From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 2006/CH10/EX10.1/ex10_1.sce | 10 ++++++ 2006/CH10/EX10.10/ex10_10.sce | 16 ++++++++++ 2006/CH10/EX10.11/ex10_11.sce | 30 ++++++++++++++++++ 2006/CH10/EX10.12/ex10_12.sce | 41 ++++++++++++++++++++++++ 2006/CH10/EX10.2/ex10_2.sce | 13 ++++++++ 2006/CH10/EX10.3/ex10_3.sce | 24 +++++++++++++++ 2006/CH10/EX10.5/ex10_5.sce | 10 ++++++ 2006/CH10/EX10.6/ex10_6.sce | 24 +++++++++++++++ 2006/CH10/EX10.7/ex10_7.sce | 36 ++++++++++++++++++++++ 2006/CH10/EX10.8/ex10_8.sce | 30 ++++++++++++++++++ 2006/CH10/EX10.9/ex10_9.sce | 21 +++++++++++++ 2006/CH11/EX11.1/ex11_1.sce | 18 +++++++++++ 2006/CH11/EX11.3/ex11_3.sce | 28 +++++++++++++++++ 2006/CH11/EX11.4/ex11_4.sce | 18 +++++++++++ 2006/CH11/EX11.5/ex11_5.sce | 20 ++++++++++++ 2006/CH11/EX11.8/ex11_8.sce | 32 +++++++++++++++++++ 2006/CH11/EX11.9/ex11_9.sce | 10 ++++++ 2006/CH12/EX12.1/ex12_1.sce | 24 +++++++++++++++ 2006/CH12/EX12.2/ex12_2.sce | 20 ++++++++++++ 2006/CH12/EX12.3/ex12_3.sce | 8 +++++ 2006/CH12/EX12.4/ex12_4.sce | 14 +++++++++ 2006/CH12/EX12.5/ex12_5.sce | 27 ++++++++++++++++ 2006/CH12/EX12.6/ex12_6.sce | 16 ++++++++++ 2006/CH12/EX12.7/ex12_7.sce | 33 ++++++++++++++++++++ 2006/CH12/EX12.8/ex12_8.sce | 8 +++++ 2006/CH13/EX13.1/ex13_1.sce | 50 ++++++++++++++++++++++++++++++ 2006/CH13/EX13.2/ex13_2.sce | 25 +++++++++++++++ 2006/CH13/EX13.3/ex13_3.sce | 72 +++++++++++++++++++++++++++++++++++++++++++ 2006/CH13/EX13.4/ex13_4.sce | 69 +++++++++++++++++++++++++++++++++++++++++ 2006/CH14/EX14.1/ex14_1.sce | 6 ++++ 2006/CH14/EX14.10/ex14_10.sce | 29 +++++++++++++++++ 2006/CH14/EX14.11/ex14_11.sce | 11 +++++++ 2006/CH14/EX14.12/ex14_12.sce | 22 +++++++++++++ 2006/CH14/EX14.2/ex14_2.sce | 6 ++++ 2006/CH14/EX14.3/ex14_3.sce | 16 ++++++++++ 2006/CH14/EX14.4/ex14_4.sce | 8 +++++ 2006/CH14/EX14.5/ex14_5.sce | 16 ++++++++++ 2006/CH14/EX14.6/ex14_6.sce | 23 ++++++++++++++ 2006/CH14/EX14.7/ex14_7.sce | 16 ++++++++++ 2006/CH14/EX14.8/ex14_8.sce | 7 +++++ 2006/CH14/EX14.9/ex14_9.sce | 16 ++++++++++ 2006/CH15/EX15.1/ex15_1.sce | 8 +++++ 2006/CH15/EX15.2/ex15_2.sce | 19 ++++++++++++ 2006/CH15/EX15.3/ex15_3.sce | 12 ++++++++ 2006/CH15/EX15.5/ex15_5.sce | 11 +++++++ 2006/CH15/EX15.6/ex15_6.sce | 7 +++++ 2006/CH15/EX15.7/ex15_7.sce | 11 +++++++ 2006/CH15/EX15.8/ex15_8.sce | 18 +++++++++++ 2006/CH2/EX2.1/ex2_1.sce | 12 ++++++++ 2006/CH2/EX2.2/ex2_2.sce | 11 +++++++ 2006/CH3/EX3.1/ex3_1.sce | 22 +++++++++++++ 2006/CH3/EX3.2/ex3_2.sce | 26 ++++++++++++++++ 2006/CH3/EX3.3/ex3_3.sce | 7 +++++ 2006/CH3/EX3.4/ex3_4.sce | 10 ++++++ 2006/CH3/EX3.5/ex3_5.sce | 12 ++++++++ 2006/CH3/EX3.7/ex3_7.sce | 33 ++++++++++++++++++++ 2006/CH3/EX3.8/ex3_8.sce | 15 +++++++++ 2006/CH4/EX4.1/ex4_1.sce | 16 ++++++++++ 2006/CH4/EX4.10/ex4_10.sce | 21 +++++++++++++ 2006/CH4/EX4.3/ex4_3.sce | 15 +++++++++ 2006/CH4/EX4.4/ex4_4.sce | 22 +++++++++++++ 2006/CH4/EX4.5/ex4_5.sce | 21 +++++++++++++ 2006/CH4/EX4.6/ex4_6.sce | 29 +++++++++++++++++ 2006/CH4/EX4.7/ex4_7.sce | 19 ++++++++++++ 2006/CH4/EX4.8/ex4_8.sce | 10 ++++++ 2006/CH4/EX4.9/ex4_9.sce | 20 ++++++++++++ 2006/CH5/EX5.1/ex5_1.sce | 5 +++ 2006/CH5/EX5.10/ex5_10.sce | 10 ++++++ 2006/CH5/EX5.12/ex5_12.sce | 32 +++++++++++++++++++ 2006/CH5/EX5.13/ex5_13.sce | 12 ++++++++ 2006/CH5/EX5.14/ex5_14.sce | 19 ++++++++++++ 2006/CH5/EX5.15/ex5_15.sce | 13 ++++++++ 2006/CH5/EX5.16/ex5_16.sce | 23 ++++++++++++++ 2006/CH5/EX5.17/ex5_17.sce | 13 ++++++++ 2006/CH5/EX5.18/ex5_18.sce | 16 ++++++++++ 2006/CH5/EX5.19/ex5_19.sce | 12 ++++++++ 2006/CH5/EX5.2/ex5_2.sce | 12 ++++++++ 2006/CH5/EX5.20/ex5_20.sce | 12 ++++++++ 2006/CH5/EX5.3/ex5_3.sce | 21 +++++++++++++ 2006/CH5/EX5.4/ex5_4.sce | 24 +++++++++++++++ 2006/CH5/EX5.5/ex5_5.sce | 16 ++++++++++ 2006/CH5/EX5.6/ex5_6.sce | 12 ++++++++ 2006/CH5/EX5.7/ex5_7.sce | 12 ++++++++ 2006/CH5/EX5.8/ex5_8.sce | 14 +++++++++ 2006/CH5/EX5.9/ex5_9.sce | 29 +++++++++++++++++ 2006/CH6/EX6.1/ex6_1.sce | 13 ++++++++ 2006/CH6/EX6.10/ex6_10.sce | 9 ++++++ 2006/CH6/EX6.11/ex6_11.sce | 9 ++++++ 2006/CH6/EX6.12/ex6_12.sce | 24 +++++++++++++++ 2006/CH6/EX6.13/ex6_13.sce | 16 ++++++++++ 2006/CH6/EX6.15/ex6_15.sce | 20 ++++++++++++ 2006/CH6/EX6.16/ex6_16.sce | 19 ++++++++++++ 2006/CH6/EX6.17/ex6_17.sce | 18 +++++++++++ 2006/CH6/EX6.18/ex6_18.sce | 9 ++++++ 2006/CH6/EX6.19/ex6_19.sce | 24 +++++++++++++++ 2006/CH6/EX6.2/ex6_2.sce | 18 +++++++++++ 2006/CH6/EX6.20/ex6_20.sce | 15 +++++++++ 2006/CH6/EX6.21/ex6_21.sce | 25 +++++++++++++++ 2006/CH6/EX6.3/ex6_3.sce | 14 +++++++++ 2006/CH6/EX6.4/ex6_4.sce | 13 ++++++++ 2006/CH6/EX6.5/ex6_5.sce | 14 +++++++++ 2006/CH6/EX6.6/ex6_6.sce | 14 +++++++++ 2006/CH6/EX6.7/ex6_7.sce | 15 +++++++++ 2006/CH6/EX6.8/ex6_8.sce | 14 +++++++++ 2006/CH7/EX7.1/ex7_1.sce | 30 ++++++++++++++++++ 2006/CH7/EX7.10/ex7_10.sce | 25 +++++++++++++++ 2006/CH7/EX7.11/ex7_11.sce | 22 +++++++++++++ 2006/CH7/EX7.12/ex7_12.sce | 16 ++++++++++ 2006/CH7/EX7.13/ex7_13.sce | 15 +++++++++ 2006/CH7/EX7.14/ex7_14.sce | 9 ++++++ 2006/CH7/EX7.15/ex7_15.sce | 16 ++++++++++ 2006/CH7/EX7.2/ex7_2.sce | 32 +++++++++++++++++++ 2006/CH7/EX7.3/ex7_3.sce | 27 ++++++++++++++++ 2006/CH7/EX7.4/ex7_4.sce | 25 +++++++++++++++ 2006/CH7/EX7.5/ex7_5.sce | 33 ++++++++++++++++++++ 2006/CH7/EX7.6/ex7_6.sce | 24 +++++++++++++++ 2006/CH7/EX7.7/ex7_7.sce | 13 ++++++++ 2006/CH7/EX7.8/ex7_8.sce | 21 +++++++++++++ 2006/CH7/EX7.9/ex7_9.sce | 15 +++++++++ 2006/CH8/EX8.1/ex8_1.sce | 25 +++++++++++++++ 2006/CH8/EX8.2/ex8_2.sce | 25 +++++++++++++++ 2006/CH8/EX8.3/ex8_3.sce | 47 ++++++++++++++++++++++++++++ 2006/CH8/EX8.4/ex8_4.sce | 44 ++++++++++++++++++++++++++ 2006/CH8/EX8.5/ex8_5.sce | 42 +++++++++++++++++++++++++ 2006/CH8/EX8.6/ex8_6.sce | 17 ++++++++++ 2006/CH8/EX8.7/ex8_7.sce | 17 ++++++++++ 2006/CH8/EX8.8/ex8_8.sce | 31 +++++++++++++++++++ 2006/CH9/EX9.1/ex9_1.sce | 32 +++++++++++++++++++ 2006/CH9/EX9.2/ex9_2.sce | 30 ++++++++++++++++++ 2006/CH9/EX9.3/ex9_3.sce | 20 ++++++++++++ 2006/CH9/EX9.4/ex9_4.sce | 26 ++++++++++++++++ 2006/CH9/EX9.5/ex9_5.sce | 18 +++++++++++ 2006/CH9/EX9.6/ex9_6.sce | 42 +++++++++++++++++++++++++ 2006/CH9/EX9.7/ex9_7.sce | 23 ++++++++++++++ 2006/CH9/EX9.8/ex9_8.sce | 29 +++++++++++++++++ 135 files changed, 2731 insertions(+) create mode 100755 2006/CH10/EX10.1/ex10_1.sce create mode 100755 2006/CH10/EX10.10/ex10_10.sce create mode 100755 2006/CH10/EX10.11/ex10_11.sce create mode 100755 2006/CH10/EX10.12/ex10_12.sce create mode 100755 2006/CH10/EX10.2/ex10_2.sce create mode 100755 2006/CH10/EX10.3/ex10_3.sce create mode 100755 2006/CH10/EX10.5/ex10_5.sce create mode 100755 2006/CH10/EX10.6/ex10_6.sce create mode 100755 2006/CH10/EX10.7/ex10_7.sce create mode 100755 2006/CH10/EX10.8/ex10_8.sce create mode 100755 2006/CH10/EX10.9/ex10_9.sce create mode 100755 2006/CH11/EX11.1/ex11_1.sce create mode 100755 2006/CH11/EX11.3/ex11_3.sce create mode 100755 2006/CH11/EX11.4/ex11_4.sce create mode 100755 2006/CH11/EX11.5/ex11_5.sce create mode 100755 2006/CH11/EX11.8/ex11_8.sce create mode 100755 2006/CH11/EX11.9/ex11_9.sce create mode 100755 2006/CH12/EX12.1/ex12_1.sce create mode 100755 2006/CH12/EX12.2/ex12_2.sce create mode 100755 2006/CH12/EX12.3/ex12_3.sce create mode 100755 2006/CH12/EX12.4/ex12_4.sce create mode 100755 2006/CH12/EX12.5/ex12_5.sce create mode 100755 2006/CH12/EX12.6/ex12_6.sce create mode 100755 2006/CH12/EX12.7/ex12_7.sce create mode 100755 2006/CH12/EX12.8/ex12_8.sce create mode 100755 2006/CH13/EX13.1/ex13_1.sce create mode 100755 2006/CH13/EX13.2/ex13_2.sce create mode 100755 2006/CH13/EX13.3/ex13_3.sce create mode 100755 2006/CH13/EX13.4/ex13_4.sce create mode 100755 2006/CH14/EX14.1/ex14_1.sce create mode 100755 2006/CH14/EX14.10/ex14_10.sce create mode 100755 2006/CH14/EX14.11/ex14_11.sce create mode 100755 2006/CH14/EX14.12/ex14_12.sce create mode 100755 2006/CH14/EX14.2/ex14_2.sce create mode 100755 2006/CH14/EX14.3/ex14_3.sce create mode 100755 2006/CH14/EX14.4/ex14_4.sce create mode 100755 2006/CH14/EX14.5/ex14_5.sce create mode 100755 2006/CH14/EX14.6/ex14_6.sce create mode 100755 2006/CH14/EX14.7/ex14_7.sce create mode 100755 2006/CH14/EX14.8/ex14_8.sce create mode 100755 2006/CH14/EX14.9/ex14_9.sce create mode 100755 2006/CH15/EX15.1/ex15_1.sce create mode 100755 2006/CH15/EX15.2/ex15_2.sce create mode 100755 2006/CH15/EX15.3/ex15_3.sce create mode 100755 2006/CH15/EX15.5/ex15_5.sce create mode 100755 2006/CH15/EX15.6/ex15_6.sce create mode 100755 2006/CH15/EX15.7/ex15_7.sce create mode 100755 2006/CH15/EX15.8/ex15_8.sce create mode 100755 2006/CH2/EX2.1/ex2_1.sce create mode 100755 2006/CH2/EX2.2/ex2_2.sce create mode 100755 2006/CH3/EX3.1/ex3_1.sce create mode 100755 2006/CH3/EX3.2/ex3_2.sce create mode 100755 2006/CH3/EX3.3/ex3_3.sce create mode 100755 2006/CH3/EX3.4/ex3_4.sce create mode 100755 2006/CH3/EX3.5/ex3_5.sce create mode 100755 2006/CH3/EX3.7/ex3_7.sce create mode 100755 2006/CH3/EX3.8/ex3_8.sce create mode 100755 2006/CH4/EX4.1/ex4_1.sce create mode 100755 2006/CH4/EX4.10/ex4_10.sce create mode 100755 2006/CH4/EX4.3/ex4_3.sce create mode 100755 2006/CH4/EX4.4/ex4_4.sce create mode 100755 2006/CH4/EX4.5/ex4_5.sce create mode 100755 2006/CH4/EX4.6/ex4_6.sce create mode 100755 2006/CH4/EX4.7/ex4_7.sce create mode 100755 2006/CH4/EX4.8/ex4_8.sce create mode 100755 2006/CH4/EX4.9/ex4_9.sce create mode 100755 2006/CH5/EX5.1/ex5_1.sce create mode 100755 2006/CH5/EX5.10/ex5_10.sce create mode 100755 2006/CH5/EX5.12/ex5_12.sce create mode 100755 2006/CH5/EX5.13/ex5_13.sce create mode 100755 2006/CH5/EX5.14/ex5_14.sce create mode 100755 2006/CH5/EX5.15/ex5_15.sce create mode 100755 2006/CH5/EX5.16/ex5_16.sce create mode 100755 2006/CH5/EX5.17/ex5_17.sce create mode 100755 2006/CH5/EX5.18/ex5_18.sce create mode 100755 2006/CH5/EX5.19/ex5_19.sce create mode 100755 2006/CH5/EX5.2/ex5_2.sce create mode 100755 2006/CH5/EX5.20/ex5_20.sce create mode 100755 2006/CH5/EX5.3/ex5_3.sce create mode 100755 2006/CH5/EX5.4/ex5_4.sce create mode 100755 2006/CH5/EX5.5/ex5_5.sce create mode 100755 2006/CH5/EX5.6/ex5_6.sce create mode 100755 2006/CH5/EX5.7/ex5_7.sce create mode 100755 2006/CH5/EX5.8/ex5_8.sce create mode 100755 2006/CH5/EX5.9/ex5_9.sce create mode 100755 2006/CH6/EX6.1/ex6_1.sce create mode 100755 2006/CH6/EX6.10/ex6_10.sce create mode 100755 2006/CH6/EX6.11/ex6_11.sce create mode 100755 2006/CH6/EX6.12/ex6_12.sce create mode 100755 2006/CH6/EX6.13/ex6_13.sce create mode 100755 2006/CH6/EX6.15/ex6_15.sce create mode 100755 2006/CH6/EX6.16/ex6_16.sce create mode 100755 2006/CH6/EX6.17/ex6_17.sce create mode 100755 2006/CH6/EX6.18/ex6_18.sce create mode 100755 2006/CH6/EX6.19/ex6_19.sce create mode 100755 2006/CH6/EX6.2/ex6_2.sce create mode 100755 2006/CH6/EX6.20/ex6_20.sce create mode 100755 2006/CH6/EX6.21/ex6_21.sce create mode 100755 2006/CH6/EX6.3/ex6_3.sce create mode 100755 2006/CH6/EX6.4/ex6_4.sce create mode 100755 2006/CH6/EX6.5/ex6_5.sce create mode 100755 2006/CH6/EX6.6/ex6_6.sce create mode 100755 2006/CH6/EX6.7/ex6_7.sce create mode 100755 2006/CH6/EX6.8/ex6_8.sce create mode 100755 2006/CH7/EX7.1/ex7_1.sce create mode 100755 2006/CH7/EX7.10/ex7_10.sce create mode 100755 2006/CH7/EX7.11/ex7_11.sce create mode 100755 2006/CH7/EX7.12/ex7_12.sce create mode 100755 2006/CH7/EX7.13/ex7_13.sce create mode 100755 2006/CH7/EX7.14/ex7_14.sce create mode 100755 2006/CH7/EX7.15/ex7_15.sce create mode 100755 2006/CH7/EX7.2/ex7_2.sce create mode 100755 2006/CH7/EX7.3/ex7_3.sce create mode 100755 2006/CH7/EX7.4/ex7_4.sce create mode 100755 2006/CH7/EX7.5/ex7_5.sce create mode 100755 2006/CH7/EX7.6/ex7_6.sce create mode 100755 2006/CH7/EX7.7/ex7_7.sce create mode 100755 2006/CH7/EX7.8/ex7_8.sce create mode 100755 2006/CH7/EX7.9/ex7_9.sce create mode 100755 2006/CH8/EX8.1/ex8_1.sce create mode 100755 2006/CH8/EX8.2/ex8_2.sce create mode 100755 2006/CH8/EX8.3/ex8_3.sce create mode 100755 2006/CH8/EX8.4/ex8_4.sce create mode 100755 2006/CH8/EX8.5/ex8_5.sce create mode 100755 2006/CH8/EX8.6/ex8_6.sce create mode 100755 2006/CH8/EX8.7/ex8_7.sce create mode 100755 2006/CH8/EX8.8/ex8_8.sce create mode 100755 2006/CH9/EX9.1/ex9_1.sce create mode 100755 2006/CH9/EX9.2/ex9_2.sce create mode 100755 2006/CH9/EX9.3/ex9_3.sce create mode 100755 2006/CH9/EX9.4/ex9_4.sce create mode 100755 2006/CH9/EX9.5/ex9_5.sce create mode 100755 2006/CH9/EX9.6/ex9_6.sce create mode 100755 2006/CH9/EX9.7/ex9_7.sce create mode 100755 2006/CH9/EX9.8/ex9_8.sce (limited to '2006') diff --git a/2006/CH10/EX10.1/ex10_1.sce b/2006/CH10/EX10.1/ex10_1.sce new file mode 100755 index 000000000..fde02f7dc --- /dev/null +++ b/2006/CH10/EX10.1/ex10_1.sce @@ -0,0 +1,10 @@ +clc; +m=100; // Mass of water in kg +T0=90; // Initial temperature of water in degree celcius +T=30; // temperature of Surroundings in degree celcius +C=4.1868; // Specific heat in kJ/kg K +AE=m*C*((T0-T)-(T+273)*log ((T0+273)/(T+273))); // Available energy +Q=m*C*(T0-T); // Heat supplied +UE=Q-AE; // Unavailable energy +disp ("kJ",AE,"Available energy ="); +disp ("kJ",UE,"Unavailable energy = ","kJ",Q,"Heat supplied = "); diff --git a/2006/CH10/EX10.10/ex10_10.sce b/2006/CH10/EX10.10/ex10_10.sce new file mode 100755 index 000000000..9a161ba4d --- /dev/null +++ b/2006/CH10/EX10.10/ex10_10.sce @@ -0,0 +1,16 @@ +clc; +// State after reversible adiabatic expansion +p2=50; // pressure in kPa +s2s=6.4844; s1=6.4844; s2=6.944; // specific entropy in kJ/kg K +x2s=0.829; // Quality of steam +h2s=2252.6; h1=3256.6; // specific enthalpy in kJ/kg +T2=81.33; T0=27; // Temperature in degree celcius +ws=h1-h2s; // Reversible adiabatic work +wa=831.2; // Actual work output in kJ/kg +d_AE=979.1; // Decrease in availability in kJ/LG +eff_I=wa/ws; // First law efficiency of turbine +eff_II=wa/d_AE; // Second law efficiency of turbine +disp ("%",eff_II*100,"Second law efficiency of turbine = ","%",eff_I*100,"First law efficiency of turbine = "); +w2srev2=(T2-T0)*(s2-s1); // Negative work +w1rev2=ws-w2srev2; // Decrease in availability +disp ("kJ/kg",w1rev2,"Dcresase in Availability = ","kJ/kg",w2srev2,"Negative work = "); diff --git a/2006/CH10/EX10.11/ex10_11.sce b/2006/CH10/EX10.11/ex10_11.sce new file mode 100755 index 000000000..12d1c95f1 --- /dev/null +++ b/2006/CH10/EX10.11/ex10_11.sce @@ -0,0 +1,30 @@ +clc; +p1=100; // Pressure at inlet in kPa +T1=30; // Temperature at inlet in degree celcius +V1=0; // Velocity at inlet in m/s +p2=350; // Pressure at outlet in kPa +T2=141; // Temperature at exit in degree celcius +V2=90; // Velocity at exit in m/s +p0=100; // Pressure of Surroundings in kPa +T0=30; // temperature of Surroundings in degree celcius +k=1.4; // Index of the Isentropic compression process +Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K +R=0.287; // characteristic gas constant of air in kJ/kg K +// (a).Adiabatic or polytropic compression +T2s=(T1+273)*(p2/p1)^((k-1)/k); // Temperature after isentropic compression +disp ("T2s>T2. Hence there is cooling . Compression is polytropic.","K",T2s,"Temperature after isentropic compression =", "(a).Adiabatic or polytropic compression"); +// (b).The first law efficiency of the compressor +wa=Cpo*(T1-T2)-V2^2/2000; //Actual work of compression +wT=(-R*(T1+273)*log (p2/p1))-(V2^2/2000); // Isothermal work +eff_Ilaw=wT/wa; // The first law efficiency of the compressor +disp ("%",eff_Ilaw,"(b).The first law efficiency of the compressor = "); +// (c).Minimum work input & Irreversibility +d_AE=(Cpo*(T1-T2))+((T0+273)*((R*log (p2/p1))-(Cpo*log ((T2+273)/(T1+273)))))-V2^2/2000; // decrease in availability +wmin=d_AE; // Minimum work input +wrev=wmin; +I=wrev-wa; // Irreversibility +disp ("kJ/kg",I,"Irreversibility =","kJ/kg",wmin,"Minimum work input =","(c).Minimum work input & Irreversibility"); +// (d).Second law efficiency of the compressor +eff_IIlaw=wmin/wa; // Second law efficiency of the compressor +disp ("%",eff_IIlaw*100,"(d).Second law efficiency of the compressor ="); + diff --git a/2006/CH10/EX10.12/ex10_12.sce b/2006/CH10/EX10.12/ex10_12.sce new file mode 100755 index 000000000..d2252bef6 --- /dev/null +++ b/2006/CH10/EX10.12/ex10_12.sce @@ -0,0 +1,41 @@ +clc; +T0=313; // Surroundings temperature in kelvin +TL=233; // Refrigerated space temperature in kelvin +QL=3.5167; // Refrigeration load in kW +// (a).Carnot cycle +COPcarnot=TL/(T0-TL); // COP of carnot cycle +Wcarnot=QL/COPcarnot; // Work done +Q0=QL+Wcarnot; // Heat rejected +d_SL=-QL/TL;// Entropy change of refrigerated space +d_S0=Q0/T0; //Entropy change of surroundings +d_Sgen= d_SL+ d_S0; // Entropy generation +disp (COPcarnot,"COP of carnot cycle = ","kW",Wcarnot,"Work done = ","(a).Carnot cycle"); +printf (" \n Entropy generation = %d \n \n kJ/K s \n",d_Sgen); +// (b).Vapour compression cycle +// From Freon-12 property table & figure 10.17 +p1=0.0642; p2=0.9607; // Pressure in MPa +h1=169.5; h3=74.5; // specific enthalpy in kJ/kg +s1=0.7269; s3=0.2716;// specific entropy in kJ/kg K +// By calculations s2=s1 gives the following from property table +t2=58.9; // Temperature in degree celcius +h2=217.6; // specific enthalpy in kJ/kg +// From h4=h3 gives the following from chart +h4=h3; +x4=0.44; // Quality of vapour +s4=0.3195;// specific entropy in kJ/kg K +m=QL/(h1-h4); // Mass flow rate of refrigerant +W=m*(h2-h1); // Work done of vapour compression cycle +COP=QL/W; // COP of vapour compression cycle +QH=QL+W; // Heat rejected to surroundings +d_SL=-QL/TL;// Entropy change of refrigerated space +d_S0=QH/T0; //Entropy change of surroundings +d_Sgen= d_SL+ d_S0; // Entropy generation +disp (COP,"COP of vapour compression cycle = ","kW",W,"Work done = ","(b).Vapour compression cycle"); +printf (" \n Entropy generation = %f \n \n kJ/K s \n",d_Sgen); +// (c).Difference in work = Lost work of the cycle +d_work=W-Wcarnot; // Difference in work +LWcycle=QH-T0*QL/TL; // Lost work of the cycle +disp ("which is same as Difference in work","kW",LWcycle,"Lost work of the cycle= ","kW",d_work,"Difference in work = ","(c).Difference in work = Lost work of the cycle"); +// (d).Second Law efficiency of the vapour compression cycle +eff_II=COP/COPcarnot; //Second Law efficiency +disp ("%",eff_II*100,"(d).Second Law efficiency of the vapour compression cycle = "); diff --git a/2006/CH10/EX10.2/ex10_2.sce b/2006/CH10/EX10.2/ex10_2.sce new file mode 100755 index 000000000..45c31dff8 --- /dev/null +++ b/2006/CH10/EX10.2/ex10_2.sce @@ -0,0 +1,13 @@ +clc; +T=250; // Evaporation teemperature of water in degree celcius +Ta=1250; // Initial temperature of combustion gas in degree celcius +Tb=350; // Final temperature of combustion gas in degree celcius +C=1.08; // Specific heat of gas in kJ/kg K +T0=30; // temperature of Surroundings in degree celcius +hfg=1716.2; // Enthalpy of evaporation at T temperature +del_SH2O=hfg/(T+273); // Entropy change of water +mgas=hfg/(C*(Ta-Tb)); // Mass of gas +del_Sgas=mgas*C*log ((Tb+273)/(Ta+273)); // Enthalpy change of gas +del_Stotal=del_SH2O+del_Sgas; // Total entropy change +l_AE=(T0+273)*del_Stotal; // Loss of available energy +disp ("kJ",l_AE,"Loss of available energy = "); diff --git a/2006/CH10/EX10.3/ex10_3.sce b/2006/CH10/EX10.3/ex10_3.sce new file mode 100755 index 000000000..52d12459f --- /dev/null +++ b/2006/CH10/EX10.3/ex10_3.sce @@ -0,0 +1,24 @@ +clc; +Cp=1.1; // Specific heat of combustion gas in kJ/kg K +T3=1600; // Initial temperature of combustion gas in Kelvin +T4=1150; // Final temperature of combustion gas in Kelvin +p1=0.1; // Pressure at inlet of boiler in MPa +p2=8;// Pressure at outlet of boiler in MPa +T2=600; // Temperature at outlet of boiler in degree celcius +m=1; // Mass of water in kg +T0=298; // temperature of Surroundings in kelvin +// (b).mass flow rate of gases per kg of water +// From steam table +h1=2758; h2=3642;// specific enthalpy in kJ/kg +s1=5.7432; s2=7.0206; // specific entropy in kJ/kg K +mgas=(h2-h1)/(Cp*(T3-T4)); //mass flow rate of gases per kg of water +disp ("kg gas / kg water",mgas,"(b).mass flow rate of gases per kg of water ="); +// (c). Degrease in Available energy +S21=s2-s1; // Change in entropy of water +S34=mgas*Cp*log (T3/T4); // Change in entropy of gases +UEgases=T0*S34; // UnAvailable energy of gas +UEsteam=T0*S21; // UnAvailable energy of steam +d_AE=UEsteam-UEgases; // Degrease in Available energy +disp ("kJ/K",-S34,"Change in entropy of gas = ","kJ/K",S21,"Change in entropy of water = ","(c)."); +disp ("kJ",UEsteam,"Unavailable energy of steam =","kJ",UEgases,"Unavailable energy of gas = "); +disp ("kJ",d_AE," Degrease in Available energy = "); diff --git a/2006/CH10/EX10.5/ex10_5.sce b/2006/CH10/EX10.5/ex10_5.sce new file mode 100755 index 000000000..b9f433b0d --- /dev/null +++ b/2006/CH10/EX10.5/ex10_5.sce @@ -0,0 +1,10 @@ +clc; +T=700;// Exhaust gas temperature in degree celcius +p=120;// Exhaust gas pressure in kPa +Cpo=1.089; // Specific heat at constant pressure in kJ/kg K +R=0.287; // characteristic gas constant in kJ/kg K +p0=100; // Pressure of Surroundings in kPa +T0=30; // temperature of Surroundings in degree celcius +Cvo=Cpo-R; // Specific heat at constant volume +AE=(Cvo*(T-T0))+(p0*R*((T+273)/p-(T0+273)/p0))-((T0+273)*((Cpo*log((T+273)/(T0+273)))-(R*log (p/p0)))); // Available energy +disp ("kJ",AE,"Available energy in Exhaust gas ="); diff --git a/2006/CH10/EX10.6/ex10_6.sce b/2006/CH10/EX10.6/ex10_6.sce new file mode 100755 index 000000000..2b9f2302b --- /dev/null +++ b/2006/CH10/EX10.6/ex10_6.sce @@ -0,0 +1,24 @@ +clc; +p1=450; // Initial pressure in kPa +T=600; // Initial temperature in kelvin +V1=0.01; // Initial volume in m^3 +TR=1200; // Temperature of heat source in Kelvin +V2=0.02; // Final volume in m^3 +p0=100; // Pressure of Surroundings in kPa +T0=300; // temperature of Surroundings in kelvin +// Useful Work +W=p1*V1*log (V2/V1); // Actual work +Wsurr=p0*(V2-V1); // Surrounding work +Wu=W-Wsurr; // Useful work +disp ("kJ",Wu,"Useful Work for the process ="); +// Reversible work +Q=W; // For isothermal process +S21=Q/T; // Entropy change of system +Wrev=T0*S21-Wsurr+Q*(1-T0/TR); // reversible work +disp ("kJ",Wrev,"Reversible work for the provess ="); +// Irreversibility of the process +I=Wrev-Wu; // Irreversibility +disp ("kJ",I,"Irreversibility of the process = "); +// Entropy generation +del_Sgen=S21-Q/TR;//Entropy generation +disp ("kJ/kg",del_Sgen,"Entropy generation of the process = "); diff --git a/2006/CH10/EX10.7/ex10_7.sce b/2006/CH10/EX10.7/ex10_7.sce new file mode 100755 index 000000000..24394e7c2 --- /dev/null +++ b/2006/CH10/EX10.7/ex10_7.sce @@ -0,0 +1,36 @@ +clc; +// (i).Irreversibility in Turbine +p1=9; // Steam pressure at turbine inlet in MPa +T1=450; // Steam temperature at turbine inlet in degree celcius +p2=50; // Steam pressure at turbine outlet in MPa +x2=0.95; // Quality of steam +p0=100; // Pressure of Surroundings in kPa +T0=300; // temperature of Surroundings in kelvin +q=-10; // Heat loss in kJ/kg +// (a).Decrease in availability +// from steam table +h1=3256.6; h2=2415.4;// specific enthalpy in kJ/kg +s1=6.4844; s2=6.944; // specific entropy in kJ/kg K +d_AE=(h1-h2)-(T0*(s1-s2)); // Decrease in availability +disp ("kJ/kg",d_AE,"(a).Decrease in availability =","(i).Irreversibility in turbine"); +// (b).Maxximum work output +wrev=d_AE; //Maxximum work output +disp ("kJ/kg",wrev,"(b).Maxximum work output ="); +// (c).Actual work output +w=(h1-h2)+q; // From SSSF energy equation +disp ("kJ/kg",w,"(c).Actual work output = "); +// (d).Irreversibility +I=wrev-w; //Irreversibility +disp ("kJ/kg",I,"(d).Irreversibility = "); +// (ii).Ammonia compressor +T1=-10; // Temperature at inlet in degree celcius +p2=1.554; // Pressure at outlet in MPa +T2=140; // Temperature at outlet in degree celcius +T0=298; // temperature of Surroundings in kelvin +//from ammonia tables +h1=1433; h2=1752;// specific enthalpy in kJ/kg +s1=5.477; s2=5.655; // specific entropy in kJ/kg K +wactual=-(h2-h1); // Actual work +wmin=-((h2-h1)-(T0*(s2-s1)));// mimimum work +I=wmin-wactual;// Irreversibility +disp ("kJ/kg",I,"Irreversibility =","kJ/kg",wmin,"Minimum work =","kJ/kg",wactual,"Actual work = ","(ii).Ammonia compressor"); diff --git a/2006/CH10/EX10.8/ex10_8.sce b/2006/CH10/EX10.8/ex10_8.sce new file mode 100755 index 000000000..ba70fb25b --- /dev/null +++ b/2006/CH10/EX10.8/ex10_8.sce @@ -0,0 +1,30 @@ +clc; +Cp=1.1; // Specific heat of combustion gas in kJ/kg K +T3=1600; // Initial temperature of combustion gas in Kelvin +T4=1150; // Final temperature of combustion gas in Kelvin +p1=0.1; // Pressure at inlet of boiler in MPa +p2=8;// Pressure at outlet of boiler in MPa +T2=600; // Temperature at outlet of boiler in degree celcius +m=1; // Mass of water in kg +T0=298; // temperature of Surroundings in kelvin +// From steam table +h1=2758; h2=3642;// specific enthalpy in kJ/kg +s1=5.7432; s2=7.0206; // specific entropy in kJ/kg K +mgas=(h2-h1)/(Cp*(T3-T4)); //mass flow rate of gases per kg of water +S21=s2-s1; // Change in entropy of water +S34=mgas*Cp*log (T3/T4); // Change in entropy of gases +// (a).Decrease in availability of gases +d_AEgas=mgas*Cp*(T3-T4)-T0*S34//Decrease in availability of gases +disp ("kJ",d_AEgas,"(a).Decrease in availability of gases = "); +// (b).Decrease in availability of water +d_AEwater=(h1-h2)-T0*(s1-s2);// Decrease in availability of water +disp ("kJ",d_AEwater,"(b).Decrease in availability of water ="); +// (c).Reversible work for the process +Wrev=d_AEgas+d_AEwater; //Reversible work for the process +disp ("kJ",Wrev,"(c).Reversible work for the process="); +// (d).Actual work for the process +W=0; // Actual work +disp ("kJ",W,"(d).Actual work for the process ="); +// (e).Irreversibility +I=Wrev-W; //Irreversibility +disp ("kJ",I,"(e).Irreversibility = "); diff --git a/2006/CH10/EX10.9/ex10_9.sce b/2006/CH10/EX10.9/ex10_9.sce new file mode 100755 index 000000000..fb04343c5 --- /dev/null +++ b/2006/CH10/EX10.9/ex10_9.sce @@ -0,0 +1,21 @@ +clc; +TH=600; // Temperature of heat sorce in degree celcius +T3=311.06; // Boiler temperature in degree celcius +p3=10; // Boiler pressure in MPa +T4=32.88; // Condensor temperature in degree celcius +p4=5; // Condensor pressure in kPa +T0=288;// Temperature of surroundings in kelvin +// From steam table and refer figure 10.10 for states +h1=137.82; h2=147.82; h3=2724.7; hf4=197.82; hfg4=2423.7; h4=1913.6; // specific enthalpy in kJ/kg +s1=0.4764; s2=s1; s3=5.6141; s4=s3; sf4=0.4764; sfg4=7.9187; s4=6.2782; // specific entropy in kJ/kg K +wT=h3-h4; // Turbine work +wp=h2-h1; // Pump work +wnet=wT-wp; // Net work +qH=h3-h2; // Heat supplied in boiler +qL=h4-h1; // Heat rejected in condensor +Wrev_Wpump=T0*(s2-s1); +Wrev_Wboiler=T0*(s3-s2)-T0*qH/(TH+273); +Wrev_Wturbine=T0*(s4-s3); +Wrev_Wcondenser=T0*(s1-s4)+qL; +Wrev_Wcycle=Wrev_Wpump+Wrev_Wboiler+Wrev_Wturbine+Wrev_Wcondenser; +disp ("kJ/kg",Wrev_Wcycle,"The lost (Wrev-W)for the overall cycle = ","kJ/kg",Wrev_Wcondenser,"The lost (Wrev-W)for the condensor = ","kJ/kg",Wrev_Wturbine,"The lost (Wrev-W)for the Turbine = ","kJ/kg",Wrev_Wboiler,"The lost (Wrev-W)for the Boiler = ","kJ/kg",Wrev_Wpump,"The lost (Wrev-W)for the Pump = "); diff --git a/2006/CH11/EX11.1/ex11_1.sce b/2006/CH11/EX11.1/ex11_1.sce new file mode 100755 index 000000000..5152d2780 --- /dev/null +++ b/2006/CH11/EX11.1/ex11_1.sce @@ -0,0 +1,18 @@ +clc; +p1=150; p2=200; p3=250; p4=300; p5=350; p6=400; p7=450; p8=500; p9=550; p10=600; p11=650; p12=700; p13=750; p14=800; p15=850; p16=900; // Pressures of merect's boiler experiment in kPa +t1=111.4; t2=120.2; t3=127.4; t4=133.6; t5=138.9; t6=143.6; t7=147.9; t8=151.9; t9=155.5; t10=158.9; t11=162; t12=165; t13=167.8; t14=170.4; t15=173; t16=175.4; // Temperatures of merect's boiler experiment in degree celcius +n=16; // Total number of readings taken +// Values of constant A & B +s_y= log10 (p1*p2*p3*p4*p5*p6*p7*p8*p9*p10*p11*p12*p13*p14*p15*p16); +s_x=1/(t1+273)+1/(t2+273)+1/(t3+273)+1/(t4+273)+1/(t5+273)+1/(t6+273)+1/(t7+273)+1/(t8+273)+1/(t9+273)+1/(t10+273)+1/(t11+273)+1/(t12+273)+1/(t13+273)+1/(t14+273)+1/(t15+273)+1/(t16+273); +s_xy=((log10 (p1))*1/(t1+273))+ ((log10 (p2))*1/(t2+273))+ ((log10 (p3))*1/(t3+273))+ ((log10 (p4))*1/(t4+273))+ ((log10 (p5))*1/(t5+273))+ ((log10 (p6))*1/(t6+273))+ ((log10 (p7))*1/(t7+273))+ ((log10 (p8))*1/(t8+273))+ ((log10 (p9))*1/(t9+273))+ ((log10 (p10))*1/(t10+273))+ ((log10 (p11))*1/(t11+273)) + ((log10 (p12))*1/(t12+273)) + ((log10 (p13))*1/(t13+273)) + ((log10 (p14))*1/(t14+273)) + ((log10 (p15))*1/(t15+273)) + ((log10 (p16))*1/(t16+273)); +s_x2=(1/(273+t1))^2+(1/(273+t2))^2+(1/(273+t3))^2+(1/(273+t4))^2+(1/(273+t5))^2+(1/(273+t6))^2+(1/(273+t7))^2+(1/(273+t8))^2+(1/(273+t9))^2+(1/(273+t10))^2+(1/(273+t11))^2+(1/(273+t12))^2+(1/(273+t13))^2+(1/(273+t14))^2+(1/(273+t15))^2+(1/(273+t16))^2; +B= ((n*s_xy)-(s_x*s_y))/((n*s_x2)-((s_x)^2)); // Constant B +A=((s_y)-(B*s_x))/n; // Constant A +disp (B,"B =",A,"A =","Values of constant A & B"); +// The latent heat of vapourization +T=150; // The latent heat of vapourization at this temperature in degree celcius +d_T=20; d_p=258.7;// Temperature and pressure difference +vg=0.3928; vf=0.0011; // specific volume in m^3/kg +hfg=(T+273)*(vg-vf)*d_p/d_T; // Clapeyron equztion +disp ("kJ/kg",hfg,"The latent heat of vapourization at 150 oC ="); diff --git a/2006/CH11/EX11.3/ex11_3.sce b/2006/CH11/EX11.3/ex11_3.sce new file mode 100755 index 000000000..cf7f84d27 --- /dev/null +++ b/2006/CH11/EX11.3/ex11_3.sce @@ -0,0 +1,28 @@ +clc; +p5=6000; // Pressure of superheated steam in kPa +T5=723.15; // Temperature of superheated steam in kelvin +p1=0.6113; // Pressure at reference state in kPa +T1=273.16; // Temperature at reference state in kelvin +hfg1=2501.3; // Latent heat of vapourization of water at reference state in kJ/kg +R_1=8.3143; // Universal gas constant of air in kJ/kmol K +// The critical state properties of water +pc=2.09; // pressure in MPa +Tc=647.3; // Temperature in kelvin +h1=0; // Reference state in kJ/kg +h2=h1+hfg1; // specific enthalpy in kJ/kg +// At point 2 +p2=p1; T2=T1; +z=0.9986; +r=18.015; +A2=(0.4278/(pc*10^4))*(Tc/T2)^2.5; // Constants +B=(0.0867/(pc*10^4))*(Tc/T2); // Constants +h2_h3=R_1*(T2/r)*(((-3/2)*(A2/B)*log (1+(B*p2/z)))+z-1); // Enthalpy difference between state 2 & 3 +// At point 5 +z1=0.9373; +A2=(0.4278/(pc*10^4))*(Tc/T5)^2.5; // Constants +B=(0.0867/(pc*10^4))*(Tc/T5); // Constants +h5_h4=R_1*(T5/r)*(((-3/2)*(A2/B)*log (1+(B*p5/z1)))+z1-1); // Enthalpy difference between state 5 & 4 +a=1.6198;b=6.6*10^-4; // Constants +h4_h3=a*(T5-T1)+b*(T5^2-T1^2)/2; // Enthalpy difference between state 3 & 4 +h5=h2-h2_h3+h5_h4+h4_h3; // Specific enthalpy at state 5 +disp ("kJ/kg",h5,"Specific enthalpy at state 5 = "); diff --git a/2006/CH11/EX11.4/ex11_4.sce b/2006/CH11/EX11.4/ex11_4.sce new file mode 100755 index 000000000..9951d2069 --- /dev/null +++ b/2006/CH11/EX11.4/ex11_4.sce @@ -0,0 +1,18 @@ +clc; +T2=373; // Temperature of CO2 gas in kelvin +p2=100; // Pressure of CO2 gas in atm +T1=0; // Reference state temperature in kelvin +// The crictical constants for CO2 are +Tc=304.2; // Temperature in kelvin +Pc=72.9; // Pressure in atm +zc=0.275; +// Refer figure 11.7 for state definition +h1_0=((-3.74*T2)+((30.53/(100^0.5))*((T2^1.5)/1.5))-((4.1/100)*((T2^2)/2))+((0.024/(100^2))*((T2^3)/3))); +Tr=T2/Tc; Pr=p2/Pc; // Reduced properties +// From generalized chart figure 11.6 +hR_Tc=10.09; +h1_2=hR_Tc*Tc; +M=44; // Molecular weight +h10=h1_0/M; h12=h1_2/M; +h373=h10-h12; // The required enthalpy of CO2 gas at 373 K and 100 atm +disp ("kJ/kg",h373,"The required enthalpy of CO2 gas at 373 K and 100 atm = "); diff --git a/2006/CH11/EX11.5/ex11_5.sce b/2006/CH11/EX11.5/ex11_5.sce new file mode 100755 index 000000000..8e21677b0 --- /dev/null +++ b/2006/CH11/EX11.5/ex11_5.sce @@ -0,0 +1,20 @@ +clc; +p1=11; // Initial pressure in bar +T1=40; // Initial temperature in degree celcius +p2=60; // Final pressure in bar +R_1=8.3143; // Universal gas constant in kJ/kmol K +// The crictical properties for natural gas +Tc=161; // Temperature in kelvin +Pc=46.4; // Pressure in bar +// Reduced properties are +Pr1=p1/Pc; Pr2=p2/Pc; +Tr1=(T1+273)/Tc; +// T2=T1, The ideal gas enthalpy h2*=h1*=h1 +h21=-47.5; // From generalized enthalpy departure chart +M=16; // Molecular weight +Sp2_1=(R_1/M)*log (p2/p1)// for the difference in ideal gas entropies +Sp2_Sp_2=-0.1125; Sp_2_Sp_1=-2.1276; // Entropies in kJ/kg K +s2_s1=(Sp2_Sp_2)+(Sp_2_Sp_1); +q=(T1+273)*s2_s1; // Heat transfer +w=q-h21; // Work of compression +disp ("kJ/kg",w,"Work of compression = ","kJ/kg",q,"Heat transfer = "); diff --git a/2006/CH11/EX11.8/ex11_8.sce b/2006/CH11/EX11.8/ex11_8.sce new file mode 100755 index 000000000..ed7f9ec40 --- /dev/null +++ b/2006/CH11/EX11.8/ex11_8.sce @@ -0,0 +1,32 @@ +clc; +p1=10; // Initial pressure in MPa +T1=263; // Initial temperature in Kelvin +p2=1.5; // Final pressure in MPa +R_1=8.3143; // Universal gas constant in kJ/kmol K +M=28; // Molecular mass +// The crictical properties for nitrogen gas +Tc=126.2; // Temperature in kelvin +Pc=3.39; // Pressure in MPa +// Reduced properties are +Pr1=p1/Pc; Pr2=p2/Pc; +Tr1=T1/Tc; +// From the generalized chart for enthalpy departure at Pr1 & Tr1 +h_11=8.7*Tc/M; +// The solution involves iteration procedure. Assume T2 and check if h2_h1=0 +// First approximation T2=200 K +T2=200; // In K +Tr2=T2/Tc; +Cpr=1.046; +h_21=Cpr*(T2-T1); +// From the generalized chart for enthalpy departure at Pr1 & Tr1 +h_22=1*Tc/M; +h2_h1=h_11-T2+T1-h_22; +// Second approximation +T2=190; // In K +Tr2=T2/Tc; +Cpr=1.046; +h_21=Cpr*(T2-T1); +// From the generalized chart for enthalpy departure at Pr1 & Tr1 +h_22=1.5*Tc/M; +h2_h1=h_11-T2+T1-h_22; +disp ("Here also h2-h1 != 0. Therefore the temperature is dropping.Thus Joule-Thomson coefficient is positive.There is cooling in this process"); diff --git a/2006/CH11/EX11.9/ex11_9.sce b/2006/CH11/EX11.9/ex11_9.sce new file mode 100755 index 000000000..a42ffd78d --- /dev/null +++ b/2006/CH11/EX11.9/ex11_9.sce @@ -0,0 +1,10 @@ +clc; +Tcammonia=405.9; +Tcwater=647.3; +Tr=0.576; // Condition of similarity +Twater=Tcwater*Tr; // At reduced temperature Temperature of water +Tammonia=Tcammonia*Tr;//At reduced temperature Temperature of ammonia +// From steam table at Twater +hfgwater=2257;// specific enthalpy in kJ/kg +hfgammonia=Tcammonia/Tcwater *hfgwater; // Latent heat of vaporization of ammonia +disp ("kJ/kg",hfgammonia,"Latent heat of vaporization of ammonia ="); diff --git a/2006/CH12/EX12.1/ex12_1.sce b/2006/CH12/EX12.1/ex12_1.sce new file mode 100755 index 000000000..9978d311c --- /dev/null +++ b/2006/CH12/EX12.1/ex12_1.sce @@ -0,0 +1,24 @@ +clc; +M1=28.02; // Molecular mass of N2 +M2=32; // Molecular mass of O2 +M3=39.91; // Molecular mass of Ar +M4=44; // Molecular mass of CO2 +M5=2.02; // Molecular mass of H2 +y1=0.7803; // Part by volume of N2 in dry atmospheric air +y2=0.2099; // Part by volume of O2 in dry atmospheric air +y3=0.0094; // Part by volume of Ar in dry atmospheric air +y4=0.0003; // Part by volume of CO2 in dry atmospheric air +y5=0.0001; // Part by volume of H2 in dry atmospheric air +R_1=8.3143; // Universal gas constant of air in kJ/kmol K +// (a).Average molecular mass and apperent gas constant of dry atmospheric air +M=(y1*M1)+(y2*M2)+(y3*M3)+(y4*M4)+(y5*M5); // Average molecular mass +R=R_1/M; //Apperent gas constant of dry atmospheric air +disp ("kJ/kg K",R,"Apperent gas constant of dry atmospheric air =","kmol",M,"Average molecular mass = ","(a).Average molecular mass and apperent gas constant of dry atmospheric air"); +// (b).The fraction of each component +m1=(M1*y1)/M;//The fraction of N2 component +m2=(M2*y2)/M;//The fraction of O2 component +m3=(M3*y3)/M;//The fraction of Ar component +m4=(M4*y4)/M;//The fraction of CO2 component +m5=(M5*y5)/M;//The fraction of H2 component +disp (m5,m4,m3,m2,m1,"(b).The fraction of N2,O2,Ar,CO2,H2 components are given below respectively "); + diff --git a/2006/CH12/EX12.2/ex12_2.sce b/2006/CH12/EX12.2/ex12_2.sce new file mode 100755 index 000000000..1daa02c57 --- /dev/null +++ b/2006/CH12/EX12.2/ex12_2.sce @@ -0,0 +1,20 @@ +clc; +M1=44; // Molecular mass of CO2 +M2=32; // Molecular mass of O2 +M3=28; // Molecular mass of CO +M4=28; // Molecular mass of N2 +y1=0.1; // Part by volume of CO2 in exhaust gas +y2=0.06; // Part by volume of O2 in exhaust gas +y3=0.03; // Part by volume of CO in exhaust gas +y4=0.81; // Part by volume of N2 in exhaust gas +R_1=8.3143; // Universal gas constant in kJ/kmol K +// (a).Average molecular mass and apperent gas constant of exhaust gas +M=(y1*M1)+(y2*M2)+(y3*M3)+(y4*M4); // Average molecular mass +R=R_1/M; //Apperent gas constant of dry atmospheric air +disp ("kJ/kg K",R,"Apperent gas constant of dry atmospheric air =","kmol",M,"Average molecular mass = ","(a).Average molecular mass and apperent gas constant of exhaust gas"); +// (b).The fraction of each component +m1=(M1*y1)/M;//The fraction of CO2 component +m2=(M2*y2)/M;//The fraction of O2 component +m3=(M3*y3)/M;//The fraction of CO component +m4=(M4*y4)/M;//The fraction of N2 component +disp (m4,m3,m2,m1,"(b).The fraction of CO2,O2,CO,N2 components are given below respectively "); diff --git a/2006/CH12/EX12.3/ex12_3.sce b/2006/CH12/EX12.3/ex12_3.sce new file mode 100755 index 000000000..5296908a0 --- /dev/null +++ b/2006/CH12/EX12.3/ex12_3.sce @@ -0,0 +1,8 @@ +clc; +y1=0.79; // Volume of Nitrogen in 1 kg of air +y2=0.21; // Volume of Oxygen in 1 kg of air +R_1=8.3143; // Universal gas constant of air in kJ/kmol K +T0=298; // temperature of Surroundings in kelvin +del_Sgen=-R_1*((y1*log (y1))+(y2*log (y2))); //Entropy generation +LW=T0*del_Sgen; // Minimum work +disp ("kJ/kmmol K",LW,"The minimum work required for separation of two gases = "); diff --git a/2006/CH12/EX12.4/ex12_4.sce b/2006/CH12/EX12.4/ex12_4.sce new file mode 100755 index 000000000..c249756f1 --- /dev/null +++ b/2006/CH12/EX12.4/ex12_4.sce @@ -0,0 +1,14 @@ +clc; +DPT=8; // Dew point temperature in degree celcius +p=100; // Pressure of air in kPa +T=25; // Temperature of air in degree celcius +// (a).partial pressure of water vapour in air +pv=1.0584; // Saturation pressure of water at DBT in kPa +disp ("kPa",pv,"(a).partial pressure of water vapour in air = "); +// (b).Specific humidity +sh=0.622*pv/(p-pv);//Specific humidity +disp ("kg of water vapour /kg of dry air",sh,"(b).Specific humidity ="); +// (c).Relative humidity +pg=3.169; // Saturation pressure of water at T in kPa +RH=pv/pg; //Relative humidity +disp ("%",RH*100,"(c).Relative humidity ="); diff --git a/2006/CH12/EX12.5/ex12_5.sce b/2006/CH12/EX12.5/ex12_5.sce new file mode 100755 index 000000000..3af8c61dd --- /dev/null +++ b/2006/CH12/EX12.5/ex12_5.sce @@ -0,0 +1,27 @@ +clc; +DBT=35; // Dry bulb temperature in degree celcius +WBT=23; // Wet bulb temperature in degree celcius +P=100; // Pressure of air in kPa +Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K +R=0.287; // characteristic gas constant of air in kJ/kg K +// (a).Humidity ratio +hv=2565.3; // specific enthalpy hg at DBT in kJ/kg +hfWBT=96.52; hfgWBT=2443; // specific enthalpy at WBT in kJ/kg +PsatWBT=2.789;// Saturation pressure at WBT in kPa +shWBT=0.622*PsatWBT/(P-PsatWBT);// specific humidity +sh=((Cpo*(WBT-DBT))+(shWBT*hfgWBT))/(hv-hfWBT); // Humidity ratio +disp ("kg w.v /kg d.a",sh,"(a).Humidity ratio ="); +// (b).Relative Humidity +pv=sh*P/(0.622+sh); // Partial pressure of water vapour +pg=5.628; // Saturation pressure at DBT in kPa +RH=pv/pg; //Relative Humidity +disp ("%",RH*100,"(b).Relative Humidity ="); +// (d).Dew point temperature +DPT=17.5; // Saturation temperature at pg in degree celcius +disp ("oC",DPT,"(d).Dew point temperature ="); +// (e).Specific volume +v=(R*(DBT+273))/(P-pv); // Specific volume +disp ("m^3/kg",v,"(e).Specific volume = "); +// (d).Enthalpy of air +h=(Cpo*DBT)+(sh*hv); //Enthalpy of air +disp ("kJ/kg d.a",h,"(d).Enthalpy of air ="); diff --git a/2006/CH12/EX12.6/ex12_6.sce b/2006/CH12/EX12.6/ex12_6.sce new file mode 100755 index 000000000..f62371c1f --- /dev/null +++ b/2006/CH12/EX12.6/ex12_6.sce @@ -0,0 +1,16 @@ +clc; +DPT1=30; // Dew point temperature at inlet in degree celcius +DPT2=15; // Dew point temperature at outlet in degree celcius +RH1=0.50; // Relative humidity at inlet +RH2=0.80; // Relative humidity at outlet +p=101.325; // Atmospheric pressure in kPa +Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K +pg1=4.246; // saturation pressure of water at DBT1 in kPa +pg2=1.7051; // saturation pressure of water at DBT2 in kPa +pv1=RH1*pg1; pv2=RH2*pg2; // Partial pressure of water vapour in air at inlet and outlet +sh1=0.622*pv1/(p-pv1); sh2=0.622*pv2/(p-pv2); // Specific humidities at inlet and outlet +hv1=2556.3;// specific enthalpy hg at DBT1 in kJ/kg +hv2=2528.9;// specific enthalpy hg at DBT2 in kJ/kg +hv3=63;// specific enthalpy hf at DBT 2in kJ/kg +q=(Cpo*(DPT2-DPT1))+(sh2*hv2)-(sh1*hv1)+((sh1-sh2)*hv3); // Heat transfer +disp ("kJ/kg of dry air",q,"Heat removed from the air ="); diff --git a/2006/CH12/EX12.7/ex12_7.sce b/2006/CH12/EX12.7/ex12_7.sce new file mode 100755 index 000000000..084b6534d --- /dev/null +++ b/2006/CH12/EX12.7/ex12_7.sce @@ -0,0 +1,33 @@ +clc; +y1=0.5; // Molecular mass of CH4 in kmol +y2=0.5; // Molecular mass of C3H8 in kmol +T=363; // Temperature of gas in kelvin +p=5.06; // Pressure of gas in MPa +v=0.48; // volume of cylinder in m^3 +R_1=8.3143; // Universal gas constant of air in kJ/kmol K + +// (a).Using kay’s rule +// let component 1 refer to methane and component 2 to propane +// the critical properties +Tc1=190.7; Tc2=370; // temperature in kelvin +Pc1=46.4; Pc2=42.7; // Pressure in bar +// using kay’s rule for the mixture +Tcmix=y1*Tc1+y2*Tc2; +Pcmix=y1*Pc1+y2*Pc2; +// reduced properties +Tr=T/Tcmix; Pr=p/Pcmix; +// From generalized chart +z=0.832; +v_1=z*R_1*T/(p*10^3); // molar volume of the mixture +d=(v-v_1)/v; // Percentage deviation from actual value +disp ("%",d*100,"Percentage deviation from actual value = ","(a).Using kay’s rule"); +// (b).Using Redlich-Kwong equation of state +a1=0.42748*R_1*Tc1^2.5/Pc1; +a2=0.42748*R_1*Tc2^2.5/Pc2; +b1=0.08664*R_1*Tc1/Pc1; +b2=0.08664*R_1*Tc2/Pc2; +// Substituting these values in the equation 12.16 +// And solving these equation by iteration method we get +v_1=0.47864;// molar volume of the mixture +d=(v-v_1)/v; // Percentage deviation from actual value +disp ("%",d*100,"Percentage deviation from actual value = ","(b).Using Redlich-Kwong equation of state"); diff --git a/2006/CH12/EX12.8/ex12_8.sce b/2006/CH12/EX12.8/ex12_8.sce new file mode 100755 index 000000000..08ab33eed --- /dev/null +++ b/2006/CH12/EX12.8/ex12_8.sce @@ -0,0 +1,8 @@ +clc; +ln_piCH4=-0.0323; +pi_CH4=0.9683; +p=6895; // Pressure in kPa +T=104.4; // Temperature in degree celcius +a=0.784; +f_CH4=pi_CH4*a*p; // Faguacity +disp("kPa",f_CH4,"The Required Faguacity = "); diff --git a/2006/CH13/EX13.1/ex13_1.sce b/2006/CH13/EX13.1/ex13_1.sce new file mode 100755 index 000000000..855f95f88 --- /dev/null +++ b/2006/CH13/EX13.1/ex13_1.sce @@ -0,0 +1,50 @@ +clc; +// Take freon 22 as component 1 and Freon 12 as component 2 +// (a). y-x diagram at 40 oC +P1sat=15.335; // Saturation pressure of Freon 22 at 40oC in bar +P2sat=9.607; // Saturation pressure of Freon 12 at 40oC in bar +a=P1sat/P2sat; +xset('window',1); // For Plotting y-x Diagram +function y1=f(x1) + y1=(a*x1)/(1+x1*(a-1)); // y Function +endfunction +x1=linspace(0,1.0,3); +plot (x1,f,x1,x1); // plot comment +title ("(a).y-x diagram for the mixture at 40 oC","fontsize",4,"color","blue"); +xlabel(" x1 ","fontsize",4,"color","blue"); +ylabel(" y1 ","fontsize",4,"color","blue"); +legend(["y1";"x1"],[2]); +disp ("Refer window 1","(a). y-x diagram at 40 oC"); +// (b). p-x-y diagram at 40 oC + // By using the following relation calculate p value for various value of x1,y1 + // p=(x1*P1sat)+(1-x1)*P2sat +x1=[0,0.2,0.5,0.8,1]; +y1=[0,0.285,0.615,0.865,1]; +p=[9.607,10.7526,12.471,14.1894,15.335]; +xset('window',2); +plot (x1,p,y1,p); +title ("(b).P-y-x diagram for the mixture at 40 oC","fontsize",4,"color","blue"); +xlabel(" x1 & y1 ","fontsize",4,"color","blue"); +ylabel(" p in bar ","fontsize",4,"color","blue"); +legend(["Liquid out";"Vapour"],[2]); +disp ("Refer window 2","(b). p-x-y diagram at 40 oC"); +// (c).t-x-y diagram at 10 bar +// for any value of x1 at p=10 bar, the bubble temperature can be found by trial and error from the following relation + // p=10 bar =(x1*P1sat)+(1-x1)*P2sat +T1sat=23.7; // Saturation temperature of Freon 22 at 10 bar in oC +T2sat=41.6; // Saturation temperature of Freon 12 at 10 bar in oC +// Thus, for x1=0.5, we find that t=31 oC. +x1=0.5; // Let assume +P1sat=12.186; // Saturation pressure of Freon 22 at 31oC in bar +P2sat=7.654; // Saturation pressure of Freon 12 at 31oC in bar +a=P1sat/P2sat; +y1=(a*x1)/(1+x1*(a-1)); // y Function +// For different value of x1 the values of t,y1 are calculated by above expression and given below +x1=[0,0.5,1]; y1=[0,0.614,1]; t=[41.6,31,23.7]; +xset('window',3); +plot (x1,t,y1,t); +title ("(c).t-y-x diagram for the mixture at 10 bar","fontsize",4,"color","blue"); +xlabel(" x1 & y1 ","fontsize",4,"color","blue"); +ylabel(" t in oC ","fontsize",4,"color","blue"); +legend(["f";"g"]); +disp ("Refer window 3","(c).t-x-y diagram at 10 bar"); diff --git a/2006/CH13/EX13.2/ex13_2.sce b/2006/CH13/EX13.2/ex13_2.sce new file mode 100755 index 000000000..fbceefd62 --- /dev/null +++ b/2006/CH13/EX13.2/ex13_2.sce @@ -0,0 +1,25 @@ +clc; +T=573.15; // Temperature of the water with another liquid in kelvin +R=8.3144/18; // Characteristic gas constant +// (a).4 MPa +P_1=10; // By Method II, The lowest possible pressure at which date available in steam table for 300 oC temperature in kPa +h_i=3076.5; // Specific enthalphy at P_1 in kJ/kg +s_i=9.2813; // Specific entropy at P_1 in kJ/kg K +// from superheat table at p=4 MPa and t=300 oC +hi=2960.7; // Specific enthalphy in kJ/kg +si=6.3615; // Specific entropy in kJ/kg K +fi=P_1*exp ((((hi-h_i)/T)-(si-s_i))/R); // Standard state fugacity of water +disp ("kPa (round off error)",fi,"Standard state fugacity of water = ","(a).4 MPa"); +// (b).equal to saturation pressure at 300 oC +Psat=8.581; // Saturation pressure at 300 oC in MPa +// From steam table at Psat=8.581 MPa and t=300 oC +hi=2749; // Specific enthalphy in kJ/kg +si=5.7045; // Specific entropy in kJ/kg K +fi=P_1*exp ((((hi-h_i)/T)-(si-s_i))/R); // Standard state fugacity of water +pisat=fi/(Psat*10^3); // fugacity coefficient +disp (pisat,"fugacity coefficient =","kPa",fi,"Standard state fugacity of water = ","(b).Equal to saturation pressure at 300 oC"); +// (c).10 MPa +// Applying Method I +viL=0.001404; // Specific volume at 300 oC in m^3/kg +fi=pisat*Psat*10^3*exp ((viL*(P_1-Psat)*10^3)/(R*T)); // Standard state fugacity of water +disp ("kPa",fi,"Standard state fugacity of water = ","(a).10 MPa"); diff --git a/2006/CH13/EX13.3/ex13_3.sce b/2006/CH13/EX13.3/ex13_3.sce new file mode 100755 index 000000000..8842d93b2 --- /dev/null +++ b/2006/CH13/EX13.3/ex13_3.sce @@ -0,0 +1,72 @@ +clc; +// Let take NH3 as component 1 and H2O as component 2 +// (a) & (b) +// Calculation of f1sat = pi1sat*p1sat for ammonia +P_1=50; // low reference state pressure in kPa +P1sat=614.95; // Saturation Pressure of ammonia at 10 oC in kPa +h1sat=1453.3; // Specific enthalpy at 10 oC in kJ/kg +s1sat=5.2104; // Specific entropy at 10 oC in kJ/kg K +R=8.3144/17; // Characteristic gas constant +T=283; // Temperature in kelvin +// At 10 oC and P_1=50 kPa for ammonia +h_1sat=1499.2; // Specific enthalpy in kJ/kg +s_1sat=6.5625; // Specific entropy in kJ/kg K +f1sat=P_1*exp ((((h1sat-h_1sat)/T)-(s1sat-s_1sat))/R); // Standard state fugacity of Ammonia +disp ("kPa",f1sat,"Standard state fugacity of Ammonia = ","(a) & (b)"); +// Calculation of f2sat = pi2sat*p2sat for water +P2sat=1.2276; // Saturation Pressure at 10 oC in kPa for water +pi2sat=1; // At low pressure for water +f2sat = pi2sat*P2sat; // Standard state fugacity of water +disp ("kPa",f2sat,"Standard state fugacity of water = "); +// Calulations of ViL/RT +// For ammonia and water at 10 oC +v1L=0.001601; v2L=0.001; // Specific volume in m^3/kg +v1L_RT=v1L/(R*T); v2L_RT=v2L/(R*T); +disp (v2L_RT,"v2L/RT = ","(answer mentioned in the textbook is wrong)",v1L_RT,"v1L/RT = "); +// Calculations of activity coefficients +// Expression for activity coefficients of ammonia and water become in given by respectively +// r_1=(y1*p/(x1*569.6))*exp (-4.34*10^-6*(p-p1sat)); for ammonia +// r_2=(y2*p/(x2*1.2276))*exp (-7.65*10^-6*(p-p2sat)); for water +// The values thus calculated for r_1,r_2,lny_1,lnr_2 are calculated and plotted in window 1 +// Note that the values of pyonting factors are negligibly small +x1=[0,0.2,0.3,0.4,0.5,0.6,0.8,1.0]; +y1=[0,0.963,0.986,0.9958,0.9985,0.9993,0.9999,1.0]; +lnr_1=[-3.1,-1.845,-1.295,-0.75,-0.33,-0.065,-0.035,-0]; +lnr_2=[0,-0.1397,-0.2767,-0.507,-0.709,-0.952,-1.613,-2.2]; +// similarly the excess function gE/RT and gE/x1x2RT are also calculated using the following expression respectively +// gE_RT=x1*lnr_1+x2*lnr_2; // the excess function from 12.51 + // gE_x1x2RT=(lnr_1/x2)+(lnr_2/x1); +// since gE=0 & x1x2=0 both at x1=0 and x1=1. However its values in between x1=0 & x1=1 +// By substituting these values in the above expression and given below +gE_RT=[0,-0.481,-0.582,-0.604,-0.5195,-0.4198,-0.2925,0]; +gE_x1x2RT=[-3.1,-2.92,-2.83,-2.74,-2.65,-2.56,-2.38,-2.2]; +xset('window',1); // For Plotting Diagram +plot (x1,lnr_1,"b*-",x1,lnr_2,"g*-",x1,gE_RT,"r",x1,gE_x1x2RT,"k*-"); +title ("(a)&(b).Activity coefficients for NH3/H2O at 10 oC","fontsize",4,"color","blue"); +xlabel(" x1 → ","fontsize",4,"color","blue"); +ylabel(" ln γ → ","fontsize",4,"color","blue"); +legend(["ln γ1";"ln γ2";"gE/RT";"gE/x1x2 RT"],[4]); +disp ("Refer window 1 for plots"); +// As x1→0,x2→1,gE_x1x2RT→A=ln r_1^∞ +// As x1→1,x2→0,gE_x1x2RT→B=ln r_2^∞ +A=-3.1; B=-2.2; // THe Margules constants +disp (B,"B = ",A,"A = ","The Margules constants "); +disp ("From window 1 for ammonia/water mixture which is characteristic of systems with negative deviation from Roault law. Because γi<=1 and ln γi <=0"); +// (c). +// Assuming ideal vapour phase, and at low pressures we have +// y1P=γ1*x1*p1sat; y2p=γ2* x2* p2sat; +// Now the activity coefficients can be found from Margules equations and given below +x1=[0,0.2,0.3,0.4,0.5,0.6,1.0]; +y1=[0,0.963,0.986,0.9958,0.9985,0.9999,1.0]; +p=[1.2276,8.6597,30.6598,54.6845,150.6458,278.1549,614.95]; +// The ideal solution pressure + // PRaoult=x1*P1sat+x2*P2sat; +PRaoult=[1.2276,614.95]; x_1=[0,1]; // For Ideal solution pressure +xset('window',2); // For Plotting Diagram +plot (x1,p,"r*-",y1,p,"b*-",x_1,PRaoult,"g"); +title ("(c).p-x-y diagram of NH3/H2O at 10 oC","fontsize",4,"color","blue"); +xlabel(" x1 → & y1 → ","fontsize",4,"color","blue"); +ylabel(" p, kPa → ","fontsize",4,"color","blue"); +legend(["p-x1";"p-y1";"PRaoult"],[2]); +disp ("For p-x-y diagram refer window 2","(c).") +disp ("From window 2 The actual pressure p < pRaoult. It is thus seen that the mixture has negative deviation from Raoults law."); diff --git a/2006/CH13/EX13.4/ex13_4.sce b/2006/CH13/EX13.4/ex13_4.sce new file mode 100755 index 000000000..95d1bad07 --- /dev/null +++ b/2006/CH13/EX13.4/ex13_4.sce @@ -0,0 +1,69 @@ +clc; +x1=0.9; // mole fraction of NH3 +x2=0.1; // Mole fraction of H2O +p=490.3; // Pressure in kPa +T=280.1; // Temperature in kelvin +lam12_11=-2131; lam21_22=-2726; // In kJ/kmol +R_1=8.3144; // Universal gas constant in kJ/kmol K +// (a).Enthalpy of saturated liquid Mixture at L/B at bubble temperature +V1L=0.0016; V2L=0.001; //from properties of NH3 and H2O in m^3/kg +a=((V2L*18)/(V1L*17)) * exp (-lam12_11/(R_1*T)); +b=((V1L*17)/(V2L*18)) * exp (-lam21_22/(R_1*T)); +d_a=a*(lam12_11/(R_1*T^2)); d_b=b*(lam21_22/(R_1*T^2)); +d_lnr1=(-(a*x2^2*d_a/(x1+(a*x2))^2))-(x2*d_b/(b*x1+x2))+(b*x1*x2*d_b/(b*x1+x2)^2); +d_lnr2=(-b*x1^2*d_b/(b*x1+x2)^2)-(x1*d_a/(x1+a*x2))+(a*x1*x2*d_a/(x1+a*x2)^2);x1=0.728; // By substituting these valuses in equation +h_E=-R_1*T^2*(x1*d_lnr1+x2*d_lnr2); // Heat of mixing +x1=0.9; +M=x1*17+x2*18; // Molecular weight +hE=h_E/M; +h1L=32.5; h2L=29.4; // in kJ/kg +hL=(x1*h1L)+(x2*h2L)+hE;// Specific enthalpy of the liquid mixture +disp ("kJ/kg",hL,"Specific enthalpy of the liquid mixture = ","(a).Enthalpy of saturated liquid Mixture at L/B at bubble temperature"); +// (b).Enthalpy of saturated vapour at V in Equilibrium with liquid at L/B +// From property table of ammonia and water at 0 oC +T1=273.15; // Temperature in kelvin +p1sat=429.4; p2sat=0.6108; // Pressure in kPa +hfg1=1262.4; hfg2=2501.4;// specific enthalpy in kJ/kg +vg1=0.2895; vg2=206.3; // specific volume in m^3/kg +// Referring to fig 13.15 , we have +hb1=1262.4; hb2=2501.4;// specific enthalpy in kJ/kg +M=17; +// The crictical properties +Tc1=405.3; Tc2=647.3;// Temperature in kelvin +pc1=11.28; pc2=22.09; // Pressure in MPa +z1=(p1sat*vg1/(R_1*T1/M)); z2=(p2sat*vg2/(R_1*T/M)); +A2_1=(0.4278/(pc1*10^3))*(Tc1/T1)^2.5; // Constants +B_1=(0.0867/(pc1*10^3))*(Tc1/T1); // Constants +h1R=R_1*(T1/M)*(((-3/2)*(A2_1/B_1)*log (1+(B_1*p1sat/z1)))+z1-1); +A2_2=(0.4278/(pc2*10^3))*(Tc2/T1)^2.5; // Constants +B_2=(0.0867/(pc2*10^3))*(Tc2/T1); // Constants +h2R=-0.2; +hc1=hb1-h1R; hc2=hb2-h2R; // Enthalpies at 0 oC +Cpo1=14.86; Cpo2=12.92; // In kJ/kg +A2_1=(0.4278/(pc1*10^3))*(Tc1/T)^2.5; // Constants +B_1=(0.0867/(pc1*10^3))*(Tc1/T); // Constants +A2_2=(0.4278/(pc2*10^3))*(Tc2/T)^2.5; // Constants +B_2=(0.0867/(pc2*10^3))*(Tc2/T); // Constants +y1=0.9999; y2=0.0001; +Tc=y1*Tc1+y2*Tc2; +z=0.957; +hR=R_1*(T/M)*(((-3/2)*(A2_1/B_1)*log (1+(B_1*p/z)))+z-1); +hV=y1*(hc1+Cpo1)+y2*(hc2+Cpo2)+hR; +disp ("kJ/kg",hV,"(b).Enthalpy of saturated vapour at V in Equilibrium with liquid at L/B"); +// (c).Enthalpy of saturated vapour at D after complete vaporization of liquid at B/L +T=359.15; // In K +Cpo1=192.2; Cpo2=160.9; // In kJ/kg +A2_1=(0.4278/(pc1*10^3))*(Tc1/T)^2.5; // Constants +B_1=(0.0867/(pc1*10^3))*(Tc1/T); // Constants +A2_2=(0.4278/(pc2*10^3))*(Tc2/T)^2.5; // Constants +B_2=(0.0867/(pc2*10^3))*(Tc2/T); // Constants +y1=0.9; y2=0.1; +Tc=y1*Tc1+y2*Tc2; +z=0.9768; +hR=R_1*(T/M)*(((-3/2)*(A2_1/B_1)*log (1+(B_1*p/z)))+z-1); +hD=y1*(hc1+Cpo1)+y2*(hc2+Cpo2)+hR; +disp ("kJ/kg",hD,"(c).Enthalpy of saturated vapour at D after complete vaporization of liquid at B/L"); +// (d).Latent Heat of Vapourization of this Liquid Mixture +hB=-0.2; +hD_hB=hD-hB; //Latent Heat of Vapourization of this Liquid Mixture +disp ("kJ/kg mixture",hD_hB,"(d). Latent Heat of Vapourization of this Liquid Mixture = "); diff --git a/2006/CH14/EX14.1/ex14_1.sce b/2006/CH14/EX14.1/ex14_1.sce new file mode 100755 index 000000000..7b8d0554e --- /dev/null +++ b/2006/CH14/EX14.1/ex14_1.sce @@ -0,0 +1,6 @@ +clc; +// From the Table 14.1 +del_hfHCL=92307; // Enthalpy of Heat in kJ/kmol +del_hfH2O=-241818; // Enthalpy of Heat kJ/kmol +del_Ho=4*del_hfHCL-2*del_hfH2O; // The standard heat of reaction from enthalpy equation +disp ("kJ (answer mentioned in the textbook is wrong)",del_Ho,"The standard heat of reaction for the process = "); diff --git a/2006/CH14/EX14.10/ex14_10.sce b/2006/CH14/EX14.10/ex14_10.sce new file mode 100755 index 000000000..796916a22 --- /dev/null +++ b/2006/CH14/EX14.10/ex14_10.sce @@ -0,0 +1,29 @@ +clc; +// (a).The product CO2 is also at 298K +Pco=2/3; // Paratial pressure of CO in atm +Po2=1/3; // Paratial pressure of O2 in atm +Pco2=1; // Paratial pressure of CO2 in atm +T0=298; // Temperature of surroundings in kelvin +R_1=8.3143; // Universal gas constant of air in kJ/kmol K +// From table 14.1 at 298 K and 1 atm +s_co2=213.795-R_1*log (Pco2); // entropies in kJ/kmol K +s_co=197.653-R_1*log (Pco); // entropies in kJ/kmol K +s_o2=205.03-R_1*log (Po2); // entropies in kJ/kmol K +del_Scv=s_co2-s_co-1/2*s_o2; // Entropy change of comtrol volume +// From table 14.1 +del_hfco2=-393509; del_hfco=-110525; // Enthalpy of Heat in kJ/kmol +Q= del_hfco2- del_hfco; // Heat transfer (to surroundings) +del_Ssurr=abs(Q)/T0; // Entropy change of surroundings +del_Sgen=del_Scv+del_Ssurr; //Entropy change of universe +disp ("kJ/K",del_Sgen,"Entropy change of universe = ","kJ/K",del_Ssurr,"Entropy change of surroundings = ","kJ/K",del_Scv,"Entropy change of comtrol volume = ","(a).The product CO2 is also at 298K"); +// (b).The reaction is adiabatic +// Let the adiabatic flame temperature be T. Then since +Q=0; +C_p=44*0.8414; +// From table A.16 +T=5057.5; //adiabatic flame temperature in kelvin +s_CO2=213.795+C_p*log (T/T0); // entropies in kJ/kmol K +del_Scv=s_CO2-s_co-1/2*s_o2; // Entropy change of comtrol volume +del_Ssurr=abs(Q)/T0; // Entropy change of surroundings +del_Sgen=del_Scv+del_Ssurr; //Entropy change of universe +disp ("kJ/K",del_Sgen,"Entropy change of universe = ","kJ/K",del_Ssurr,"Entropy change of surroundings = ","kJ/K",del_Scv,"Entropy change of comtrol volume = ","(b).The reaction is adiabatic"); diff --git a/2006/CH14/EX14.11/ex14_11.sce b/2006/CH14/EX14.11/ex14_11.sce new file mode 100755 index 000000000..00c9585b3 --- /dev/null +++ b/2006/CH14/EX14.11/ex14_11.sce @@ -0,0 +1,11 @@ +clc; +// The Combustion of H2 with Q2 from H2O +//H2(g)+1/2 O2 (g)→H2O(l)+285830 kJ/kmol H2 +T0=298; // Temperature of surroundings in kelvin +// From table 14.1 at 298 K +del_hfH2O=-285830; // Enthalpy of Heat in kJ/kmol +s_298H2O=69.94; s_298H2=130.684; s_298O2=205.142; // entropies in kJ/kmol K +GP_GR=del_hfH2O-T0*(s_298H2O-s_298H2-1/2*s_298O2); // Formation of Gibbs function +GR=0; +GP=GP_GR-GR; // Standard Gibbs function of formation of liquid H2O +disp ("kJ/kmol",GP,"Standard Gibbs function of formation of liquid H2O = "); diff --git a/2006/CH14/EX14.12/ex14_12.sce b/2006/CH14/EX14.12/ex14_12.sce new file mode 100755 index 000000000..bec785529 --- /dev/null +++ b/2006/CH14/EX14.12/ex14_12.sce @@ -0,0 +1,22 @@ +clc; +// the combustion equation +// n1C3H8+n2O2+n3 N2 → n4 CO2+ n5 H2O+n6 O2+n7 N2 +T0=298; // Temperature of surroundings in kelvin +// (a).Product species at 25 oC and 1 atm +d_gfC3H8=-24290; d_gfCO2=-394359; d_gfH2O=-228570; // in kJ/kmol +GR=d_gfC3H8; +GP=3*d_gfCO2+4*d_gfH2O; +Wmax=GR-GP; // Maximum possible work output +M=44;//Molecular weight +Wmax=Wmax/M; +disp ("kJ/kg fuel (answer mentioned in the textbook is wrong)",Wmax,"Maximum possible work output = ","(a)."); +// (b).The actual partial pressures of products +n1=1; n2=20; n3=75.2; +n4=3; n5=4; n6=15; n7=75.2; // refer equation +SR=19233; SP=19147; // in kJ/K from table +HR=-104680; // in kJ/kmol fuel +d_h0fCO2=-393509; d_h0fH2O=-241818; // in kJ/kmol +HP=3*d_h0fCO2+4*d_h0fH2O; +Wmax=HR-HP-T0*(SR-SP); // Maximum possible work output +Wmax=Wmax/M; +disp ("kJ/kg (round off error)",Wmax,"Maximum possible work output = ","(b)."); diff --git a/2006/CH14/EX14.2/ex14_2.sce b/2006/CH14/EX14.2/ex14_2.sce new file mode 100755 index 000000000..7dbf1df8a --- /dev/null +++ b/2006/CH14/EX14.2/ex14_2.sce @@ -0,0 +1,6 @@ +clc; +del_Ho=5640000; // Heat released during the process +// From the Table 14.1 +del_hfO2=-393509; del_hfH2O=-285830; // Enthalpy of Heat in kJ/kmol +del_hfsucrose=12*del_hfO2+11*del_hfH2O+del_Ho; // The enthalpy formation of sucrose +disp ("kJ/kmol (answer mentioned in the textbook is wrong)",del_hfsucrose,"The enthalpy formation of sucrose = "); diff --git a/2006/CH14/EX14.3/ex14_3.sce b/2006/CH14/EX14.3/ex14_3.sce new file mode 100755 index 000000000..162819364 --- /dev/null +++ b/2006/CH14/EX14.3/ex14_3.sce @@ -0,0 +1,16 @@ +clc; +// (a).Balancing of chemical equation +// The unbalanced equation for the process is C8H18 + O2 + N2 → CO2 + H2O + N2 +x=8; // Carbon balance +y=9; // Hydrogen balance +z=12.5; // Oxygen balance in reverse order +n=z*3.76; // Nitrogen Balance +disp ("(a).Balancing of chemical equation"); +printf ("\n C8H18 + %0.1f O2 + %d N2 → %d CO2 + %d H2O + %d N2 \n ",z,n,x,y,n); +// (b).The theoretical air-fuel ratio +a=1; // Mole of C8H18 +AF1=(z+n)/a; //The theoretical air-fuel ratio on mole basis +ma=28.84; // Molecular mass of air +mc=114; // Molecular mass of C8H18 +AF2=(AF1*ma)/(a*mc); // The theoretical air-fuel ratio on mass basis +disp ("kg air / kmol C8H18",AF2,"The theoretical air-fuel ratio on mass basis = ","kmol air / kmol C8H18",AF1,"The theoretical air-fuel ratio on mole basis = ","(b).The theoretical air-fuel ratio"); diff --git a/2006/CH14/EX14.4/ex14_4.sce b/2006/CH14/EX14.4/ex14_4.sce new file mode 100755 index 000000000..59fbbf9dc --- /dev/null +++ b/2006/CH14/EX14.4/ex14_4.sce @@ -0,0 +1,8 @@ +clc; +// The combustion equation for C4H10 with 80% theoretical air is C4H10 +5.2(O2 + 3.76 N2) → a(1)CO + a(2)CO2 + 5H2O + 19.55N2 +// The following matrix shows the balance of C and O +A=[1 1 ; 1 2]; +B=[4 ;5.4]; +a=A\B; +disp ("The equation for the combustion of butane with 80% theoretical air is ") +printf ("\n C4H10 +5.2(O2 + 3.76 N2) → %0.1f CO + %0.1f CO2 + 5H2O + 19.55N2",a(1),a(2)); diff --git a/2006/CH14/EX14.5/ex14_5.sce b/2006/CH14/EX14.5/ex14_5.sce new file mode 100755 index 000000000..aa64da71f --- /dev/null +++ b/2006/CH14/EX14.5/ex14_5.sce @@ -0,0 +1,16 @@ +clc; +p=101.325; // Atmospheric pressure in kPa +// The complete combustion equation for actane + // yC8H18+ x (O2+3.76N2) → n1 CO2+n2 H2O+n3 O2+n3 N2 +x=12.5*1.5; y=1; +n1=8; n2=9; n3=6.28; n4=70.5; +n=n1+n2+n3+n4; // Total number of moles of the products +AFm=(x+x*3.76)/y ;// Air fuel ratio +m=28.84; +M=116; // Molecular weight of octane +AF=AFm*m/M; +yco2=n1/n; yH2O=n2/n; yO2=n3/n; yN2=n4/n; +pH2O=p*yH2O; // Partial pressure of water vapour in the products +Tsat=45.21; // In oC +disp ("kg air/kg octane",AF,"Air fuel ratio = "); +disp ("If the products are cooled below 25 oC then, the water vapour will condense. Because the cooled temperature is less than dew point temperature of water vapour i.e., T < Tsat."); diff --git a/2006/CH14/EX14.6/ex14_6.sce b/2006/CH14/EX14.6/ex14_6.sce new file mode 100755 index 000000000..ec8d04571 --- /dev/null +++ b/2006/CH14/EX14.6/ex14_6.sce @@ -0,0 +1,23 @@ +clc; +// The complete chemical equation is //[0.14H2+0.03CH4+0.27CO+0.045CO2+0.01O2+0.505N2]+0.255(O2+3.75N2) →0.2H2O+0.345CO2+1.44N2 +a=0.14; // Composition of H2 in air +b=0.03; // Composition of CH4 in air +c=0.27; // Composition of CO in air +d=0.045; // Composition of CO2 in air +e=0.01; // Composition of O2 in air +f=0.505; // Composition of N2 in air +g=(0.265-0.01); // O2 requirement from atmospheric air with 1% O2 already in fuel +h=3.76; // By nitrogen balance +i=1; // mole of the air +AFvol=(g+(g*h))/i; // Air fuel ratio (theroretical) +AFv=1.1*AFvol; // Air fuel ratio on mol (volume) basis +disp ("kmol actual air/kmol fuel",AFv,"Air fuel ratio on mol (volume) basis =") +M1=2; // Molecular mass of H2 +M2=16; // Molecular mass of CH4 +M3=28; // Molecular mass of CO +M4=44; // Molecular mass of CO2 +M5=32; // Molecular mass of O2 +M=a*M1+b*M2+c*M3+d*M4+e*M5+f*M3; // Molecular mass of Fuel +Ma=28.84; // Molecular mass of air +AFm=AFv*Ma/(i*M); // Air fuel ratio on mass basis +disp ("kg air / kg fuel",AFm,"Air fuel ratio on mass basis = "); diff --git a/2006/CH14/EX14.7/ex14_7.sce b/2006/CH14/EX14.7/ex14_7.sce new file mode 100755 index 000000000..85812cd57 --- /dev/null +++ b/2006/CH14/EX14.7/ex14_7.sce @@ -0,0 +1,16 @@ +clc; +//From table 14.2 at 25 oC and 1 atm for C8H8 +del_Ho=-2039.7; // LHV in MJ/kmol +// Combustion equation is C3H8+ 5O2 +18.8N2 → 3CO2 +4H2O +18.8N2 +// From table 14.3 +h333_C3H8=2751; // h333_h298 of C3H8 in kJ/kmol +h333_O2=147; // h333_h298 of O2 in kJ/kmol +h333_N2=145; // h333_h298 of N2 in kJ/kmol +h1333_CO2=52075; // h1333_h298 of CO2 in kJ/kmol +h1333_H2O=32644; // h1333_h298 of H2O in kJ/kmol +h1333_N2=32644; // h1333_h298 of N2 in kJ/kmol +M=44; // molecular mass of C3H8 +Ha_H1=h333_C3H8+5*h333_C3H8+18.8*h333_N2; // The enthalpy differences +Hb_H2=3*h1333_CO2+4*h1333_H2O+18.8*h1333_N2; // The enthalpy differences +Q=(del_Ho+Hb_H2/1000-Ha_H1/1000)/M; // Heat transfer from combustion chamber +disp ("MJ/kg C3H8",abs (Q),"Heat transfer from combustion chamber ="); diff --git a/2006/CH14/EX14.8/ex14_8.sce b/2006/CH14/EX14.8/ex14_8.sce new file mode 100755 index 000000000..33622f7c9 --- /dev/null +++ b/2006/CH14/EX14.8/ex14_8.sce @@ -0,0 +1,7 @@ +clc; +Ha_H1=6220; // From example 14.7 in kJ/kmol +del_Ho=-2039.7; // From example 14.7 LHV in MJ/kmol +Hb_H2=-del_Ho+Ha_H1; // For adiabatic combustion of C3H8 +// Hb_H2=3*h1333_CO2+4*h1333_H2O+18.8*h1333_N2 By iteration process and making use of the values from Table A.3, A.13, A.15 we can get the adiabatic flame temperature is +Tad=2300;// The adiabatic flame temperature in kelvin +disp ("K",Tad,"The adiabatic flame temperature"); diff --git a/2006/CH14/EX14.9/ex14_9.sce b/2006/CH14/EX14.9/ex14_9.sce new file mode 100755 index 000000000..5da736239 --- /dev/null +++ b/2006/CH14/EX14.9/ex14_9.sce @@ -0,0 +1,16 @@ +clc; +// (a).Entropy change per kmol of C +// From table 14.1 at 298 K and 1 atm +s_c=5.686; // Absolute entropies of C in kJ/kmol K +s_o2=205.142; // Absolute entropies of o2 in kJ/kmol K +s_co2=213.795; // Absolute entropies of CO2 in kJ/kmol K +del_s=s_co2-(s_c+s_o2); // The entropy change +disp ("kJ/K/kmol C",del_s,"(a).The entropy change = "); +// (b).Entropy change of universe +Tsurr=298; // Temperature of surroundings in kelvin +// From table 14.1 +del_Ho=-393509; // del_hfco2 in kJ/kmol CO2 +Q=abs (del_Ho); +del_Ssurr=Q/Tsurr; // Entropy change of surroundings +del_Suniv=del_s+del_Ssurr; //Entropy change of universe +disp ("kJ/K",del_Suniv,"(b).Entropy change of universe = "); diff --git a/2006/CH15/EX15.1/ex15_1.sce b/2006/CH15/EX15.1/ex15_1.sce new file mode 100755 index 000000000..23fcb39da --- /dev/null +++ b/2006/CH15/EX15.1/ex15_1.sce @@ -0,0 +1,8 @@ +clc; +// (b).Number of moles of each constituents +nCH4=2; // Number of moles of CH4 +E=3-nCH4; // Amount of reaction from (a) and refer example 15.1 (a) +nH2O=1-E;// Number of moles of H2O +nCO=1+E;// Number of moles of CO +nH2=4+3*E;// Number of moles of H2 +disp (nH2,"Number of moles of H2 = ",nCO,"Number of moles of CO = ",nH2O,"Number of moles of H2O = ","(b).Number of moles of each constituents"); diff --git a/2006/CH15/EX15.2/ex15_2.sce b/2006/CH15/EX15.2/ex15_2.sce new file mode 100755 index 000000000..37ba9ac04 --- /dev/null +++ b/2006/CH15/EX15.2/ex15_2.sce @@ -0,0 +1,19 @@ +clc; +T0=298; // Given temperature in kelvin +R_1=8.314; // Universal gas constant in kJ/kg mol K +// (a).CO+1/2 O2 = CO2 +// From table of properties of combustion +del_hfco2=-393509;// Enthalpy of heat +del_hfco=-110525;// Enthalpy of heat +s_co2=213.795;// Entropy of heat +s_co=197.652;// Entropy of heat +s_o2=205.142;// Entropy of heat +del_Ga=(del_hfco2-del_hfco-T0*(s_co2-s_co-(1/2*s_o2))); +Ka=exp (abs (del_Ga)/(R_1*1000*T0)); +disp ("(a).CO+1/2 O2 = CO2"); +printf ("\n The equilibrium constant at 298 K = %0.3f (Error in textbook) \n",Ka); +// (b).2CO + O2 = 2CO2 +Kb=exp (2*abs (del_Ga)/(R_1*1000*T0)); +disp ("(b).2CO + O2 = 2CO2"); +printf ("\nThe equilibrium constant at 298 K = %0.3f (Error in textbook)",Kb); + diff --git a/2006/CH15/EX15.3/ex15_3.sce b/2006/CH15/EX15.3/ex15_3.sce new file mode 100755 index 000000000..018a610c3 --- /dev/null +++ b/2006/CH15/EX15.3/ex15_3.sce @@ -0,0 +1,12 @@ +clc; +T0=298; // Temperature of surroundings in kelvin +R_1=8.314; // Universal gas constant in kJ/kg mol K +T=2800; // Given Temperature in kelvin +// From table of properties of combustion +del_hfco2=-393509; // Enthalpy of heat +del_hfco=-110525; // Enthalpy of heat +del_H=del_hfco2-del_hfco; // Standard enthalpy of reaction +Ka=1.229D+45; // The equilibrium constant From the example 15.2 +K1=log (Ka); +K=exp(-(del_H/R_1)*((1/T)-(1/T0))+K1); +disp (K,"K ="); diff --git a/2006/CH15/EX15.5/ex15_5.sce b/2006/CH15/EX15.5/ex15_5.sce new file mode 100755 index 000000000..8fde15c6a --- /dev/null +++ b/2006/CH15/EX15.5/ex15_5.sce @@ -0,0 +1,11 @@ +clc; +T=2800; // Temperature of combustion in kelvin +p=1; // Pressure of combustion in atm +// For this reverse reaction at 2800K and 1atm, from Table 15.1 +K=44.168; // K=e^3.788; +K=sqrt (K); // For stoichiometric equation CO+1/2 O2 = CO2 which is halved +// From equation 15.24a and by the iteration process we get the following +a=0.198; +b=(1+a)/2; +c=1-a; +disp (c,b,a,"The balance for the actual reaction equation CO + O2 → aCO + bO2 + cCO2 is given by "); diff --git a/2006/CH15/EX15.6/ex15_6.sce b/2006/CH15/EX15.6/ex15_6.sce new file mode 100755 index 000000000..36addeae8 --- /dev/null +++ b/2006/CH15/EX15.6/ex15_6.sce @@ -0,0 +1,7 @@ +clc; +// By driving the equation for equilibrium constant as shown in example 15.6 we get 6.646(6)^(1/6)=((1-a)/a)((3+a)/(1+a))^1/2 +// by simple iteration process we get +a=0.095; +b=(1+a)/2; +c=1-a; +disp ("mol",c,"The equilibrium composition of CO2 = ","mol",b,"The equilibrium composition of O2 = ","mol",a,"The equilibrium composition of CO = "); diff --git a/2006/CH15/EX15.7/ex15_7.sce b/2006/CH15/EX15.7/ex15_7.sce new file mode 100755 index 000000000..aba8add17 --- /dev/null +++ b/2006/CH15/EX15.7/ex15_7.sce @@ -0,0 +1,11 @@ +clc; +T=2800; // Temperature of combustion in kelvin +p=1; // Pressure of combustion in atm +// For this reverse reaction at 2800K and 1atm, from Table 15.1 +K=44.168; // K=e^3.788; +K=sqrt (K); // For stoichiometric equation CO+1/2 O2 = CO2 which is halved +// From equation 15.24a and by the iteration process we get the following +a=0.302; +b=(1+a)/2; +c=1-a; +disp (c,b,a,"The balance for the actual reaction equation CO + 1/2O2 + 1.88N2 ↔ aCO + bO2 + cCO2 +3.76N2 is given by "); diff --git a/2006/CH15/EX15.8/ex15_8.sce b/2006/CH15/EX15.8/ex15_8.sce new file mode 100755 index 000000000..04bd9651f --- /dev/null +++ b/2006/CH15/EX15.8/ex15_8.sce @@ -0,0 +1,18 @@ +clc; +T=3000; // Temperature of combustion in kelvin +p=1; // Pressure of combustion in atm +T0=298; // Temperature of surroundings in kelvin +R_1=8.314; // Universal gas constant in kJ/kg mol K +// Gibbs functions at 298K from Table 14.1 +del_gNO=86550; // In kJ/kmol +del_gNO2=51310; // In kJ/kmol +// From table of properties of combustion +del_hfNO=90250; // Enthalpy of heat +del_hfNO2=33180; // Enthalpy of heat +K1=exp (-(del_hfNO/R_1)*((1/T)-(1/T0))-((del_gNO)/(R_1*T0))); +K2=exp (-(del_hfNO2/R_1)*((1/T)-(1/T0))-((del_gNO2)/(R_1*T0))); +// By solving equilibrium equations by iteration method +E1=0.228; E2=0.0007; +yNO=E1/4.76; // Mole fraction of NO in exhaust gas +yNO2=E2/4.76; // Mole fraction of NO2 in exhaust gas +disp ("%",yNO2*100,"Mole fraction of NO2 in exhaust gas = ","%",yNO*100,"Mole fraction of NO in exhaust gas = ","Percentage of NOx present in the exhaust gas "); diff --git a/2006/CH2/EX2.1/ex2_1.sce b/2006/CH2/EX2.1/ex2_1.sce new file mode 100755 index 000000000..a7a947942 --- /dev/null +++ b/2006/CH2/EX2.1/ex2_1.sce @@ -0,0 +1,12 @@ +clc; +patm = 14.5 ; // atmospheric pressure in psia +pgauge = 2.5; // gauge pressure in psia +A = 10; // Area of the piston in in^2 +g=9.80665; // Acceleration due to gravity in m/s^2 +p = patm + pgauge; //total pressure of gas +m=(p-patm)*A ; //mass of the piston +disp("lbm",m,"Mass of the piston =","In English units"); +p=(p*0.454*g)/(0.0254^2); // conversion of English unit to SI units +patm=(patm*0.454*g)/(0.0254^2); // conversion of English unit to SI units +m = ((p-patm)*(A*2.54^2*10^-4))/g; // Mass of the piston +disp("kg",m,"Mass of the piston =","In SI units"); diff --git a/2006/CH2/EX2.2/ex2_2.sce b/2006/CH2/EX2.2/ex2_2.sce new file mode 100755 index 000000000..81f4fdedb --- /dev/null +++ b/2006/CH2/EX2.2/ex2_2.sce @@ -0,0 +1,11 @@ +clc; +d_r = 13600; // Density of manometric fluid (mercury) in kg/m^3 +g = 8.92; // Gravitational acceleration in m/s^2 +z1=0.589*sind(60); // vertical height of fluid at section 1 +z2=2*sind(30); // vertical height of fluid at section 2 +z=z2-z1; // Difference in vertical heights of fluid +patm = 14.7; // Atmospheric pressure in lbf/in^2 +patm=(patm*4.44822*144/0.3048^2); // conversion of lbf/in^2 unit to N/m^2 unit +p=patm + (d_r*g*(z2-z1)); // Balance of force at A +disp ("m",z,"Difference in vertical heights of fluid"); +disp ("kPa",p/1000,"The pressure of fluid in the vessel"); diff --git a/2006/CH3/EX3.1/ex3_1.sce b/2006/CH3/EX3.1/ex3_1.sce new file mode 100755 index 000000000..d13b237f7 --- /dev/null +++ b/2006/CH3/EX3.1/ex3_1.sce @@ -0,0 +1,22 @@ +clc; +V=0.01; // Volume of water in a rigid vessel in m^3 +m=4.5; // Mass of water+ steam in a rigid vessel in kg +T=35; // Temperature of water in a rigid vessel in degree celcius +// (a) +v=V/m; // specific volume of water +// From steam table +vf=0.001006; vg=25.22; // specific volume in m^3/kg +x=(v-vf)/(vg-vf); // Quality of steam +x1=1-x; // Quality of water +mg=x*m; // Mass of steam +mf=x1*m; // Mass of water +disp ("kg",mf,"Mass of water in a rigid vessel = ","kg",mg,"Mass of steam in a rigid vessel = ",x1,"Quality of water in a rigid vessel = ",x,"Quality of steam in a rigid vessel = "," (a) "); +// (b) +vc=0.003155; // Crictical volume for water in m^3/kg +disp ("The level of liquid water will rise in the vessel. Since v < vc and refer figure 3.21"," (b) "); +// (c) +disp ("The final temperature after heating is 370.04 oC. Because it is constant volume process and refer figure 3.21"," (c) "); +// (d) +m1=0.45; // Mass of water in kg +v1=V/m; // specific volume of water +disp ("Level of liquid drops to bottom (v1 > vc). Temperature on reaching saturation state is 298.5 oC and refer figure 3.21", " (d) "); diff --git a/2006/CH3/EX3.2/ex3_2.sce b/2006/CH3/EX3.2/ex3_2.sce new file mode 100755 index 000000000..d33501fba --- /dev/null +++ b/2006/CH3/EX3.2/ex3_2.sce @@ -0,0 +1,26 @@ +clc; + // (a) Ammonia 26 oC and 0.074 m^3/kg +// From saturation table of ammonia at 26 oC +v=0.074; // specific volume of ammonia in m^3/kg +vf=0.001663; vg=0.1245; // specific volume of ammonia in m^3/kg +x=(v-vf)/(vg-vf); // Quality of vapour since v vg . Since from superheated table by interpolation for 550kPa and v +T=82.1; // Temperature of ammonia in degree celcius +disp ("oC",T,"Temperature of ammonia = ","(b).Ammonia 550kPa and 0.31m^3/kg"); +// (c).Freon 12, 0.35MPa and 0.036 m^3/kg +// From saturation table of Freon 12 at 0.35MPa +v=0.036; // specific volume of Freon 12 in m^3/kg +vf=0.000722; vg=0.049329; // specific volume of Freon 12 in m^3/kg +x=(v-vf)/(vg-vf); // Quality of vapour since vSB. Therefore B to A","kJ/kg",SBA,"Change in entropy from B to A ="); diff --git a/2006/CH6/EX6.19/ex6_19.sce b/2006/CH6/EX6.19/ex6_19.sce new file mode 100755 index 000000000..3b9ef2d19 --- /dev/null +++ b/2006/CH6/EX6.19/ex6_19.sce @@ -0,0 +1,24 @@ +clc; +p1=12.5; // Pressure of steam at inlet in MPa +T1=500; // Temperature of steam at inlet in degree celcius +V1=50; // Velocity of steam at inlet in m/s +p2=10; // Pressure of steam at outlet in kPa +V2=100; // Velocity of steam at outlet in m/s +// (a).Actual expansion +x2=0.85; // Quality of steam +// From steam table +h1=3341.8; hf2=191.83; hg2=2584.7; // specific enthalpy in kJ/kg +s1=6.4618; sf2=0.6493; sfg2=7.5009; // specific entropy in kJ/kg K +h2a=(1-x2)*hf2+x2*hg2; // specific enthalpy in kJ/kg +wa=(h1-h2a)+((V1^2-V2^2)/2000); // Actual work output +disp ("kJ",wa,"(a).Actual work output of turbine = "); +// (b).Reversible adiabatic expansion +x2s=(s1-sf2)/sfg2; // Quality of steam after reversible adiabatic expansion +h2s=(1-x2s)*hf2+x2s*hg2; // specific enthalpy in kJ/kg +ws=(h1-h2s)+((V1^2-V2^2)/2000); // Reversible adiabatic work output +L=ws-wa; // Lost of work +disp ("kJ/kg",L,"Lost of work due to irreversibity of expansion process =","kJ/kg",ws,"Reversible adiabatic work output = ","(b).Reversible adiabatic expansion"); +// (c).Entropy Generation +s2a=sf2+x2*sfg2; // actual specific entropy in kJ/kg K +Sgen=s2a-s1; // Entropy generation +disp ("kJ/kg K",Sgen,"(c).Entropy Generation ="); diff --git a/2006/CH6/EX6.2/ex6_2.sce b/2006/CH6/EX6.2/ex6_2.sce new file mode 100755 index 000000000..f11abef00 --- /dev/null +++ b/2006/CH6/EX6.2/ex6_2.sce @@ -0,0 +1,18 @@ +clc; +QH=325; // Heat supplied in kJ +QL=125; // Heat rejected in kJ +TH=1000; // Resorvior Temperature in kelvin +TL=400; // Resorvior Temperature in kelvin +W=200; // Work developed in kJ +e_carnot=1-TL/TH; // maximum efficiency +e_clamied=W/QH; // Efficiency clamied +disp (e_carnot,"e_carnot ="); +disp (e_clamied,"e_clamied ="); +if (e_carnot==e_clamied) then + disp ("The machine is reversible"); +elseif (e_carnot>e_clamied) + disp ("The machine is irreversible"); +else + disp ("Here e_clamied > e_carnot so the cyclic machine is impossible.") +end +disp ("It would be reversible if its thermal efficiency is equal to Carnot efficiency, and irreversible if it is less than Carnot efficiency.") diff --git a/2006/CH6/EX6.20/ex6_20.sce b/2006/CH6/EX6.20/ex6_20.sce new file mode 100755 index 000000000..aec2dfe47 --- /dev/null +++ b/2006/CH6/EX6.20/ex6_20.sce @@ -0,0 +1,15 @@ +clc; +p1=0.1; // pressure at state 1 in MPa +p2=6; // Pressure at state 2 in MPa +// (a).Pump work for water +vf1=0.001043; // specific volume in m^3/kg +wp=-vf1*(p2-p1)*10^3; // Pump work for water +disp ("kJ",wp,"(a).Pump work for water ="); +// (b).For steam +h1=2675.5;// specific enthalpy in kJ/kg +s1=7.3595;// specific entropy in kJ/kg K +// From superheated steam table +t2=675; // Temperature at state 2 in degree celcius +h2=3835.3;// specific enthalpy in kJ/kg +wc=-(h2-h1); // Compressor work for steam +disp ("kJ/kg",wc,"(b).Compressor work for steam ="); diff --git a/2006/CH6/EX6.21/ex6_21.sce b/2006/CH6/EX6.21/ex6_21.sce new file mode 100755 index 000000000..a0470798e --- /dev/null +++ b/2006/CH6/EX6.21/ex6_21.sce @@ -0,0 +1,25 @@ +clc; +// (a).Restoring to initial state by throttling process +T1=303; //Temperature of air at state 1 in kelvin +p1=1; //Pressure of air at state 1 in bar +p2=5; //Pressure of air at state 2 in bar +p3=1;//Pressure of air at state 3 in bar +T3=303; //Temperature of air at state 3 in kelvin +Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K +R=0.287; // characteristic gas constant of air in kJ/kg K +k=1.4; // Index of reversible adiabatic compression +T2=T1*(p2/p1)^((k-1)/k); // Temperature after reversible adiabatic compression +w12=Cpo*(T2-T1); // Work of reversible adiabatic compression +s21=0; // Entropy change of air +s32=-R*log (p3/p2); // Entropy change +s31=s32; // Net entropy change of air +d_Ssurr=0; // Entropy change of surroundings because There is no heat transfer +d_Suniv=s31+d_Ssurr; // Net Entropy change of universe +disp ("kJ/kg K",d_Suniv,"Net Entropy change of universe = ","kJ/kg",w12,"Work of reversible adiabatic compression = ","(a).Restoring to initial state by throttling process"); +// (b).Restoring to initial state by by completing cycle +T0=298; // Temperature of surroundings in kelvin +d_Ssystem=0; // Entropy change of systrem is zero because it is cyclic process +q31=Cpo*(T2-T3); // Heat rejected to the surroundings +d_Ssurr=q31/T0; // Entropy change of surroundings +d_Suniv=d_Ssystem+d_Ssurr; // Increase in entropy of the universe +disp ("kJ/kg K",d_Suniv,"Net Entropy change of universe = ","(b).Restoring to initial state by by completing cycle"); diff --git a/2006/CH6/EX6.3/ex6_3.sce b/2006/CH6/EX6.3/ex6_3.sce new file mode 100755 index 000000000..8253067ec --- /dev/null +++ b/2006/CH6/EX6.3/ex6_3.sce @@ -0,0 +1,14 @@ +clc; +// Air conditioning unit +TL=278; // Operating temperature in kelvin +TH=318; // Operating temperature in kelvin +COP1=TL/(TH-TL); // COP of Air conditioning unit +QL=1; // For some calculation purpose +W1=QL/COP1; // Work input of Air conditioning unit +// Food refrigeration unit +TL=258; // Operating temperature in kelvin +TH=318; // Operating temperature in kelvin +COP2=TL/(TH-TL); // COP of Food refrigeration unit +W2=QL/COP2; // Work input of Food refrigeration unit +Wper=(W2-W1)/W1; // Increase in work input +disp ("%",Wper*100,"Increase in work input = "); diff --git a/2006/CH6/EX6.4/ex6_4.sce b/2006/CH6/EX6.4/ex6_4.sce new file mode 100755 index 000000000..d1234056b --- /dev/null +++ b/2006/CH6/EX6.4/ex6_4.sce @@ -0,0 +1,13 @@ +clc; +//(a).Summer air conditioning (cooling) +TL=298; // Operating temperature in kelvin +TH=318; // Operating temperature in kelvin +q=0.75; // Heat Transfer from fabric of room per degree of temperature difference in kW +QL=q*(TH-TL); // Heat Transfer from fabric of room +COPc=TL/(TH-TL); // COP of Air conditioning unit +W=QL/COPc; // Work input of Air conditioning unit +disp ("kW",W,"Work input of Air conditioning unit = ","(a).Summer air conditioning (cooling)"); +// (b).Winter air conditioning (recerse cycle heating) +TH=293; // Operating temperature in kelvin +TL=(-(-2*q*TH)-sqrt ((-2*q*TH)^2-(4*q*(q*TH^2-TH))))/(2*q);// Lowest outdoor Temperature by root +disp ("K",TL,"Lowest outdoor Temperature = ","(b).Winter air conditioning (recerse cycle heating)"); diff --git a/2006/CH6/EX6.5/ex6_5.sce b/2006/CH6/EX6.5/ex6_5.sce new file mode 100755 index 000000000..4cd13fbb9 --- /dev/null +++ b/2006/CH6/EX6.5/ex6_5.sce @@ -0,0 +1,14 @@ +clc; +// (a).For the refrigerator +TL=258; // Operating temperature in kelvin +TH=313; // Operating temperature in kelvin +QL=3.5167; // Ton of refrigeration in kW +COP=TL/(TH-TL); // COP of Refrigeration unit +W=QL/COP; // Power comsumption of refrigerator +disp ("kW",W,"Power comsumption of refrigerator = ","(a).For the refrigerator"); +// (b). For the freezer +TL=248; // Operating temperature in kelvin +TH=313; // Operating temperature in kelvin +COP=TL/(TH-TL); // COP of Freezer unit +QL=W*COP; // Refrigeration produced +disp ("kW",QL,"Refrigeration produced = ","(b). For the freezer") diff --git a/2006/CH6/EX6.6/ex6_6.sce b/2006/CH6/EX6.6/ex6_6.sce new file mode 100755 index 000000000..e3cf03a71 --- /dev/null +++ b/2006/CH6/EX6.6/ex6_6.sce @@ -0,0 +1,14 @@ +clc; +Psat=200;//Pressure of water in kPa +Tsat=393.38; // Saturation temperaure at Psat in kelvin +// (i).From the equation Tds=du+pdv +// Following are from steam table at Psat +ufg=2025; // specific internal energy of vapourization in kJ/kg +vg=0.8857; // specific volume in m^3/kg +vf=0.001061; // specific volume in m^3/kg +sfg=(ufg/Tsat)+(Psat*(vg-vf)/Tsat); // specific entropy of vapourization +disp ("kJ/kg K",sfg,"specific entropy of vapourization = ","(i).From the equation Tds=du+pdv "); +// (ii).From the equation Tds=dh-vdp +hfg=2201.9; // Specific enthalpy of vapourization in kJ/kg +sfg=hfg/Tsat; // specific entropy of vapourization +disp ("kJ/kg K",sfg,"specific entropy of vapourization = ","(ii).From the equation Tds=dh-vdp "); diff --git a/2006/CH6/EX6.7/ex6_7.sce b/2006/CH6/EX6.7/ex6_7.sce new file mode 100755 index 000000000..7f5f6173b --- /dev/null +++ b/2006/CH6/EX6.7/ex6_7.sce @@ -0,0 +1,15 @@ +clc; +p1=1; // Pressure of steam at state 1 in bar +T=473; // Temperature of steam at state 1 in kelvin +// (i).Pressure after compression +p2=1.5538; // Pressure after compression at (Psat)T from steam table in MPa +disp ("MPa",p2,"Pressure after compression = ","(i).Pressure after compression"); +// (ii).Heat Transfer and work done during the process +// Following are from steam table +s2=6.4323; // specific entropy of steam at state 2 in kJ/kg K +s1=7.8343; // specific entropy of steam at state 1 in kJ/kg K +u2=2595.3; // specific internal energy of steam at state 2 in kJ/kg +u1=2658.1; // specific internal energy of steam at state 1 in kJ/kg +q=T*(s2-s1); // Heat transfer during the process +w=q-(u2-u1); // Work done during the process +disp ("kJ",w,"Work done during the process = ","kJ",q,"Heat transfer during the process = ","(ii).Heat Transfer and work done during the process"); diff --git a/2006/CH6/EX6.8/ex6_8.sce b/2006/CH6/EX6.8/ex6_8.sce new file mode 100755 index 000000000..cc1ade313 --- /dev/null +++ b/2006/CH6/EX6.8/ex6_8.sce @@ -0,0 +1,14 @@ +clc; +p1=6; // Initial pressure of steam in MPa +T1=500; // Initial temperature of steam in degree celcius +p2=10; // Final pressure of steam in bar +// From steam tables +s1=6.8803; sf2=1.3026; sfg2=6.0568; // specific entropy in kJ/kg K +u1=3082.2; uf2=761.68; ufg2=1822; // specific internal energy in kJ/kg +v1=0.05665; vf2=0.001043; vg2=1.694; // specific volume in m^3/kg +x2=(v1-vf2)/(vg2-vf2);// Quality of steam +u2=uf2+x2*ufg2; // specific internal energy in kJ/kg +s2=sf2+x2*sfg2; // specific entropy in kJ/kg K +s21=s2-s1; // Entropy change +q=u2-u1; // Heat transfer +disp ("kJ",q,"Heat transfer for the process =","kJ/kg",s21,"Entropy change of the process = "); diff --git a/2006/CH7/EX7.1/ex7_1.sce b/2006/CH7/EX7.1/ex7_1.sce new file mode 100755 index 000000000..d4470ea89 --- /dev/null +++ b/2006/CH7/EX7.1/ex7_1.sce @@ -0,0 +1,30 @@ +clc; +p1=1; // Initial pressure of fluid in MPa +T1=250; // Initial temperture of fluid in degree celcius +V=0.28; // Volume of container in m^3 +p2=0.35; // Initial pressure of the fluid in MPa +// (a).Water +v1=0.2327; // specific volume of vapour from steam table at state 1 in m^3/kg +v2=v1; // constant volume process +vf2=0.001079; vfg2=0.5232; // specific volume of vapour from steam table at state 2 in m^3/kg +m=V/v1; // mass of steam +x2=(v2-vf2)/vfg2; // quality of steam at state 2 +t2=138.88; // Final temperature of fluid in degree celcius (saturation temperature at p2) +// following are the values taken from steam tables +u1=2709.9; // specific internal energy at state 1 in kJ/kg +s1=6.9247; // Specific entropy at state 1 in kJ/kg K +uf2=582.95; ug2=2548.9; // specific internal energy at state 2 in kJ/kg +sf2=1.7245; sg2=6.9405; // Specific entropy at state 2 in kJ/kg K +u2=(1-x2)*uf2+x2*ug2; // specific internal energy at state 2 +s2=(1-x2)*sf2+x2*sg2; // specific enropy at state 2 +Q=m*(u2-u1); // Heat transferred +S21=m*(s2-s1); // Entropy change +disp ("kJ/kg K (round off error)",S21,"Entropy change = ","kJ (answer mentioned in the textbook is wrong)",Q,"Heat transferred = ',"oC",t2,"Final Temperature = ","(a).Water"); +// (b).Air +Cvo=0.7165; // Specific heat at constant volume in kJ/kg K +R=0.287; // characteristic gas constant of air in kJ/kg K +m=(p1*10^3*V)/(R*(T1+273)); // Mass of air +T2=(p2/p1)*(273+T1); // Final temperature of air +Q=m*Cvo*(T2-(T1+273)); // Heat transferred +S21=m*Cvo*log (T2/(273+T1)); // Change in entropy +disp ("kJ/kg K (round off error)",S21,"Entropy change = ","kJ (round off error)",Q,"Heat transferred = ',"K ",T2,"Final Temperature = ","(b).Air"); diff --git a/2006/CH7/EX7.10/ex7_10.sce b/2006/CH7/EX7.10/ex7_10.sce new file mode 100755 index 000000000..d09bc6010 --- /dev/null +++ b/2006/CH7/EX7.10/ex7_10.sce @@ -0,0 +1,25 @@ +clc; +p1=3; // Pressure of fluid at inlet in bar +T1=150; // Temperature of fluid at inlet in degree celcius +V1=90; // Velocity of fluid at inlet in m/s +eff_nozzle=0.85; // Nozzle efficiency +k=1.4; // Index of reversible adiabatic process +p2=1/3*p1; +// (a).Steam +// Following are taken from steam table +h1=2761; // specific enthalpy in kJ/kg +s1=7.0778;// specific entropy in kJ/kg K +s2s=s1; // Isentropic process +sf2s=1.3026; sfg2s=6.0568;// specific entropy in kJ/kg K +hf2=417.46; hfg2=2258; // specific enthalpy in kJ/kg +x2s=(s2s-sf2s)/sfg2s; // Quality of steam +h2s=hf2+x2s*hfg2; +V2s=sqrt (2000*(h1-h2s)+V1^2); // Isentropic Velocity +V2=sqrt (eff_nozzle) *V2s; // Actual nozzle exit velocity +disp ("m/s (round off error)",V2," Actual nozzle exit velocity = ","(a).Steam"); +// (b).Air +Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K +T2s=(T1+273)*(p2/p1)^((k-1)/k); // Isentropic temperature +V2s=sqrt ((2000*Cpo*((T1+273)-T2s))+V1^2); // Isentropic Velocity and (answer mentioned in the textbook is wrong) +V2=sqrt (eff_nozzle) *V2s; // Actual nozzle exit velocity +disp ("m/s (answer mentioned in the textbook is wrong)",V2," Actual nozzle exit velocity = ","(b).Air"); diff --git a/2006/CH7/EX7.11/ex7_11.sce b/2006/CH7/EX7.11/ex7_11.sce new file mode 100755 index 000000000..279f49b4e --- /dev/null +++ b/2006/CH7/EX7.11/ex7_11.sce @@ -0,0 +1,22 @@ +clc; +p1=200; // Pressure of fluid at inlet in kPa +T1=200; // Temperature of fluid at inlet in degree celcius +V1=700; // Velocity of fluid at inlet in m/s +V2=70; // Velocity of fluid at outlet in m/s +// (a).Reversible Adiabatic process +// state of steam entering diffuser (superheated) +h1=2870.5;// specific enthalpy in kJ/kg +s1=7.5066; // specific entropy in kJ/kg K +h2=h1+(V1^2-V2^2)/2000; // From first and second laws +s2=s1; // Isentropic peocess +// From superheated table +p2s=550; // Pressure of fluid at outlet in kPa +T2=324; // Temperature of fluid at outlet in degree celcius +disp ("oC",T2,"Temperature of fluid at outlet =","kPa",p2s,"Pressure of fluid at outlet = ","(a).Reversible adiabatic process"); +// (b).Actual diffusion +// for the same change in K.E, from first law +h2=3113.1;// specific enthalpy in kJ/kg +p2=400; // Actual exit pressure in kPa +t2=322.4; // from superheated table in degree celcius +eff_d=(p2-p1)/(p2s-p1); // Diffuser efficiency +disp ("%",eff_d*100,"Diffuser efficiency = ","oC",t2,"The exit temperature =","(b).Actual diffusion"); diff --git a/2006/CH7/EX7.12/ex7_12.sce b/2006/CH7/EX7.12/ex7_12.sce new file mode 100755 index 000000000..052d2258f --- /dev/null +++ b/2006/CH7/EX7.12/ex7_12.sce @@ -0,0 +1,16 @@ +clc; +p1=1; // Pressure of fluid at inlet in bar +T1=60; // Temperature of fluid at inlet in degree celcius +p2=2.8; // Pressure of fluid at outlet in bar +eff_d=0.80; // Diffuser efficiency +k=1.4; // Index of reversible adiabatic process +Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K +// (a).Actual Diffuser +p2s=((p2-p1)/eff_d)+p1; // Isentropic pressure +T2=(T1+273)*(p2s/p1)^((k-1)/k); // Exit temperature +V1=sqrt (2000*Cpo*(T2-(T1+273))); // Initial Velocity +disp ("m/s",V1,"Initial Velocity =","K",T2,"Temperature of air leaving diffuser =","(a).Actual Diffuser"); +// (b).Reversible Adiabatic diffuser +T2s=(T1+273)*(p2/p1)^((k-1)/k); // Isentropic exit temperature +V1=sqrt (2000*Cpo*(T2s-(T1+273))); // Initial Velocity +disp ("m/s",V1,"Initial Velocity =","K",T2s,"Temperature of air leaving diffuser =","(b).Reversible Adiabatic diffuser"); diff --git a/2006/CH7/EX7.13/ex7_13.sce b/2006/CH7/EX7.13/ex7_13.sce new file mode 100755 index 000000000..3874c0005 --- /dev/null +++ b/2006/CH7/EX7.13/ex7_13.sce @@ -0,0 +1,15 @@ +clc; +m=18; // mass flow rate of air in kg/s +p1=3.6; // Pressure of fluid at inlet of turbine in MPa +T1=800; // Temperature of fluid at inlet of turbine in Kelvin +V1=100; // Velocity of fluid at inlet of turbine in m/s +V2=150; // Velocity of fluid at outlet of turbine in m/s +W=3.6; // Power output of turbine in MW +p3=1.01; // pressure at diffuser outlet in bar +k=1.4; // Index of reversible adiabatic process +Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K +// (a) Pressure at diffuser inlet +T2=((Cpo*T1)-((W*10^3)/m+(V2^2-V1^2)/2000))/Cpo; // Temperature at outlet of turbine +T3=(T2+273)+((V2^2)/(2*Cpo*10^3)); // Temperature of fluid at diffuser inlet +p2=p3*((T2+273)/T3)^(k/(k-1)); //pressure at diffuser inlet +disp ("bar",p2,"(a).pressure at diffuser inlet ="); diff --git a/2006/CH7/EX7.14/ex7_14.sce b/2006/CH7/EX7.14/ex7_14.sce new file mode 100755 index 000000000..224a6d330 --- /dev/null +++ b/2006/CH7/EX7.14/ex7_14.sce @@ -0,0 +1,9 @@ +clc; +T1=35; // Temperature of freon 12 before throttling in degree celcius +T2=5; // Temperature of freon 12 after throttling in degree celcius +// from property table of freon 12 +h1=69.49;// specific enthalpy in kJ/kg +hf2=40.66; hfg2=148.86; // specific enthalpy in kJ/kg +h2=h1; // throttling process +x2=(h2-hf2)/hfg2; // Quality of Freon 12 vapour +disp (x2,"Quality of Freon 12 vapour = "); diff --git a/2006/CH7/EX7.15/ex7_15.sce b/2006/CH7/EX7.15/ex7_15.sce new file mode 100755 index 000000000..caddd920b --- /dev/null +++ b/2006/CH7/EX7.15/ex7_15.sce @@ -0,0 +1,16 @@ +clc; +p2=276; // Pressure at inlet in kPa +p=6.5; // gauge pressure at outlet in cm Hg +T3=110; // Temperature at outlet in degree celcius +pa=756; // Barometric pressure in mm Hg +mc=760;// Mass of condensed steam in g +ms=25; // Mass of separated water in g +den=13600; // Density of mercury in kg/m^3 +g=9.81; // Acceleration due to gravity in m/s^2 +z=(pa*10^-3)+(p*10^-2);// absolute pressure in m Hg +p3=den*g*z; // Pressure after throttling +h3=2697.4;// specific enthalpy in kJ/kg +hf2=545.31; hfg2=2175.2; // specific enthalpy in kJ/kg +x2=(h3-hf2)/hfg2; // Quality of steam +x1=(mc/(mc+ms))*x2; // Quality of steam in the main line +disp (x1,"Quality of steam in the main line ="); diff --git a/2006/CH7/EX7.2/ex7_2.sce b/2006/CH7/EX7.2/ex7_2.sce new file mode 100755 index 000000000..e91e8996e --- /dev/null +++ b/2006/CH7/EX7.2/ex7_2.sce @@ -0,0 +1,32 @@ +clc; +p1=1.0021; // Initial pressure of the fluid in MPa +T1=180; // Initial temperature of the fluid in degree celcius +m=0.5; // Mass of the fluid in kg +p2=p1; // Constant pressure process +// (a).Steam +x1=0.8; // Quality of the steam at state 1 +// Following are the values taken from steam table +vf1=0.001127; vfg1=0.1929; // specific volume of the steam in m^3/kg +hf1=763.2; hfg1=2015; // specific enthalpy in kJ/kg +sf1=2.1396; sfg1=4.4460; // specific entropy in kJ/kg K +v1=vf1+x1*vfg1; // specific volume in m^3/kg +h1=hf1+x1*hfg1; // specific enthalpy in kJ/kg +s1=sf1+x1*sfg1; // specific entropy in kJ/kg K +v2=2*v1; // Final volume of the fluid +t2=410.5; // Final temperature of steam in degree celcius (from superheated steam table) +h2=3286.4; // specific enthalpy in kJ/kg +s2=7.525; // specific entropy in kJ/kg K +S21=m*(s2-s1); // Change in entropy +W=m*p1*10^3*(v2-v1); // Work done +Q=m*(h2-h1); // Heat transferred +disp ("kJ",Q,"Heat transferred = ","kJ",W,"Work done = ","kJ/K",S21,"Change in entropy = ","K",t2+273,"Final Temperature = ","(a).Steam"); +// (b).Air +Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K +R=0.287; // characteristic gas constant of air in kJ/kg K +V1=m*R*(T1+273)/(p1*10^3); // Initil volume +V2=2*V1; // Final volume +T2=(T1+273)*V2/V1; // Final temperature +S21=m*Cpo*log (V2/V1); // Change in entropy +W=p1*10^3*(V2-V1); // Work done +Q=m*Cpo*(T2-(T1+273));// Heat transferred +disp ("kJ",Q,"Heat transferred = ","kJ",W,"Work done = ","kJ/K",S21,"Change in entropy = ","K",T2,"Final Temperature = ","(b).Air"); diff --git a/2006/CH7/EX7.3/ex7_3.sce b/2006/CH7/EX7.3/ex7_3.sce new file mode 100755 index 000000000..4eb12283a --- /dev/null +++ b/2006/CH7/EX7.3/ex7_3.sce @@ -0,0 +1,27 @@ +clc; +m=1.5; // Mass of the fluid in kg +p1=1; // Initial pressure of fluid in bar +T1=150; // Initial temperture of fluid in degree celcius +v2=0.3; // Final specific volume in m^3/kg +// (a).Steam +// Following are the values taken from steam table +u1=2582.8; // specific internal energy in kJ/kg +s1=7.6134; // specific entropy in kJ/kg K +vf2=0.001091; vfg2=0.3917; // specific volume of the steam in m^3/kg +sf2=1.8418; sfg2=4.9961; // specific entropy in kJ/kg K +uf2=631.7; ufg2=1927.8; // specific internal energy in kJ/kg +x2=(v2-vf2)/vfg2; // Quality of steam at state 2 +s2=sf2+x2*sfg2; // specific entropy in kJ/kg K +u2=uf2+x2*ufg2; // specific internal energy in kJ/kg +S21=m*(s2-s1); // Change in entropy +U21=m*(u2-u1); // Change in internal energy +Q=(T1+273)*(S21); // Heat transferred +W=Q-U21; // Work done +disp ("kJ",Q,"Heat transferred = ","kJ",W,"Work done = ","kJ/K",S21,"Change in entropy = ","kJ",U21,"Change in internal energy = ","(a).Steam"); +// (b).Air +R=0.287; // characteristic gas constant of air in kJ/kg K +v1=(R*(T1+273))/(p1*10^2); // initial specific volume +S21=m*R*log (v2/v1); // Change in entropy +Q=(T1+273)*(S21); // Heat transferred +W=Q; // Work done +disp ("kJ",Q,"Heat transferred = ","kJ",W,"Work done = ","kJ/K",S21,"Change in entropy = ","kJ",U21,"Change in internal energy = ","(b).Air"); diff --git a/2006/CH7/EX7.4/ex7_4.sce b/2006/CH7/EX7.4/ex7_4.sce new file mode 100755 index 000000000..1a6b28b5b --- /dev/null +++ b/2006/CH7/EX7.4/ex7_4.sce @@ -0,0 +1,25 @@ +clc; +m=1.5; // Mass of the fluid in kg +p1=1.6; // Initial pressure of fluid in MPa +T1=250; // Initial temperture of fluid in degree celcius +p2=150; // Initial pressure of the fluid in kPa +// (a).Steam +// Following are the values taken from steam table +// state 1 is superheated +u1=2692.3; // specific internal energy in kJ/kg +s1=6.6732; // specific entropy in kJ/kg K +v1=0.14184; // specific volume of the steam in m^3/kg +// State 2 is wet (s1=s2