc;
+Psat=200;//Pressure of water in kPa
+Tsat=393.38; // Saturation temperaure at Psat in kelvin
+// (i).From the equation Tds=du+pdv
+// Following are from steam table at Psat
+ufg=2025; // specific internal energy of vapourization in kJ/kg
+vg=0.8857; // specific volume in m^3/kg
+vf=0.001061; // specific volume in m^3/kg
+sfg=(ufg/Tsat)+(Psat*(vg-vf)/Tsat); // specific entropy of vapourization
+disp ("kJ/kg K",sfg,"specific entropy of vapourization = ","(i).From the equation Tds=du+pdv ");
+// (ii).From the equation Tds=dh-vdp
+hfg=2201.9; // Specific enthalpy of vapourization in kJ/kg
+sfg=hfg/Tsat; // specific entropy of vapourization
+disp ("kJ/kg K",sfg,"specific entropy of vapourization = ","(ii).From the equation Tds=dh-vdp ");
diff --git a/2006/CH6/EX6.7/ex6_7.sce b/2006/CH6/EX6.7/ex6_7.sce new file mode 100755 index 000000000..7f5f6173b --- /dev/null +++ b/2006/CH6/EX6.7/ex6_7.sce @@ -0,0 +1,15 @@ +clc;
+p1=1; // Pressure of steam at state 1 in bar
+T=473; // Temperature of steam at state 1 in kelvin
+// (i).Pressure after compression
+p2=1.5538; // Pressure after compression at (Psat)T from steam table in MPa
+disp ("MPa",p2,"Pressure after compression = ","(i).Pressure after compression");
+// (ii).Heat Transfer and work done during the process
+// Following are from steam table
+s2=6.4323; // specific entropy of steam at state 2 in kJ/kg K
+s1=7.8343; // specific entropy of steam at state 1 in kJ/kg K
+u2=2595.3; // specific internal energy of steam at state 2 in kJ/kg
+u1=2658.1; // specific internal energy of steam at state 1 in kJ/kg
+q=T*(s2-s1); // Heat transfer during the process
+w=q-(u2-u1); // Work done during the process
+disp ("kJ",w,"Work done during the process = ","kJ",q,"Heat transfer during the process = ","(ii).Heat Transfer and work done during the process");
diff --git a/2006/CH6/EX6.8/ex6_8.sce b/2006/CH6/EX6.8/ex6_8.sce new file mode 100755 index 000000000..cc1ade313 --- /dev/null +++ b/2006/CH6/EX6.8/ex6_8.sce @@ -0,0 +1,14 @@ +clc;
+p1=6; // Initial pressure of steam in MPa
+T1=500; // Initial temperature of steam in degree celcius
+p2=10; // Final pressure of steam in bar
+// From steam tables
+s1=6.8803; sf2=1.3026; sfg2=6.0568; // specific entropy in kJ/kg K
+u1=3082.2; uf2=761.68; ufg2=1822; // specific internal energy in kJ/kg
+v1=0.05665; vf2=0.001043; vg2=1.694; // specific volume in m^3/kg
+x2=(v1-vf2)/(vg2-vf2);// Quality of steam
+u2=uf2+x2*ufg2; // specific internal energy in kJ/kg
+s2=sf2+x2*sfg2; // specific entropy in kJ/kg K
+s21=s2-s1; // Entropy change
+q=u2-u1; // Heat transfer
+disp ("kJ",q,"Heat transfer for the process =","kJ/kg",s21,"Entropy change of the process = ");
diff --git a/2006/CH7/EX7.1/ex7_1.sce b/2006/CH7/EX7.1/ex7_1.sce new file mode 100755 index 000000000..d4470ea89 --- /dev/null +++ b/2006/CH7/EX7.1/ex7_1.sce @@ -0,0 +1,30 @@ +clc;
+p1=1; // Initial pressure of fluid in MPa
+T1=250; // Initial temperture of fluid in degree celcius
+V=0.28; // Volume of container in m^3
+p2=0.35; // Initial pressure of the fluid in MPa
+// (a).Water
+v1=0.2327; // specific volume of vapour from steam table at state 1 in m^3/kg
+v2=v1; // constant volume process
+vf2=0.001079; vfg2=0.5232; // specific volume of vapour from steam table at state 2 in m^3/kg
+m=V/v1; // mass of steam
+x2=(v2-vf2)/vfg2; // quality of steam at state 2
+t2=138.88; // Final temperature of fluid in degree celcius (saturation temperature at p2)
+// following are the values taken from steam tables
+u1=2709.9; // specific internal energy at state 1 in kJ/kg
+s1=6.9247; // Specific entropy at state 1 in kJ/kg K
+uf2=582.95; ug2=2548.9; // specific internal energy at state 2 in kJ/kg
+sf2=1.7245; sg2=6.9405; // Specific entropy at state 2 in kJ/kg K
+u2=(1-x2)*uf2+x2*ug2; // specific internal energy at state 2
+s2=(1-x2)*sf2+x2*sg2; // specific enropy at state 2
+Q=m*(u2-u1); // Heat transferred
+S21=m*(s2-s1); // Entropy change
+disp ("kJ/kg K (round off error)",S21,"Entropy change = ","kJ (answer mentioned in the textbook is wrong)",Q,"Heat transferred = ',"oC",t2,"Final Temperature = ","(a).Water");
+// (b).Air
+Cvo=0.7165; // Specific heat at constant volume in kJ/kg K
+R=0.287; // characteristic gas constant of air in kJ/kg K
+m=(p1*10^3*V)/(R*(T1+273)); // Mass of air
+T2=(p2/p1)*(273+T1); // Final temperature of air
+Q=m*Cvo*(T2-(T1+273)); // Heat transferred
+S21=m*Cvo*log (T2/(273+T1)); // Change in entropy
+disp ("kJ/kg K (round off error)",S21,"Entropy change = ","kJ (round off error)",Q,"Heat transferred = ',"K ",T2,"Final Temperature = ","(b).Air");
diff --git a/2006/CH7/EX7.10/ex7_10.sce b/2006/CH7/EX7.10/ex7_10.sce new file mode 100755 index 000000000..d09bc6010 --- /dev/null +++ b/2006/CH7/EX7.10/ex7_10.sce @@ -0,0 +1,25 @@ +clc;
+p1=3; // Pressure of fluid at inlet in bar
+T1=150; // Temperature of fluid at inlet in degree celcius
+V1=90; // Velocity of fluid at inlet in m/s
+eff_nozzle=0.85; // Nozzle efficiency
+k=1.4; // Index of reversible adiabatic process
+p2=1/3*p1;
+// (a).Steam
+// Following are taken from steam table
+h1=2761; // specific enthalpy in kJ/kg
+s1=7.0778;// specific entropy in kJ/kg K
+s2s=s1; // Isentropic process
+sf2s=1.3026; sfg2s=6.0568;// specific entropy in kJ/kg K
+hf2=417.46; hfg2=2258; // specific enthalpy in kJ/kg
+x2s=(s2s-sf2s)/sfg2s; // Quality of steam
+h2s=hf2+x2s*hfg2;
+V2s=sqrt (2000*(h1-h2s)+V1^2); // Isentropic Velocity
+V2=sqrt (eff_nozzle) *V2s; // Actual nozzle exit velocity
+disp ("m/s (round off error)",V2," Actual nozzle exit velocity = ","(a).Steam");
+// (b).Air
+Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K
+T2s=(T1+273)*(p2/p1)^((k-1)/k); // Isentropic temperature
+V2s=sqrt ((2000*Cpo*((T1+273)-T2s))+V1^2); // Isentropic Velocity and (answer mentioned in the textbook is wrong)
+V2=sqrt (eff_nozzle) *V2s; // Actual nozzle exit velocity
+disp ("m/s (answer mentioned in the textbook is wrong)",V2," Actual nozzle exit velocity = ","(b).Air");
diff --git a/2006/CH7/EX7.11/ex7_11.sce b/2006/CH7/EX7.11/ex7_11.sce new file mode 100755 index 000000000..279f49b4e --- /dev/null +++ b/2006/CH7/EX7.11/ex7_11.sce @@ -0,0 +1,22 @@ +clc;
+p1=200; // Pressure of fluid at inlet in kPa
+T1=200; // Temperature of fluid at inlet in degree celcius
+V1=700; // Velocity of fluid at inlet in m/s
+V2=70; // Velocity of fluid at outlet in m/s
+// (a).Reversible Adiabatic process
+// state of steam entering diffuser (superheated)
+h1=2870.5;// specific enthalpy in kJ/kg
+s1=7.5066; // specific entropy in kJ/kg K
+h2=h1+(V1^2-V2^2)/2000; // From first and second laws
+s2=s1; // Isentropic peocess
+// From superheated table
+p2s=550; // Pressure of fluid at outlet in kPa
+T2=324; // Temperature of fluid at outlet in degree celcius
+disp ("oC",T2,"Temperature of fluid at outlet =","kPa",p2s,"Pressure of fluid at outlet = ","(a).Reversible adiabatic process");
+// (b).Actual diffusion
+// for the same change in K.E, from first law
+h2=3113.1;// specific enthalpy in kJ/kg
+p2=400; // Actual exit pressure in kPa
+t2=322.4; // from superheated table in degree celcius
+eff_d=(p2-p1)/(p2s-p1); // Diffuser efficiency
+disp ("%",eff_d*100,"Diffuser efficiency = ","oC",t2,"The exit temperature =","(b).Actual diffusion");
diff --git a/2006/CH7/EX7.12/ex7_12.sce b/2006/CH7/EX7.12/ex7_12.sce new file mode 100755 index 000000000..052d2258f --- /dev/null +++ b/2006/CH7/EX7.12/ex7_12.sce @@ -0,0 +1,16 @@ +clc;
+p1=1; // Pressure of fluid at inlet in bar
+T1=60; // Temperature of fluid at inlet in degree celcius
+p2=2.8; // Pressure of fluid at outlet in bar
+eff_d=0.80; // Diffuser efficiency
+k=1.4; // Index of reversible adiabatic process
+Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K
+// (a).Actual Diffuser
+p2s=((p2-p1)/eff_d)+p1; // Isentropic pressure
+T2=(T1+273)*(p2s/p1)^((k-1)/k); // Exit temperature
+V1=sqrt (2000*Cpo*(T2-(T1+273))); // Initial Velocity
+disp ("m/s",V1,"Initial Velocity =","K",T2,"Temperature of air leaving diffuser =","(a).Actual Diffuser");
+// (b).Reversible Adiabatic diffuser
+T2s=(T1+273)*(p2/p1)^((k-1)/k); // Isentropic exit temperature
+V1=sqrt (2000*Cpo*(T2s-(T1+273))); // Initial Velocity
+disp ("m/s",V1,"Initial Velocity =","K",T2s,"Temperature of air leaving diffuser =","(b).Reversible Adiabatic diffuser");
diff --git a/2006/CH7/EX7.13/ex7_13.sce b/2006/CH7/EX7.13/ex7_13.sce new file mode 100755 index 000000000..3874c0005 --- /dev/null +++ b/2006/CH7/EX7.13/ex7_13.sce @@ -0,0 +1,15 @@ +clc;
+m=18; // mass flow rate of air in kg/s
+p1=3.6; // Pressure of fluid at inlet of turbine in MPa
+T1=800; // Temperature of fluid at inlet of turbine in Kelvin
+V1=100; // Velocity of fluid at inlet of turbine in m/s
+V2=150; // Velocity of fluid at outlet of turbine in m/s
+W=3.6; // Power output of turbine in MW
+p3=1.01; // pressure at diffuser outlet in bar
+k=1.4; // Index of reversible adiabatic process
+Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K
+// (a) Pressure at diffuser inlet
+T2=((Cpo*T1)-((W*10^3)/m+(V2^2-V1^2)/2000))/Cpo; // Temperature at outlet of turbine
+T3=(T2+273)+((V2^2)/(2*Cpo*10^3)); // Temperature of fluid at diffuser inlet
+p2=p3*((T2+273)/T3)^(k/(k-1)); //pressure at diffuser inlet
+disp ("bar",p2,"(a).pressure at diffuser inlet =");
diff --git a/2006/CH7/EX7.14/ex7_14.sce b/2006/CH7/EX7.14/ex7_14.sce new file mode 100755 index 000000000..224a6d330 --- /dev/null +++ b/2006/CH7/EX7.14/ex7_14.sce @@ -0,0 +1,9 @@ +clc;
+T1=35; // Temperature of freon 12 before throttling in degree celcius
+T2=5; // Temperature of freon 12 after throttling in degree celcius
+// from property table of freon 12
+h1=69.49;// specific enthalpy in kJ/kg
+hf2=40.66; hfg2=148.86; // specific enthalpy in kJ/kg
+h2=h1; // throttling process
+x2=(h2-hf2)/hfg2; // Quality of Freon 12 vapour
+disp (x2,"Quality of Freon 12 vapour = ");
diff --git a/2006/CH7/EX7.15/ex7_15.sce b/2006/CH7/EX7.15/ex7_15.sce new file mode 100755 index 000000000..caddd920b --- /dev/null +++ b/2006/CH7/EX7.15/ex7_15.sce @@ -0,0 +1,16 @@ +clc;
+p2=276; // Pressure at inlet in kPa
+p=6.5; // gauge pressure at outlet in cm Hg
+T3=110; // Temperature at outlet in degree celcius
+pa=756; // Barometric pressure in mm Hg
+mc=760;// Mass of condensed steam in g
+ms=25; // Mass of separated water in g
+den=13600; // Density of mercury in kg/m^3
+g=9.81; // Acceleration due to gravity in m/s^2
+z=(pa*10^-3)+(p*10^-2);// absolute pressure in m Hg
+p3=den*g*z; // Pressure after throttling
+h3=2697.4;// specific enthalpy in kJ/kg
+hf2=545.31; hfg2=2175.2; // specific enthalpy in kJ/kg
+x2=(h3-hf2)/hfg2; // Quality of steam
+x1=(mc/(mc+ms))*x2; // Quality of steam in the main line
+disp (x1,"Quality of steam in the main line =");
diff --git a/2006/CH7/EX7.2/ex7_2.sce b/2006/CH7/EX7.2/ex7_2.sce new file mode 100755 index 000000000..e91e8996e --- /dev/null +++ b/2006/CH7/EX7.2/ex7_2.sce @@ -0,0 +1,32 @@ +clc;
+p1=1.0021; // Initial pressure of the fluid in MPa
+T1=180; // Initial temperature of the fluid in degree celcius
+m=0.5; // Mass of the fluid in kg
+p2=p1; // Constant pressure process
+// (a).Steam
+x1=0.8; // Quality of the steam at state 1
+// Following are the values taken from steam table
+vf1=0.001127; vfg1=0.1929; // specific volume of the steam in m^3/kg
+hf1=763.2; hfg1=2015; // specific enthalpy in kJ/kg
+sf1=2.1396; sfg1=4.4460; // specific entropy in kJ/kg K
+v1=vf1+x1*vfg1; // specific volume in m^3/kg
+h1=hf1+x1*hfg1; // specific enthalpy in kJ/kg
+s1=sf1+x1*sfg1; // specific entropy in kJ/kg K
+v2=2*v1; // Final volume of the fluid
+t2=410.5; // Final temperature of steam in degree celcius (from superheated steam table)
+h2=3286.4; // specific enthalpy in kJ/kg
+s2=7.525; // specific entropy in kJ/kg K
+S21=m*(s2-s1); // Change in entropy
+W=m*p1*10^3*(v2-v1); // Work done
+Q=m*(h2-h1); // Heat transferred
+disp ("kJ",Q,"Heat transferred = ","kJ",W,"Work done = ","kJ/K",S21,"Change in entropy = ","K",t2+273,"Final Temperature = ","(a).Steam");
+// (b).Air
+Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K
+R=0.287; // characteristic gas constant of air in kJ/kg K
+V1=m*R*(T1+273)/(p1*10^3); // Initil volume
+V2=2*V1; // Final volume
+T2=(T1+273)*V2/V1; // Final temperature
+S21=m*Cpo*log (V2/V1); // Change in entropy
+W=p1*10^3*(V2-V1); // Work done
+Q=m*Cpo*(T2-(T1+273));// Heat transferred
+disp ("kJ",Q,"Heat transferred = ","kJ",W,"Work done = ","kJ/K",S21,"Change in entropy = ","K",T2,"Final Temperature = ","(b).Air");
diff --git a/2006/CH7/EX7.3/ex7_3.sce b/2006/CH7/EX7.3/ex7_3.sce new file mode 100755 index 000000000..4eb12283a --- /dev/null +++ b/2006/CH7/EX7.3/ex7_3.sce @@ -0,0 +1,27 @@ +clc;
+m=1.5; // Mass of the fluid in kg
+p1=1; // Initial pressure of fluid in bar
+T1=150; // Initial temperture of fluid in degree celcius
+v2=0.3; // Final specific volume in m^3/kg
+// (a).Steam
+// Following are the values taken from steam table
+u1=2582.8; // specific internal energy in kJ/kg
+s1=7.6134; // specific entropy in kJ/kg K
+vf2=0.001091; vfg2=0.3917; // specific volume of the steam in m^3/kg
+sf2=1.8418; sfg2=4.9961; // specific entropy in kJ/kg K
+uf2=631.7; ufg2=1927.8; // specific internal energy in kJ/kg
+x2=(v2-vf2)/vfg2; // Quality of steam at state 2
+s2=sf2+x2*sfg2; // specific entropy in kJ/kg K
+u2=uf2+x2*ufg2; // specific internal energy in kJ/kg
+S21=m*(s2-s1); // Change in entropy
+U21=m*(u2-u1); // Change in internal energy
+Q=(T1+273)*(S21); // Heat transferred
+W=Q-U21; // Work done
+disp ("kJ",Q,"Heat transferred = ","kJ",W,"Work done = ","kJ/K",S21,"Change in entropy = ","kJ",U21,"Change in internal energy = ","(a).Steam");
+// (b).Air
+R=0.287; // characteristic gas constant of air in kJ/kg K
+v1=(R*(T1+273))/(p1*10^2); // initial specific volume
+S21=m*R*log (v2/v1); // Change in entropy
+Q=(T1+273)*(S21); // Heat transferred
+W=Q; // Work done
+disp ("kJ",Q,"Heat transferred = ","kJ",W,"Work done = ","kJ/K",S21,"Change in entropy = ","kJ",U21,"Change in internal energy = ","(b).Air");
diff --git a/2006/CH7/EX7.4/ex7_4.sce b/2006/CH7/EX7.4/ex7_4.sce new file mode 100755 index 000000000..1a6b28b5b --- /dev/null +++ b/2006/CH7/EX7.4/ex7_4.sce @@ -0,0 +1,25 @@ +clc;
+m=1.5; // Mass of the fluid in kg
+p1=1.6; // Initial pressure of fluid in MPa
+T1=250; // Initial temperture of fluid in degree celcius
+p2=150; // Initial pressure of the fluid in kPa
+// (a).Steam
+// Following are the values taken from steam table
+// state 1 is superheated
+u1=2692.3; // specific internal energy in kJ/kg
+s1=6.6732; // specific entropy in kJ/kg K
+v1=0.14184; // specific volume of the steam in m^3/kg
+// State 2 is wet (s1=s2<sg2)
+T2=111.37; // Final temperature of steam in degree celcius
+sf2=1.4336; sfg2=5.7897; // specific entropy in kJ/kg K
+uf2=466.94; ufg2=2052.7; // specific internal energy in kJ/kg
+x2=(s1-sf2)/sfg2; // Quality of steam at state 2
+u2=uf2+x2*ufg2; // specific internal energy in kJ/kg
+W=-m*(u2-u1);// Work done
+disp ("kJ",W,"Work done = ","K",T2+273,"Final temperature of steam =","(a).Steam");
+// (b).Air
+Cvo=0.7165; // Specific heat at constant volume in kJ/kg K
+k=1.4; // index of reversible adiabatic process
+T2=(T1+273)*((p2*10^-3)/p1)^((k-1)/k); // Final temperature of air
+W=-m*Cvo*(T2-(T1+273)); // Work done
+disp ("kJ",W,"Work done = ","K",T2,"Final temperature of =","(b).Air");
diff --git a/2006/CH7/EX7.5/ex7_5.sce b/2006/CH7/EX7.5/ex7_5.sce new file mode 100755 index 000000000..d5c458877 --- /dev/null +++ b/2006/CH7/EX7.5/ex7_5.sce @@ -0,0 +1,33 @@ +clc;
+m=1.5; // Mass of the fluid in kg
+p1=1.6; // Initial pressure of fluid in MPa
+T1=250; // Initial temperture of fluid in degree celcius
+p2=150; // Initial pressure of the fluid in kPa
+n=1.25; // Index of polytropic process
+// (a).Steam
+// Following are the values taken from steam table
+// state 1 is superheated
+u1=2692.3; // specific internal energy in kJ/kg
+s1=6.6732; // specific entropy in kJ/kg K
+v1=0.14184; // specific volume of the steam in m^3/kg
+v2=v1*(p1/(p2*10^-3))^(1/n); // specific volume of the steam at state 2
+// State 2 is wet
+T2=111.37; // Final temperature of steam in degree celcius
+vf2=0.0010531; vfg2=1.1582; // specific volume of the steam in m^3/kg
+x2=(v2-vf2)/vfg2; // Quality of steam at state 2
+sf2=1.4336; sfg2=5.7897; // specific entropy in kJ/kg K
+uf2=466.94; ufg2=2052.7; // specific internal energy in kJ/kg
+s2=sf2+x2*sfg2; // specific entropy in kJ/kg K
+u2=uf2+x2*ufg2; // specific internal energy in kJ/kg
+W=m*((p2*v2)-(p1*10^3*v1))/(1-n); // Work done
+Q=m*(u2-u1)+W; // Heat ttransferred
+S21=m*(s2-s1); // Change in entropy
+disp ("kJ",Q,"Heat transferred = ","kJ",W,"Work done = ","kJ/K",S21,"Change in entropy = ","K",T2+273,"Final Temperature = ","(a).Steam");
+// (b).Air
+R=0.287; // characteristic gas constant of air in kJ/kg K
+Cvo=0.7165; // Specific heat at constant volume in kJ/kg K
+T2=(T1+273)*((p2*10^-3)/p1)^((n-1)/n); // Final temperature of air
+W=m*R*(T2-(T1+273))/(1-n); // Work done
+Q=m*Cvo*(T2-(T1+273))+W; // Heat transferred
+S21=m*(Cvo+R/(1-n))*log (T2/(T1+273)); // Change in entropy
+disp ("kJ",Q,"Heat transferred = ","kJ",W,"Work done = ","kJ/K",S21,"Change in entropy = ","K",T2,"Final Temperature = ","(b).Air");
diff --git a/2006/CH7/EX7.6/ex7_6.sce b/2006/CH7/EX7.6/ex7_6.sce new file mode 100755 index 000000000..d2ed3e722 --- /dev/null +++ b/2006/CH7/EX7.6/ex7_6.sce @@ -0,0 +1,24 @@ +clc;
+m=1; // Massflow rate of the steam in kg/s
+p1=3.5; // Pressure at inlet in MPa
+T1=400; // Temperature at inlet in degree celcius
+V1=250; // Velocity of stesm at inlet in m/s
+p2=50; // Pressure at outlet in kPa
+T2=100; // Temperature at outlet in degree celcius
+V2=30; // Velocity of stesm at outlet in m/s
+// For actual expansion in the turbine
+h1=3222.3; h2=2682.5; // specific enthalpy in kJ/kg at inlet and exit
+wa=h1-h2+(V1^2-V2^2)/2000; // Work done
+W=m*wa; // Power output
+disp ("kW",W,"Power output of the turbine = (Error in textbook)");
+// For reversible adiabatic expansion
+// Following are the values taken from steam table
+s1=6.8405; // specific entropy in kJ/kg K
+s2s=s1; // Isentropic expansion
+sf2=1.091; sfg2=6.5029; // specific entropy in kJ/kg K
+hf2=340.49; hfg2=2305.4; // specific enthalpy in kJ/kg
+x2s=(s1-sf2)/sfg2; // Quality of steam at state 2
+h2s=hf2+x2s*hfg2; // specific enthalpy in kJ/kg
+ws=h1-h2s+(V1^2-V2^2)/2000; // Isentropic Work done
+eff_isen=wa/ws; // Isentropic efficiency of the turbine
+disp("%",eff_isen*100,"Isentropic efficiency of the turbine = (Error in textbook)")
diff --git a/2006/CH7/EX7.7/ex7_7.sce b/2006/CH7/EX7.7/ex7_7.sce new file mode 100755 index 000000000..07d749e72 --- /dev/null +++ b/2006/CH7/EX7.7/ex7_7.sce @@ -0,0 +1,13 @@ +clc;
+m=1; // Massflow rate of the steam in kg/s
+p1=3.5; // Pressure at inlet in bar
+T1=160; // Temperature at inlet in degree celcius
+p2=1; // Pressure at outlet in bar
+Cpo=1.005; // Specific heat at constant pressure in kJ/kg K
+eff_isen=0.85; // Isentropic efficiency of the turbine
+k=1.4; // index of isentropic process
+T2s=(T1+273)*(p2/p1)^((k-1)/k); // Final temperature after isentropic expansion
+Ws=m*Cpo*((T1+273)-T2s); // Isentropic power developed
+Wa=eff_isen*Ws; // Actual power developed
+T2=(T1+273)-(Wa/(m*Cpo)); // Final temperature after expansion
+disp ("K",T2,"Final temperature after expansion = ","kW",Wa,"Actual power developed (Error in textbook)=");
diff --git a/2006/CH7/EX7.8/ex7_8.sce b/2006/CH7/EX7.8/ex7_8.sce new file mode 100755 index 000000000..3c883ef58 --- /dev/null +++ b/2006/CH7/EX7.8/ex7_8.sce @@ -0,0 +1,21 @@ +clc;
+m=0.05; // mass flowrate of Freon 12 in kg/s
+p1=300; // Pressure of Freon 12 at inlet in kpa
+t1=5; // Temperature of Freon 12 at inlet in degree celcius
+p2=1.2; // Pressure of Freon 12 at outlet in MPa
+t2=80; // Temperature of Freon 12 at outlet in degree celcius
+W=-2.3; // Power consumption of compressor in kW
+// (a).Heat transfer from the body of compressor to environment
+// From the table of properties of Freon 12
+h1= 190.8; h2=230.4; // specific enthalpy in kJ/kg
+s1=0.71; s2=0.7514 // specific entropy in kJ/kg K
+Q=m*(h2-h1)+W; // Heat transfer
+disp ("kW",Q,"(a).Heat transfer from the body of compressor to environment =");
+// (b).Adiabatic efficiency of the compressor
+// For adiabatic compression p2=1.2Mpa,s2s=s1
+t2s=61.7;// Temperature of Freon 12 at outlet in degree celcius
+h2s=216.14; // specific enthalpy in kJ/kg
+ws=(h2s-h1); // Reversible adiabatic work
+wa=W/m; // Actual work
+eff_com=abs (ws/wa); // Adiabatic efficiency
+disp ("%",eff_com*100,"(b).Adiabatic efficiency of the compressor = ");
diff --git a/2006/CH7/EX7.9/ex7_9.sce b/2006/CH7/EX7.9/ex7_9.sce new file mode 100755 index 000000000..d7403351c --- /dev/null +++ b/2006/CH7/EX7.9/ex7_9.sce @@ -0,0 +1,15 @@ +clc;
+p1=1; // Pressure of air at inlet of compressor in bar
+T1=30; // Temperature of air at inlet of compressor in degree celcius
+p2=12; // Delivery pressure of air in bar
+T2=400; // Temperature of air at inlet of compressor in degree celcius
+V2=90; // Velocity of air at exit in m/s
+w=3740; // Power input to compressor in kW
+k=1.4; // Index of reversible adiabatic process
+Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K
+wa=Cpo*(T2-T1)+V2^2/2000; // Actual specific work input
+m=w/wa; // Mass flow rate of air
+T2s=(T1+273)*(p2/p1)^((k-1)/k);// Isentropic discharge temperature
+ws=Cpo*(T2s-(T1+273))+V2^2/2000; // Isentropic work
+eff_com=ws/wa; // Isentrpic efficiency
+disp ("%",eff_com*100,"Isentrpic efficiency of compressor =","K",T2s,"Isentropic discharge temperature = ");
diff --git a/2006/CH8/EX8.1/ex8_1.sce b/2006/CH8/EX8.1/ex8_1.sce new file mode 100755 index 000000000..f4ed1e1e9 --- /dev/null +++ b/2006/CH8/EX8.1/ex8_1.sce @@ -0,0 +1,25 @@ +clc;
+TH=311.06; // Source temperature in degree celcius
+pb=10; // Boiler pressure in MPa
+TL=32.88; // Sink temperature in degree celcius
+pc=5; // Condenser pressure in kPa
+// From steam tables at pb
+h2=1407.56; // specific enthalpy in kJ/kg
+h3=2724.7; // specific enthalpy in kJ/kg
+s2=3.3596; // specific entropy in kJ/kg K
+s3=5.6141; // specific entropy in kJ/kg K
+// From steam tables at pc
+hf=137.82; hfg=2423.7; // specific enthalpy in kJ/kg
+sf=0.4764; sfg=7.9187; // specific entropy in kJ/kg K
+x1=(s2-sf)/sfg; // quality of steam at state 1
+x4=(s3-sf)/sfg; // quality of steam at state 4
+h1=hf+x1*hfg; // specific enthalpy at state 1
+h4=hf+x4*hfg; // specific enthalpy at state 4
+wT=h3-h4; // Turbine work
+wC=h2-h1; // Compressor work
+wnet=wT-wC; // Net work output
+qH=h3-h2; // Heat added
+rw=wnet/wT; // Ratio of net work to trbine work
+eff_th=wnet/qH; // Thermal efficiency
+SSC=3600/wnet; // specific steam consumption
+disp ("kg/kWh",SSC,"specific steam consumption =","%",eff_th*100,"Thermal efficiency =",rw,"Ratio of net work to trbine work =");
diff --git a/2006/CH8/EX8.2/ex8_2.sce b/2006/CH8/EX8.2/ex8_2.sce new file mode 100755 index 000000000..036f45b07 --- /dev/null +++ b/2006/CH8/EX8.2/ex8_2.sce @@ -0,0 +1,25 @@ +clc;
+TH=311.06; // Source temperature in degree celcius
+p2=10; // Boiler pressure in MPa
+TL=32.88; // Sink temperature in degree celcius
+p1=5; // Condenser pressure in kPa
+// From steam tables at p2
+h3=2724.7; // specific enthalpy in kJ/kg
+s3=5.6141; // specific entropy in kJ/kg K
+// From steam tables at p1
+hf=137.82; hfg=2423.7; // specific enthalpy in kJ/kg
+sf=0.4764; sfg=7.9187; // specific entropy in kJ/kg K
+x4=(s3-sf)/sfg; // quality of steam at state 4
+h4=hf+x4*hfg; // specific enthalpy at state 4
+h1=137.82; // specific enthalpy at state 1 in kJ/kg
+s1=0.4764; // specific entropy at state in kJ/kgK
+v1=0.001005; // specific volume in m^3/kg
+wp=abs (v1*(p2*10^3-p1)); // Pump work (absolute value)
+h2=h1+wp; // specific enthalpy at state 2
+wT=h3-h4; // Turbine work
+wnet=wT-wp; // Net work output
+qH=h3-h2; // Heat added
+rw=wnet/wT; // Ratio of net work to trbine work
+eff_th=wnet/qH; // Thermal efficiency
+SSC=3600/wnet; // specific steam consumption
+disp ("kg/kWh",SSC,"specific steam consumption =","%",eff_th*100,"Thermal efficiency =",rw,"Ratio of net work to trbine work =");
diff --git a/2006/CH8/EX8.3/ex8_3.sce b/2006/CH8/EX8.3/ex8_3.sce new file mode 100755 index 000000000..4fa1ebeb1 --- /dev/null +++ b/2006/CH8/EX8.3/ex8_3.sce @@ -0,0 +1,47 @@ +clc;
+TH=311.06; // Source temperature in degree celcius
+p2=10; // Boiler pressure in MPa
+TL=32.88; // Sink temperature in degree celcius
+p1=5; // Condenser pressure in kPa
+// (a).Actual carnot cycle
+eff_Tur=0.8; // Efficiency of turbine
+eff_com=0.6; // Efficiency of compressure
+// From steam tables at p2
+h3=2724.7; // specific enthalpy in kJ/kg
+s3=5.6141; // specific entropy in kJ/kg K
+s2=3.3596; // specific entropy in kJ/kg K
+h2=1407.56; // specific enthalpy in kJ/kg
+// From steam tables at p1
+hf=137.82; hfg=2423.7; // specific enthalpy in kJ/kg
+sf=0.4764; sfg=7.9187; // specific entropy in kJ/kg K
+x1=(s2-sf)/sfg; // quality of steam at state 1
+x4=(s3-sf)/sfg; // quality of steam at state 4
+h1=hf+x1*hfg; // specific enthalpy at state 1
+h4=hf+x4*hfg; // specific enthalpy at state 4
+wTs=h3-h4; // Turbine work
+wT=eff_Tur*wTs; // Actual turbine work
+wCs=h2-h1; // Compressor work
+wC=wCs/eff_com; // Actual compressor work
+wnet=wT-wC; // Net work output
+h2a=h1+wC; // specific enthalpy
+qH=h3-h2a; // Heat added
+rw=wnet/wT; // Ratio of net work to trbine work
+eff_th=wnet/qH; // Thermal efficiency
+SSC=3600/wnet; // specific steam consumption
+disp ("kg/kWh",SSC,"specific steam consumption =","%",eff_th*100,"Thermal efficiency =",rw,"Ratio of net work to trbine work =","(a).Actual carnot cycle");
+// (b).Actual Rankine cycle
+eff_Tur=0.8; // Efficiency of turbine
+eff_pump=0.9; // Efficiency of Pump
+// From steam tables at p1
+h1=137.82; // specific enthalpy at state 1 in kJ/kg
+s1=0.4764; // specific entropy at state in kJ/kgK
+v1=0.001005; // specific volume in m^3/kg
+wps=abs (v1*(p2*10^3-p1)); // Pump work (absolute value)
+wp=wps/eff_pump; // Actual pmp work
+h2a=h1+wp; // // specific enthalpy at state 2
+wnet=wT-wp; // Net work output
+qH=h3-h2a; // Heat added
+rw=wnet/wT; // Ratio of net work to trbine work
+eff_th=wnet/qH; // Thermal efficiency
+SSC=3600/wnet; // specific steam consumption
+disp ("kg/kWh",SSC,"specific steam consumption =","%",eff_th*100,"Thermal efficiency =",rw,"Ratio of net work to trbine work =","(b).Actual Rankine cycle");
diff --git a/2006/CH8/EX8.4/ex8_4.sce b/2006/CH8/EX8.4/ex8_4.sce new file mode 100755 index 000000000..80bea4655 --- /dev/null +++ b/2006/CH8/EX8.4/ex8_4.sce @@ -0,0 +1,44 @@ +clc;
+T3=450; // temperature of steam at state 3 in degree celcius
+p3=10; // Boiler pressure in MPa
+p6=5; // Condenser pressure in kPa
+// From steam tables at state 1
+hf=137.82; hfg=2423.7; // specific enthalpy in kJ/kg
+sf=0.4764; sfg=7.9187; // specific entropy in kJ/kg K
+h1=137.82; // specific enthalpy at state 1 in kJ/kg
+s1=0.4764; // specific entropy at state in kJ/kgK
+v1=0.001005; // specific volume in m^3/kg
+wp=abs (v1*(p3*10^3-p6)); // Pump work (absolute value)
+h2=h1+wp; // specific enthalpy at state 2
+// (a).Rankine cycle with superheat
+// From steam tables at state 3
+h3=3240.9;// specific enthalpy in kJ/kg
+s3=6.419; // specific entropy in kJ/kg K
+// State 4_1
+x4_1=(s3-sf)/sfg; // Quality of steam at state 4_1
+h4_1=hf+x4_1*hfg; // specific enthalpy at state 4_1
+wT=h3-h4_1; // Turbine work
+wnet=wT-wp; // Net work output
+qH=h3-h2; // Heat added
+eff_th=wnet/qH; // Thermal efficiency
+SSC=3600/wnet; // specific steam consumption
+disp ("kg/kWh",SSC,"specific steam consumption =","%",eff_th*100,"Thermal efficiency =",x4_1,"Quality of steam at exhaust = ","(a).Rankine cycle with superheat");
+// (b).Reheat cycle
+s4=s3; // isentropic expansion
+x4=0.975; // Quality of steam at state 4
+// from steam table intermediate pressure is selected for s4 & x4 by interpolation and assumed by round value
+p4=1.2; // Intermediate pressure in MPa
+// From steam tables at state 4
+hf4=798.6; hfg4=1986.2; // specific enthalpy in kJ/kg
+h4=hf4+x4*hfg4; // specific enthalpy in kJ/kg
+// From steam tables at state 5
+h5=3368.5;// specific enthalpy in kJ/kg
+s5=7.5266; // specific entropy in kJ/kg K
+x6=(s5-sf)/sfg; // Quality of steam at state 6
+h6=hf+x6*hfg; // specific enthalpy in kJ/kg
+wT=(h3-h4)+(h5-h6); // Turbine work
+wnet=wT-wp; // Net work output
+qH=(h3-h2)+(h5-h4); // Heat added
+eff_th=wnet/qH; // Thermal efficiency
+SSC=3600/wnet; // specific steam consumption
+disp ("kg/kWh",SSC,"specific steam consumption =","%",eff_th*100,"Thermal efficiency =",x6,"Quality of steam at exhaust = ","(b).Reheat cycle");
diff --git a/2006/CH8/EX8.5/ex8_5.sce b/2006/CH8/EX8.5/ex8_5.sce new file mode 100755 index 000000000..e6831a2e8 --- /dev/null +++ b/2006/CH8/EX8.5/ex8_5.sce @@ -0,0 +1,42 @@ +clc;
+T5=311.06; // temperature of steam at state 5 in degree celcius
+p5=10; // Boiler pressure in MPa
+p4=p5;
+T7=32.88; // temperature of steam at state 7 in degree celcius
+p7=5; // Condenser pressure in kPa
+p1=p7;
+// From steam tables at p7
+h1=137.82; // specific enthalpy at state 1 in kJ/kg
+s1=0.4764; // specific entropy at state 1 in kJ/kgK
+v1=0.001005; // specific volume in m^3/kg
+wp=abs (v1*(p5*10^3-p7)); // Pump work (absolute value)
+h2=h1+wp; // specific enthalpy at state 2
+T6=(T5+T7)/2; // Temperature of bleed system
+h5=2724.7; // specific enthalpy at state 5 in kJ/kg
+s5=5.6141; // specific entropy at state 5 in kJ/kgK
+// From steam tables at state 6
+p6=791.5; // bleed steam pressure in kPa
+p2=p6; p3=p6;
+vf6=0.00114; // specific volume in m^3/kg
+v3=vf6;
+hf6=719.21; hfg6=2049.5; // specific enthalpy in kJ/kg
+sf6=2.0419; sfg6=4.6244; // specific entropy in kJ/kg K
+x6=(s5-sf6)/sfg6; // quality of steam at state 6
+h6=hf6+x6*hfg6; // specific enthalpy at state 6
+h3=hf6; // specific enthalpy at state 3
+m1=(h3-h2)/(h6-h2); // Fraction of bleed steam
+wLP=abs (v1*(p2-p1)); // LP work
+wHP=abs (v3*(p4*10^3-p3)); // HP work
+wp=(1-m1)*wLP+wHP; // Total pump work
+h2=h1+wp; h4=h3+wp; // Specific Enthalpies of water
+// From steam tables at pc
+hf7=137.82; hfg7=2423.7; // specific enthalpy in kJ/kg
+sf7=0.4764; sfg7=7.9187; // specific entropy in kJ/kg K
+x7=(s5-sf7)/sfg7; // quality of steam at state 7
+h7=hf7+x7*hfg7; // specific enthalpy at state 4
+wT=(h5-h6)+(1-m1)*(h6-h7); // Turbine work
+wnet=wT-wp; // Net work output
+qH=h5-h4; // Heat added
+eff_th=wnet/qH; // Thermal efficiency
+SSC=3600/wnet; // specific steam consumption
+disp ("kg/kWh",SSC,"specific steam consumption =","%",eff_th*100,"Thermal efficiency =");
diff --git a/2006/CH8/EX8.6/ex8_6.sce b/2006/CH8/EX8.6/ex8_6.sce new file mode 100755 index 000000000..dc1562d12 --- /dev/null +++ b/2006/CH8/EX8.6/ex8_6.sce @@ -0,0 +1,17 @@ +clc;
+ps=6.89+1; // Pressure of steam produced in bar (Absolute)
+x=0.96; // Quality of steam produced
+f=75; // Steady flow of water in litres
+t=9.5; // Time consumption of water in minutes
+tf=685; //Time consumption of 10 litre fuel in seconds
+Vf=10; // consumption of fuel in litres
+Sf=0.85; // specific gravity of water
+CV=43125; // Calorific value of fuel in kJ/kg
+ms=f/(t*60);// Steam generation
+mf=Vf*Sf/tf; // consumption of fuel
+// From steam tables at ps
+hf=718.5; hfg=2050; // specific enthalpy in kJ/kg
+hs=hf+x*hfg; // specific enthalpy of steam produced
+hFW=146.7; // Enthalpy of feed water at 35 degree celcius
+eff_boiler=(ms*(hs-hFW))/(mf*CV); // Boiler Efficiency
+disp ("%",eff_boiler*100,"Boiler Efficiency = ");
diff --git a/2006/CH8/EX8.7/ex8_7.sce b/2006/CH8/EX8.7/ex8_7.sce new file mode 100755 index 000000000..ccebb2bbe --- /dev/null +++ b/2006/CH8/EX8.7/ex8_7.sce @@ -0,0 +1,17 @@ +clc;
+TL=-15; // Source temperature in degree celcius
+TH=40; // Sink temperature in degree celcius
+// From the table of properties of Freon - 12
+h2=203.05; h3=74.53; hf4=22.31; hg4=180.85; // specific enthalpy in kJ/kg
+s1=0.682; s3=0.2716; sf4=0.0906; sg4=0.7046; sfg4=sg4-sf4;// specific entropy in kJ/kg K
+sf1=sf4; sfg1=sfg4; s2=s1; s4=s3; hf1=hf4; hg1=hg4; hfg4=hg4-hf4; hfg1=hfg4;// refer figure 8.20
+x1=(s1-sf1)/sfg1; // Dryness fraction at state 1
+x4=(s4-sf4)/sfg4; // dryness fraction at state 4
+h1=hf1+x1*hfg1; h4=hf4+x4*hfg4; // specific enthalpy in kJ/kg
+wc=h2-h1; // work of compression
+wE=h3-h4; // Work of expansion
+qL=h1-h4; // Refrigerating effect
+qH=h2-h3; // Heat rejected
+wnet=wc-wE; // Net work
+COPc=qL/wnet; // COP of the cycle
+disp (COPc,"COP of the cycle =","kJ/kg",qH,"Heat rejected =","kJ/kg",qL,"Refrigerating effect = ","kJ/kg",wE,"Work of expansion =","kJ/kg",wc,"Work of compression = ");
diff --git a/2006/CH8/EX8.8/ex8_8.sce b/2006/CH8/EX8.8/ex8_8.sce new file mode 100755 index 000000000..964929be8 --- /dev/null +++ b/2006/CH8/EX8.8/ex8_8.sce @@ -0,0 +1,31 @@ +clc;
+TL=-15; // Source temperature in degree celcius
+TH=40; // Sink temperature in degree celcius
+// From the table of properties of Freon - 12
+h3=74.53; h1=180.85; h4=h3; // specific enthalpy in kJ/kg
+s1=0.7046; s2=0.682; // specific entropy in kJ/kg K
+// (a)
+// (i).Condensor and Evaporator pressure
+pc=0.9607; // Saturation pressure at TH in MPa
+pE=0.1826; // Saturation pressure at TL in MPa
+disp ("MPa",pE,"Evaporator pressure = ","MPa",pc,"Condensor pressure = ","(i).Condensor and Evaporator pressure","(a)");
+// (ii).Compressor discharge temperature & Enthalpy
+p2=pc; // Condensor pressure
+s2=s1; // refer figure 8.25
+// From the table of properties of Freon - 12 at pc
+t2=46.8; // Compressor discharge temperature in degree celcius
+h2=208.3; // specific enthalpy in kJ/kg
+disp ("kJ/kg",h2,"Enthalpy = ","oC",t2,"Compressor discharge temperature = ","(ii).Compressor discharge temperature & Enthalpy");
+// (iii).Ratio of COP of the cycle to Carnot COP
+w=h2-h1; // Compressor work
+qL=h1-h4; // Refrigeration effect
+COP=qL/w; // COP of the cycle
+COPc=4.68; // COP of carnot cycle from example 8.7
+r=COP/COPc; // Ratio of COP of the cycle to Carnot COP
+disp (r,"(iii).Ratio of COP of the cycle to Carnot COP = ");
+// (b)
+QL=0.440; // Capacity of refrigerator in kW (1/8 ton of refrigeration)
+m=QL/qL; // Mass flow rate of refrigerant
+W=m*w; // Power consumption of compressor
+QH=QL+W; // Heat rejected
+disp ("kW",QH,"Heat rejected to surroundings = ","kW",W,"Power consumption of compressor = ","kg/s",m,"Mass flow rate of refrigerant = ","(b)");
diff --git a/2006/CH9/EX9.1/ex9_1.sce b/2006/CH9/EX9.1/ex9_1.sce new file mode 100755 index 000000000..617b769ac --- /dev/null +++ b/2006/CH9/EX9.1/ex9_1.sce @@ -0,0 +1,32 @@ +clc;
+r=8; // Compression ratio of an engine
+p1=100; // Pressure of air before compression in lPa
+T1=300; // Temperature air before compression in kelvin
+qH=1800; // Heat added to the air in kJ/kg
+k=1.4; // Index of reversible adiabatic process
+Cvo=0.7165; // Specific heat at constant volume in kJ/kg K
+Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K
+R=0.287; // characteristic gas constant of air in kJ/kg K
+// Otto cycle
+// (1) state 2
+p2=p1*(r)^k; // Pressure at the end of compression
+T2=T1*(p2/p1)^((k-1)/k);// Temperature at the end of compression
+disp ("K",T1,"Temperature air before compression =","kPa",p1,"Pressure of air before compression = ","(1).state 1");
+disp ("K",T2,"Temperature at the end of compression =","kPa",p2,"Pressure of air at the end of compression = ","state 2");
+// state 3
+T3=(qH/Cvo)+T2; // Temperatue after heat addition
+p3=p2*(T3/T2); // Pressure after heat addition
+disp ("K (round off error)",T3,"Temperature after heat addition =","kPa (round off error)",p3,"Pressure after heat addition = ","state 3");
+// state 4
+p4=p3*(1/r)^k; // Pressure after expansion
+T4=T3*(p4/p3)^((k-1)/k);// Temperature after expansion
+disp ("K (round off error)",T4,"Temperature after expansion =","kPa (round off error)",p4,"Pressure after expansion = ","state 4");
+// (2).Thermal efficiency
+qL=Cvo*(T4-T1); // Heat rejected
+eff_th=1-qL/qH; // thermal efficiency
+// (3). Mean effective pressure
+wnet=qH-qL; // net work
+v1=R*T1/p1; // Specific volume at state 1
+v2=v1/r; // Specific volume at state 2
+pm=wnet/(v1-v2); // Mean effective pressure
+disp ("kPa",pm,"(3).Mean effective pressure = ","% (round off error)",eff_th*100,"(2).Thermal efficienvy = ");
diff --git a/2006/CH9/EX9.2/ex9_2.sce b/2006/CH9/EX9.2/ex9_2.sce new file mode 100755 index 000000000..8f9e7d85f --- /dev/null +++ b/2006/CH9/EX9.2/ex9_2.sce @@ -0,0 +1,30 @@ +clc;
+r=18; // Compression ratio of an engine
+p1=100; // Pressure of air before compression in lPa
+T1=300; // Temperature air before compression in kelvin
+qH=1800; // Heat added to the air in kJ/kg
+k=1.4; // Index of reversible adiabatic process
+Cvo=0.7165; // Specific heat at constant volume in kJ/kg K
+Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K
+R=0.287; // characteristic gas constant of air in kJ/kg K
+// Diesel cycle
+// state 2
+T2=T1*(r)^(k-1); // Temperature at the end of compression
+p2=p1*(r)^k; // Pressure at the end of compression
+// state 3
+T3=(qH/Cpo)+T2; // Temperatue after heat addition
+p3=p2; //constant pressure
+Tmax=T3; // maximum temperature
+Pmax=p3; // Maximum pressure
+// state 4
+v3=R*T3/p3; // Specific volume at state 3
+v4=R*T1/p1; // Specific volume at state 4
+T4=T3*(v3/v4)^(k-1); // Temperature after expansion
+p4=p3*(v3/v4)^k; // Pressure after expansion
+qL=Cvo*(T4-T1); // Heat rejected
+wnet=qH-qL; // net work
+eff_th=wnet/qH; // thermal efficiency
+v1=R*T1/p1; // Specific volume at state 1
+v2=v1/r; // Specific volume at state 2
+pm=wnet/(v1-v2); // Mean effective pressure
+disp ("kPa",pm,"Mean effective pressure = (Error in textbook) ","%",eff_th*100,"Thermal efficienvy = ","K",Tmax,"Maximum Temperature = ","kPa",Pmax,"Maximum pressure = ");
diff --git a/2006/CH9/EX9.3/ex9_3.sce b/2006/CH9/EX9.3/ex9_3.sce new file mode 100755 index 000000000..678a07e41 --- /dev/null +++ b/2006/CH9/EX9.3/ex9_3.sce @@ -0,0 +1,20 @@ +clc;
+p1=0.1; // Pressure of air at inlet in MPa
+T1=300; // Temperature of air at inlet in kelvin
+p2=0.6; // Pressure of air at exit in MPa
+T3=1200; // Maximun temperature of air in kelvin
+k=1.4; // Index of reversible adiabatic process
+Cvo=0.7165; // Specific heat at constant volume in kJ/kg K
+Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K
+R=0.287; // characteristic gas constant of air in kJ/kg K
+// Brayton cycle
+rp=p2/p1; // pressure ratio
+T2=T1*(p2/p1)^((k-1)/k);// Temperature at the end of compression
+wc=Cpo*(T2-T1); // compressor work
+T4=T3*(p1/p2)^((k-1)/k);// Temperature at the end of expansion
+wT=Cpo*(T3-T4); // Turbine work
+qH=Cpo*(T3-T2); // heat addition
+wnet=wT-wc; // net work
+eff_th=wnet/qH; // thermal efficiency
+rw=wnet/wT; // worh ratio
+disp (rw,"Work Ratio = ","%",eff_th*100,"Thermal Efficiency = ");
diff --git a/2006/CH9/EX9.4/ex9_4.sce b/2006/CH9/EX9.4/ex9_4.sce new file mode 100755 index 000000000..2ddd76ed1 --- /dev/null +++ b/2006/CH9/EX9.4/ex9_4.sce @@ -0,0 +1,26 @@ +clc;
+p1=0.1; // Pressure of air at inlet in MPa
+T1=300; // Temperature of air at inlet in kelvin
+p2=0.6; // Pressure of air at exit in MPa
+T3=1200; // Maximun temperature of air in kelvin
+k=1.4; // Index of reversible adiabatic process
+Cvo=0.7165; // Specific heat at constant volume in kJ/kg K
+Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K
+R=0.287; // characteristic gas constant of air in kJ/kg K
+eff_t=0.85; // Turbine efficiency
+eff_c=0.8; // Compressor efficienct
+// Brayton cycle
+rp=p2/p1; // pressure ratio
+T2s=T1*(p2/p1)^((k-1)/k);// Isentropic Temperature at the end of compression
+T2=((T2s-T1)/eff_c)+T1; // Actual Temperature at the end of compression
+p3=0.585; // as per given in MPa
+p4s=0.11; // As per given in MPa
+T4s=T3*(p4s/p3)^((k-1)/k); // Isentropic temperature after reversible adiabatic expansion
+T4=T3-(eff_t*(T3-T4s));// Actual temperature at state 4
+wc=Cpo*(T2-T1); // compressor work
+wT=Cpo*(T3-T4); // Turbine work
+qH=Cpo*(T3-T2); // heat addition
+wnet=wT-wc; // net work
+eff_th=wnet/qH; // thermal efficiency
+rw=wnet/wT; // worh ratio
+disp (rw,"Work Ratio = ","%",eff_th*100,"Thermal Efficiency = ");
diff --git a/2006/CH9/EX9.5/ex9_5.sce b/2006/CH9/EX9.5/ex9_5.sce new file mode 100755 index 000000000..5ac062b4f --- /dev/null +++ b/2006/CH9/EX9.5/ex9_5.sce @@ -0,0 +1,18 @@ +clc;
+p1=0.1; // Pressure of air at inlet in MPa
+T1=300; // Temperature of air at inlet in kelvin
+p2=0.6; // Pressure of air at exit in MPa
+T3=1200; // Maximun temperature of air in kelvin
+k=1.4; // Index of reversible adiabatic process
+Cvo=0.7165; // Specific heat at constant volume in kJ/kg K
+Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K
+R=0.287; // characteristic gas constant of air in kJ/kg K
+// Brayton cycle
+rp=p2/p1; // pressure ratio
+T2=T1*(p2/p1)^((k-1)/k);// Temperature at the end of compression
+T4=T3*(p1/p2)^((k-1)/k);// Temperature at state 4
+Tx=T4; Ty=T2; // regenerator temperatures
+qH=Cpo*(T3-Tx); // Heat added in the cycle with regenerator
+qL=Cpo*(Ty-T1);// Heat rejected in the cycle with regenerator
+eff_th=1-qL/qH; // Thermal efficiency
+disp("%",eff_th*100,"Thermal efficiency with regenerator = ");
diff --git a/2006/CH9/EX9.6/ex9_6.sce b/2006/CH9/EX9.6/ex9_6.sce new file mode 100755 index 000000000..c98bb6794 --- /dev/null +++ b/2006/CH9/EX9.6/ex9_6.sce @@ -0,0 +1,42 @@ +clc;
+V1=250; // Velocoty of jet aircraft in m/s
+p1=60; // Atmospheric pressure in kPa
+T1=260; // Atmospheric temperature in kelvin
+rp=8; // Pressure ratio of compressor
+T4=1350; // Temperature of gas at turbine inlet in kelvin
+k=1.4; // Index of reversible adiabatic process
+Cvo=0.7165; // Specific heat at constant volume in kJ/kg K
+Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K
+R=0.287; // characteristic gas constant of air in kJ/kg K
+// (a).The pressure and temperature at each point of the cycle
+// process 1-2 isentropic diffusion
+T2=T1+(V1^2)/(2*Cpo*10^3); // Temperature at state 2
+p2=p1*(T2/T1)^(k/(k-1)); // Pressure at state 2
+// process 2-3 isentropic compression
+p3=rp*p2; // perssure at state 3
+T3=T2*(p3/p2)^((k-1)/k); // Temperature at state 3
+wc=Cpo*(T3-T2); // compressor work
+// process 3-4 Constant pressur heat addition
+qH=Cpo*(T4-T3); // heat addition
+p4=p3; // constant pressure
+// process 4-5 isentropic expansion in turbine
+wT=wc;
+T5=T4-(wT/Cpo); // Temperature at state 5
+p5=p4*(T5/T4)^(k/(k-1)); // Pressure at state 5
+// process 5-6 Isentropic expansion in nozzle
+p6=p1;
+T6=T5*(p6/p5)^((k-1)/k); // Temperature at state 6
+disp ("K",T6,"T6 = ","kPa",p6,"p6 = ","state 6","K",T5,"T5 = ","kPa",p5,"p5 = ","State 5","K",T4,"T4 = ","kPa",p4,"p4 =","State 4","K",T3,"T3 = ","kPa",p3,"p3 =","State 3","K",T2,"T2 =","kPa",p2,"p2 =","State 2","K",T1,"T1 =","kPa",p1,"p1 = ","State 1","(a).The pressure and temperature at each point of the cycle");
+// (b).Exit velocity of jet
+V6=sqrt (2*Cpo*10^3*(T5-T6)); // Exit velocity of jet
+disp ("m/s",V6,"(b).Exit velocity of jet =");
+// (c).Specific thrust and work output
+F_mair=(V6-V1); // Specific thrust
+w=F_mair*V1/1000; // Work output
+disp ("kJ/kg",w,"Work output = ","N",F_mair,"Specific thrust =","(c).Specific thrust and work output");
+// (d).Propulsion efficiency
+eff_p=w/(w+(V6^2-V1^2)/2000);// Propulsion efficiency
+disp ("%",eff_p*100,"(d).Propulsion efficiency =");
+// (e).Overall thermal efficiency
+eff_th=w/qH; // Overall thermal efficiency
+disp ("%",eff_th*100,"(e).Overall thermal efficiency =");
diff --git a/2006/CH9/EX9.7/ex9_7.sce b/2006/CH9/EX9.7/ex9_7.sce new file mode 100755 index 000000000..1797578db --- /dev/null +++ b/2006/CH9/EX9.7/ex9_7.sce @@ -0,0 +1,23 @@ +clc;
+p1=100; // Pressure of air at inlet in kPa
+T1=288; // Temperature of air at inlet in kelvin
+rp=12; // Pressure ratio of the compressor
+k=1.4; // Index of reversible adiabatic process
+Cvo=0.7165; // Specific heat at constant volume in kJ/kg K
+Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K
+R=0.287; // characteristic gas constant of air in kJ/kg K
+T3=T1; // From figure
+// process 1-2
+p2=12*p1; // Pressure at state 2
+T2=T1*(p2/p1)^((k-1)/k); // Temperature at state 2
+wc=Cpo*(T2-T1); // Compressor work
+// process 2-3
+qH=Cpo*(T2-T3); // Heat added
+// process 3-4
+T4=T3*(1/rp)^((k-1)/k); // Temperature at state 4
+// process 4-1 Refrigerating coil
+qL=Cpo*(T1-T4); // heat rejected
+wnet=qH-qL; // net work
+cop=qL/wnet; // Cop of plant
+pc=wnet/qL; // Power consumption per kW of refrigeration
+disp ("kW/kW",pc,"Power consumption per kW of refrigeration =",cop,"COP of the cycle =");
diff --git a/2006/CH9/EX9.8/ex9_8.sce b/2006/CH9/EX9.8/ex9_8.sce new file mode 100755 index 000000000..9e69f4676 --- /dev/null +++ b/2006/CH9/EX9.8/ex9_8.sce @@ -0,0 +1,29 @@ +clc;
+p1=100; // Pressure of air at inlet in kPa
+T1=288; // Temperature of air at inlet in kelvin
+rp=12; // Pressure ratio of the compressor
+T4=223; // Temperature at state 4
+k=1.4; // Index of reversible adiabatic process
+Cvo=0.7165; // Specific heat at constant volume in kJ/kg K
+Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K
+R=0.287; // characteristic gas constant of air in kJ/kg K
+T3=T1; // From figure
+// process 1-2
+p2=12*p1; // Pressure at state 2
+T2=T1*(p2/p1)^((k-1)/k); // Temperature at state 2
+wc=Cpo*(T2-T1); // Compressor work
+// process 2-3
+qH=Cpo*(T2-T3); // Heat added
+// process 3-4 cooling in regenerative heat exchanger
+qregen=Cpo*(T3-T4); // cooling in regenerative heat exchanger
+// process 4-5 Expander
+T5=T4*(1/rp)^((k-1)/k); // Temperature at state 5
+wE=Cpo*(T4-T5); // Expander work
+// process 5-6 Refrigerating coil
+T6=T4; // From figure 9.32
+qL=Cpo*(T6-T5); // Heat rejected
+// process 6-1 Heating in regenerative heat exchanger
+qregen=Cpo*(T1-T6); // Heat supplied
+wnet=qH-qL; // net work
+cop=qL/wnet; // Cop of plant
+disp (cop,"COP of the modified cycle =");
|